research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 10| October 2015| Pages 1219-1221

Crystal structure of di-μ-isobutyrato-κ4O:O′-bis­­[cis-di­chlorido­(di­methyl sulfoxide-κS)rhenium(III)]

CROSSMARK_Color_square_no_text.svg

aDepartment of Inorganic Chemistry, Ukrainian State University of Chemical Technology, Gagarin Ave. 8, Dnipropetrovsk 49005, Ukraine
*Correspondence e-mail: golichenko_alex@i.ua

Edited by C. Rizzoli, Universita degli Studi di Parma, Italy (Received 8 September 2015; accepted 17 September 2015; online 26 September 2015)

The title compