organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 10| October 2015| Pages o712-o713

Crystal structure of 5-di­ethyl­amino-2-({[4-(di­ethyl­amino)­phen­yl]imino}­meth­yl)phenol

CROSSMARK_Color_square_no_text.svg

aPG & Research Department of Chemistry, Chikkanna Government Arts College, Tiruppur 641 602, India, bDepartment of Physics, CPCL Polytechnic College, Chennai 600 068, India, and cPG & Research Department of Chemistry, Presidency College (Autonomous), Chennai 600 005, India
*Correspondence e-mail: chakkaravarthi_2005@yahoo.com, jothivenkateswaran@yahoo.co.in

Edited by V. Rybakov, Moscow State University, Russia (Received 1 September 2015; accepted 3 September 2015; online 12 September 2015)

In the title compound, C21H29N3O, the dihedral angle between the planes of the aromatic rings is 8.1 (2)°. The ethyl groups at one terminal site of the compound are disordered over two sets of sites with occupancies of 0.775 (9) and 0.225 (9). The mol­ecule has an E conformation about the N=C bond. The mol­ecular structure features an intra­molecular O—H⋯N hydrogen bond, which closes an S(6) loop. In the crystal, weak C—H⋯π inter­actions leads to the formation of a three-dimensional network.

1. Related literature

For biological and pharmacological activities of Schiff base compounds and their derivatives, see: Khandar et al. (2005[Khandar, A. A., Hosseini-Yazdi, S. A. & Zarei, S. A. (2005). Inorg. Chim. Acta, 358, 3211-3217.]); Chen et al. (2006[Chen, Y., Zhao, Y., Lu, C., Tzeng, C. & Wang, J. (2006). Bioorg. Med. Chem. 14, 4373-4378.]); Kidwai et al. (2000[Kidwai, M., Bhushan, K., Sapra, P., Saxena, R. & Gupta, R. (2000). Bioorg. Med. Chem. 8, 69-72.]). For similar structures, see: Manvizhi et al. (2011[Manvizhi, K., Chakkaravarthi, G., Anbalagan, G. & Rajagopal, G. (2011). Acta Cryst. E67, o2500.]); Thirugnanasundar et al. (2011[Thirugnanasundar, A., Suresh, J., Ramu, A. & RajaGopal, G. (2011). Acta Cryst. E67, o2303.]); Rani et al. (2015[Rani, C. V., Chakkaravarthi, G. & Rajagopal, G. (2015). Acta Cryst. E71, o503.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C21H29N3O

  • Mr = 339.47

  • Orthorhombic, P 21 21 21

  • a = 8.1986 (4) Å

  • b = 9.7128 (4) Å

  • c = 24.4172 (12) Å

  • V = 1944.38 (16) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 295 K

  • 0.28 × 0.26 × 0.24 mm

2.2. Data collection

  • Bruker Kappa APEX II CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.980, Tmax = 0.983

  • 29557 measured reflections

  • 3556 independent reflections

  • 2130 reflections with I > 2σ(I)

  • Rint = 0.046

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.064

  • wR(F2) = 0.205

  • S = 1.07

  • 3556 reflections

  • 272 parameters

  • 10 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.44 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C5–C10 and C12–C17 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N2 0.86 (2) 1.81 (4) 2.563 (5) 144 (6)
C18—H18ACg2i 0.97 2.92 3.660 (5) 134
C1A—H1A1⋯Cg1ii 0.96 2.80 3.49 (4) 130
Symmetry codes: (i) [-x+{\script{5\over 2}}, -y-1, z+{\script{1\over 2}}]; (ii) [-x-1, y+{\script{3\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Schiff base derivatives serve as intermediates in certain enzymatic reactions and are also found in proteins that form the connective tissue (Khandar et al., 2005; Chen et al., 2006) and in the pharmaceutical field (Kidwai et al., 2000). We herein report the crystal structure of the title compound (Fig.1). The geometric parameters of the title compound are comparable to the reported structures (Manvizhi et al., 2011; Thirugnanasundar et al., 2011; Rani et al., 2015). The dihedral angle between the rings (C5–C10) and (C12–C17) is 8.1 (2)°. The ethyl groups at one terminal site (N1) of the compound are disordered over two positions, with the site occupancies of 0.775 (9) and 0.225 (9). The molecular structure is stabilized by weak intramolecular O—H···N hydrogen bond (Table 1). The crystal structure is influenced by weak C—H···π (Table 1) interactions to form a three dimensional network.

Related literature top

For biological and pharmacological activities of Schiff base compounds and their derivatives, see: Khandar et al. (2005); Chen et al. (2006); Kidwai et al. (2000). For similar structures, see: Manvizhi et al. (2011); Thirugnanasundar et al. (2011); Rani et al. (2015).

Experimental top

For the preparation of Schiff base, an ethanolic solution (10 ml) of 5–(diethylamino)–2–hydroxybenzaldehyde (0.5 mol) and the same volume of ethanolic solution of N,N–diethylbenzene–1,4–diamine (0.5 mol) are mixed. The solution is mixed on magnetic stirrer with addition of 2 to 3 drops of glacial acetic acid. The reaction mixture is refluxed for 2 hrs and allowed to cool down to room temperature, crystalline solid precipitate from the mixture is separated out. Crystalline products are washed with ice cold ethanol and dried in vacuo over anhydrous CaCl2. Single crystals suitable for the X-ray diffraction are obtained by slow evaporation of a solution of the title compound in DMF at room temperature.

Refinement top

The H atoms were positioned geometrically and refined using riding model with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C) for aromatic H, C—H = 0.97 Å and Uiso(H) = 1.2Ueq(C) for CH2, C—H = 0.96 Å and Uiso(H) = 1.5Ueq(C) for CH3. H atom for O atom is found from Fourier map and refined freely with Uiso(H) = 1.5Ueq(O) and distance restraint 0.82 Å. The components of the anisotropic displacement parameters in the direction of the bond between C9 and O1 were restrained to be equal within an effective standard deviation of 0.001 using the DELU command. The N1—C2, N1—C3, N1—C2A, N1—C3A distances were restraint to 1.46 (1) Å and C1—C2, C1A—C2A, C3—C4 and C3A—C4A distances were restraint to 1.53 (1) Å

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of title compaund, with the atom–numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are presented as a small spheres of arbitrary radius. The intramolecular hydrogen bond is depicted by a dashed line. Only the major occupancy component of the disordered diethylamino–group [—N1(C2H5)2] is shown.
5-Diethylamino-2-({[4-(diethylamino)phenyl]imino}methyl)phenol top
Crystal data top
C21H29N3OF(000) = 736
Mr = 339.47Dx = 1.160 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 7089 reflections
a = 8.1986 (4) Åθ = 2.5–25.3°
b = 9.7128 (4) ŵ = 0.07 mm1
c = 24.4172 (12) ÅT = 295 K
V = 1944.38 (16) Å3Block, colourless
Z = 40.28 × 0.26 × 0.24 mm
Data collection top
Bruker Kappa APEX II CCD
diffractometer
3556 independent reflections
Radiation source: fine–focus sealed tube2130 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.046
ω and φ scansθmax = 25.4°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 99
Tmin = 0.980, Tmax = 0.983k = 1111
29557 measured reflectionsl = 2929
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.064H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.205 w = 1/[σ2(Fo2) + (0.0727P)2 + 1.5032P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max < 0.001
3556 reflectionsΔρmax = 0.44 e Å3
272 parametersΔρmin = 0.20 e Å3
10 restraintsAbsolute structure: Flack (1983), 1466 Friedel pairs
Primary atom site location: structure-invariant direct methods
Crystal data top
C21H29N3OV = 1944.38 (16) Å3
Mr = 339.47Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 8.1986 (4) ŵ = 0.07 mm1
b = 9.7128 (4) ÅT = 295 K
c = 24.4172 (12) Å0.28 × 0.26 × 0.24 mm
Data collection top
Bruker Kappa APEX II CCD
diffractometer
3556 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2130 reflections with I > 2σ(I)
Tmin = 0.980, Tmax = 0.983Rint = 0.046
29557 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.06410 restraints
wR(F2) = 0.205H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 0.44 e Å3
3556 reflectionsΔρmin = 0.20 e Å3
272 parametersAbsolute structure: Flack (1983), 1466 Friedel pairs
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R–factor wR and goodness of fit S are based on F2, conventional R–factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R–factors(gt) etc. and is not relevant to the choice of reflections for refinement. R–factors based on F2 are statistically about twice as large as those based on F, and R–factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.7266 (10)0.9101 (7)0.0244 (3)0.084 (2)0.775 (9)
H1A0.74110.86900.01110.125*0.775 (9)
H1B0.65380.98710.02140.125*0.775 (9)
H1C0.83020.94090.03800.125*0.775 (9)
C20.6555 (11)0.8049 (8)0.0633 (4)0.067 (3)0.775 (9)
H2A0.55770.76510.04750.080*0.775 (9)
H2B0.62600.84920.09750.080*0.775 (9)
C30.9082 (10)0.7205 (8)0.1156 (3)0.073 (2)0.775 (9)
H3A0.93750.81720.11610.088*0.775 (9)
H3B1.00470.66740.10650.088*0.775 (9)
C40.8438 (10)0.6778 (8)0.1703 (3)0.093 (3)0.775 (9)
H4A0.82110.58090.16990.140*0.775 (9)
H4B0.92370.69750.19790.140*0.775 (9)
H4C0.74540.72770.17800.140*0.775 (9)
C1A0.586 (4)0.847 (5)0.0615 (19)0.122 (16)0.225 (9)
H1A10.55210.93970.05450.183*0.225 (9)
H1A20.51930.78470.04050.183*0.225 (9)
H1A30.57300.82670.09980.183*0.225 (9)
C2A0.764 (4)0.8291 (15)0.0453 (9)0.085 (9)0.225 (9)
H2A10.83450.89930.06070.102*0.225 (9)
H2A20.77980.82210.00610.102*0.225 (9)
C3A0.787 (3)0.6858 (16)0.1341 (4)0.061 (7)0.225 (9)
H3A10.70190.73900.15190.073*0.225 (9)
H3A20.78240.59110.14670.073*0.225 (9)
C4A0.955 (3)0.749 (3)0.1425 (13)0.080 (9)0.225 (9)
H4A10.94780.84740.13890.120*0.225 (9)
H4A20.99440.72630.17830.120*0.225 (9)
H4A31.02880.71360.11540.120*0.225 (9)
C50.7811 (6)0.5793 (4)0.04177 (17)0.0666 (12)
C60.8764 (6)0.4644 (5)0.05697 (19)0.0725 (13)
H60.93260.46510.09010.087*
C70.8865 (6)0.3522 (5)0.02341 (19)0.0680 (12)
H70.95090.27820.03420.082*
C80.8054 (5)0.3444 (4)0.02559 (16)0.0541 (10)
C90.7068 (6)0.4550 (5)0.03971 (16)0.0613 (11)
C100.6941 (6)0.5712 (4)0.00699 (17)0.0662 (12)
H100.62740.64380.01770.079*
C110.8246 (6)0.2245 (5)0.06113 (19)0.0643 (12)
H110.89090.15220.04990.077*
C120.7727 (5)0.1017 (4)0.14256 (17)0.0574 (11)
C130.8522 (6)0.0207 (5)0.12960 (18)0.0706 (13)
H130.90120.03060.09550.085*
C140.8591 (6)0.1287 (5)0.16721 (18)0.0679 (12)
H140.91300.20940.15770.082*
C150.7872 (5)0.1183 (4)0.21878 (16)0.0515 (10)
C160.7109 (5)0.0078 (4)0.23007 (17)0.0616 (11)
H160.66380.02100.26430.074*
C170.7033 (5)0.1122 (5)0.19253 (18)0.0622 (11)
H170.64870.19290.20170.075*
C180.8789 (6)0.3514 (5)0.2453 (2)0.0726 (13)
H18A0.91280.39120.27990.087*
H18B0.97650.33060.22440.087*
C190.7787 (9)0.4567 (6)0.2141 (2)0.109 (2)
H19A0.68550.48250.23560.164*
H19B0.84430.53660.20700.164*
H19C0.74290.41760.18010.164*
C200.7125 (6)0.2143 (5)0.3091 (2)0.0764 (14)
H20A0.68220.30580.32130.092*
H20B0.61320.16070.30540.092*
C210.8191 (9)0.1487 (7)0.3515 (2)0.113 (2)
H21A0.92080.19750.35350.170*
H21B0.76570.15210.38640.170*
H21C0.83930.05460.34170.170*
N10.7767 (7)0.6954 (4)0.07378 (16)0.1047 (19)
N20.7542 (4)0.2174 (4)0.10594 (14)0.0626 (10)
N30.7918 (5)0.2243 (4)0.25593 (14)0.0654 (10)
O10.6208 (5)0.4508 (4)0.08624 (14)0.0858 (11)
H10.643 (8)0.379 (4)0.105 (2)0.129*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.091 (5)0.071 (5)0.089 (5)0.010 (4)0.006 (4)0.013 (4)
C20.084 (8)0.057 (5)0.059 (4)0.014 (5)0.005 (5)0.004 (3)
C30.081 (6)0.061 (4)0.078 (6)0.007 (4)0.005 (4)0.004 (4)
C40.099 (6)0.105 (6)0.075 (5)0.017 (5)0.000 (4)0.008 (4)
C1A0.11 (3)0.11 (3)0.15 (3)0.01 (2)0.04 (3)0.01 (3)
C2A0.12 (3)0.08 (2)0.058 (16)0.004 (18)0.006 (17)0.015 (14)
C3A0.13 (2)0.021 (8)0.036 (11)0.008 (11)0.021 (12)0.000 (7)
C4A0.076 (17)0.080 (19)0.09 (2)0.020 (14)0.023 (15)0.010 (16)
C50.091 (3)0.054 (3)0.055 (2)0.012 (3)0.019 (3)0.003 (2)
C60.090 (4)0.061 (3)0.067 (3)0.008 (3)0.018 (3)0.006 (2)
C70.075 (3)0.054 (3)0.075 (3)0.010 (2)0.004 (3)0.005 (2)
C80.050 (2)0.048 (2)0.064 (3)0.000 (2)0.010 (2)0.0036 (19)
C90.059 (2)0.071 (3)0.054 (2)0.004 (2)0.0005 (17)0.001 (2)
C100.081 (3)0.059 (3)0.059 (2)0.017 (3)0.015 (2)0.005 (2)
C110.056 (3)0.071 (3)0.065 (3)0.002 (2)0.012 (2)0.003 (2)
C120.052 (2)0.049 (2)0.071 (3)0.000 (2)0.017 (2)0.010 (2)
C130.081 (3)0.080 (3)0.050 (2)0.005 (3)0.002 (2)0.002 (2)
C140.078 (3)0.061 (3)0.065 (3)0.013 (2)0.007 (2)0.006 (2)
C150.051 (2)0.046 (2)0.058 (2)0.002 (2)0.011 (2)0.0053 (19)
C160.056 (2)0.062 (3)0.067 (3)0.001 (2)0.003 (2)0.004 (2)
C170.056 (3)0.064 (3)0.067 (3)0.001 (2)0.006 (2)0.002 (2)
C180.077 (3)0.063 (3)0.077 (3)0.015 (3)0.004 (3)0.014 (3)
C190.144 (6)0.066 (3)0.116 (4)0.001 (4)0.014 (5)0.014 (3)
C200.073 (3)0.063 (3)0.093 (3)0.001 (3)0.001 (3)0.018 (3)
C210.145 (6)0.123 (5)0.072 (3)0.005 (5)0.001 (4)0.008 (3)
N10.176 (5)0.065 (3)0.072 (3)0.038 (3)0.061 (3)0.020 (2)
N20.061 (2)0.065 (2)0.061 (2)0.0032 (19)0.0139 (19)0.0030 (18)
N30.081 (2)0.054 (2)0.062 (2)0.011 (2)0.000 (2)0.0053 (17)
O10.105 (3)0.084 (2)0.068 (2)0.028 (2)0.0249 (18)0.0131 (18)
Geometric parameters (Å, º) top
C1—C21.513 (8)C8—C91.388 (6)
C1—H1A0.9600C8—C111.461 (6)
C1—H1B0.9600C9—O11.338 (5)
C1—H1C0.9600C9—C101.387 (6)
C2—N11.478 (7)C10—H100.9300
C2—H2A0.9700C11—N21.239 (5)
C2—H2B0.9700C11—H110.9300
C3—C41.495 (7)C12—C171.350 (6)
C3—N11.504 (7)C12—C131.392 (6)
C3—H3A0.9700C12—N21.444 (5)
C3—H3B0.9700C13—C141.395 (6)
C4—H4A0.9600C13—H130.9300
C4—H4B0.9600C14—C151.394 (6)
C4—H4C0.9600C14—H140.9300
C1A—C2A1.523 (10)C15—N31.373 (5)
C1A—H1A10.9600C15—C161.403 (6)
C1A—H1A20.9600C16—C171.368 (6)
C1A—H1A30.9600C16—H160.9300
C2A—N11.477 (10)C17—H170.9300
C2A—H2A10.9700C18—N31.450 (5)
C2A—H2A20.9700C18—C191.516 (7)
C3A—N11.478 (9)C18—H18A0.9700
C3A—C4A1.524 (10)C18—H18B0.9700
C3A—H3A10.9700C19—H19A0.9600
C3A—H3A20.9700C19—H19B0.9600
C4A—H4A10.9600C19—H19C0.9600
C4A—H4A20.9600C20—N31.455 (6)
C4A—H4A30.9600C20—C211.497 (7)
C5—N11.372 (5)C20—H20A0.9700
C5—C101.390 (6)C20—H20B0.9700
C5—C61.412 (6)C21—H21A0.9600
C6—C71.366 (6)C21—H21B0.9600
C6—H60.9300C21—H21C0.9600
C7—C81.371 (6)O1—H10.86 (2)
C7—H70.9300
N1—C2—C1109.6 (7)C17—C12—C13117.8 (4)
N1—C2—H2A109.8C17—C12—N2117.2 (4)
C1—C2—H2A109.8C13—C12—N2125.0 (4)
N1—C2—H2B109.8C12—C13—C14120.8 (4)
C1—C2—H2B109.8C12—C13—H13119.6
H2A—C2—H2B108.2C14—C13—H13119.6
C4—C3—N1107.9 (7)C15—C14—C13121.5 (4)
C4—C3—H3A110.1C15—C14—H14119.2
N1—C3—H3A110.1C13—C14—H14119.2
C4—C3—H3B110.1N3—C15—C14122.1 (4)
N1—C3—H3B110.1N3—C15—C16122.5 (4)
H3A—C3—H3B108.4C14—C15—C16115.4 (4)
C2A—C1A—H1A1109.5C17—C16—C15122.4 (4)
C2A—C1A—H1A2109.5C17—C16—H16118.8
H1A1—C1A—H1A2109.5C15—C16—H16118.8
C2A—C1A—H1A3109.5C12—C17—C16122.0 (4)
H1A1—C1A—H1A3109.5C12—C17—H17119.0
H1A2—C1A—H1A3109.5C16—C17—H17119.0
N1—C2A—C1A93 (2)N3—C18—C19113.4 (4)
N1—C2A—H2A1113.2N3—C18—H18A108.9
C1A—C2A—H2A1113.2C19—C18—H18A108.9
N1—C2A—H2A2113.2N3—C18—H18B108.9
C1A—C2A—H2A2113.2C19—C18—H18B108.9
H2A1—C2A—H2A2110.5H18A—C18—H18B107.7
N1—C3A—C4A99.1 (15)C18—C19—H19A109.5
N1—C3A—H3A1111.9C18—C19—H19B109.5
C4A—C3A—H3A1111.9H19A—C19—H19B109.5
N1—C3A—H3A2111.9C18—C19—H19C109.5
C4A—C3A—H3A2111.9H19A—C19—H19C109.5
H3A1—C3A—H3A2109.6H19B—C19—H19C109.5
C3A—C4A—H4A1109.5N3—C20—C21112.6 (4)
C3A—C4A—H4A2109.5N3—C20—H20A109.1
H4A1—C4A—H4A2109.5C21—C20—H20A109.1
C3A—C4A—H4A3109.5N3—C20—H20B109.1
H4A1—C4A—H4A3109.5C21—C20—H20B109.1
H4A2—C4A—H4A3109.5H20A—C20—H20B107.8
N1—C5—C10121.4 (4)C20—C21—H21A109.5
N1—C5—C6120.9 (4)C20—C21—H21B109.5
C10—C5—C6117.7 (4)H21A—C21—H21B109.5
C7—C6—C5120.4 (4)C20—C21—H21C109.5
C7—C6—H6119.8H21A—C21—H21C109.5
C5—C6—H6119.8H21B—C21—H21C109.5
C6—C7—C8122.6 (4)C5—N1—C2A117.2 (10)
C6—C7—H7118.7C5—N1—C3A120.9 (7)
C8—C7—H7118.7C2A—N1—C3A121.9 (12)
C7—C8—C9117.2 (4)C5—N1—C2120.7 (5)
C7—C8—C11120.7 (4)C2A—N1—C240.3 (12)
C9—C8—C11122.1 (4)C3A—N1—C2104.8 (9)
O1—C9—C10118.3 (4)C5—N1—C3120.0 (5)
O1—C9—C8119.7 (4)C2A—N1—C3103.2 (12)
C10—C9—C8122.0 (4)C3A—N1—C345.1 (8)
C9—C10—C5120.1 (4)C2—N1—C3118.8 (6)
C9—C10—H10120.0C11—N2—C12122.8 (4)
C5—C10—H10120.0C15—N3—C18122.3 (4)
N2—C11—C8121.3 (4)C15—N3—C20121.8 (4)
N2—C11—H11119.4C18—N3—C20115.9 (4)
C8—C11—H11119.4C9—O1—H1112 (4)
N1—C5—C6—C7176.6 (5)C6—C5—N1—C2169.0 (6)
C10—C5—C6—C72.5 (8)C10—C5—N1—C3160.6 (5)
C5—C6—C7—C80.6 (8)C6—C5—N1—C318.5 (8)
C6—C7—C8—C91.8 (7)C1A—C2A—N1—C5106 (2)
C6—C7—C8—C11177.7 (4)C1A—C2A—N1—C3A75 (3)
C7—C8—C9—O1177.9 (4)C1A—C2A—N1—C20 (2)
C11—C8—C9—O12.7 (6)C1A—C2A—N1—C3120 (2)
C7—C8—C9—C102.2 (6)C4A—C3A—N1—C5110.9 (14)
C11—C8—C9—C10177.2 (4)C4A—C3A—N1—C2A68 (2)
O1—C9—C10—C5179.8 (4)C4A—C3A—N1—C2108.3 (15)
C8—C9—C10—C50.3 (7)C4A—C3A—N1—C37.8 (14)
N1—C5—C10—C9177.1 (5)C1—C2—N1—C591.1 (9)
C6—C5—C10—C92.1 (7)C1—C2—N1—C2A5.8 (16)
C7—C8—C11—N2178.7 (4)C1—C2—N1—C3A128.1 (9)
C9—C8—C11—N20.8 (6)C1—C2—N1—C381.6 (8)
C17—C12—C13—C140.2 (6)C4—C3—N1—C599.5 (7)
N2—C12—C13—C14177.9 (4)C4—C3—N1—C2A127.9 (12)
C12—C13—C14—C150.0 (7)C4—C3—N1—C3A5.7 (10)
C13—C14—C15—N3179.3 (4)C4—C3—N1—C287.8 (7)
C13—C14—C15—C161.0 (6)C8—C11—N2—C12178.8 (4)
N3—C15—C16—C17178.5 (4)C17—C12—N2—C11173.3 (4)
C14—C15—C16—C171.8 (6)C13—C12—N2—C118.6 (6)
C13—C12—C17—C160.7 (6)C14—C15—N3—C183.3 (7)
N2—C12—C17—C16178.9 (4)C16—C15—N3—C18176.3 (4)
C15—C16—C17—C121.7 (7)C14—C15—N3—C20178.2 (4)
C10—C5—N1—C2A34.3 (15)C16—C15—N3—C202.1 (6)
C6—C5—N1—C2A144.8 (15)C19—C18—N3—C1586.1 (5)
C10—C5—N1—C3A146.5 (10)C19—C18—N3—C2095.3 (5)
C6—C5—N1—C3A34.4 (12)C21—C20—N3—C1586.4 (6)
C10—C5—N1—C211.9 (9)C21—C20—N3—C1892.1 (5)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C5–C10 and C12–C17 rings, respectively.
D—H···AD—HH···AD···AD—H···A
O1—H1···N20.86 (2)1.81 (4)2.563 (5)144 (6)
C18—H18A···Cg2i0.972.923.660 (5)134
C1A—H1A1···Cg1ii0.962.803.49 (4)130
Symmetry codes: (i) x+5/2, y1, z+1/2; (ii) x1, y+3/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C5–C10 and C12–C17 rings, respectively.
D—H···AD—HH···AD···AD—H···A
O1—H1···N20.86 (2)1.81 (4)2.563 (5)144 (6)
C18—H18A···Cg2i0.972.923.660 (5)134
C1A—H1A1···Cg1ii0.962.803.49 (4)130
Symmetry codes: (i) x+5/2, y1, z+1/2; (ii) x1, y+3/2, z+1/2.
 

Acknowledgements

The authors acknowledge the SAIF, IIT, Madras, for the data collection.

References

First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, Y., Zhao, Y., Lu, C., Tzeng, C. & Wang, J. (2006). Bioorg. Med. Chem. 14, 4373–4378.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKhandar, A. A., Hosseini-Yazdi, S. A. & Zarei, S. A. (2005). Inorg. Chim. Acta, 358, 3211–3217.  Web of Science CSD CrossRef CAS Google Scholar
First citationKidwai, M., Bhushan, K., Sapra, P., Saxena, R. & Gupta, R. (2000). Bioorg. Med. Chem. 8, 69–72.  Web of Science CrossRef PubMed CAS Google Scholar
First citationManvizhi, K., Chakkaravarthi, G., Anbalagan, G. & Rajagopal, G. (2011). Acta Cryst. E67, o2500.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRani, C. V., Chakkaravarthi, G. & Rajagopal, G. (2015). Acta Cryst. E71, o503.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationThirugnanasundar, A., Suresh, J., Ramu, A. & RajaGopal, G. (2011). Acta Cryst. E67, o2303.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 10| October 2015| Pages o712-o713
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds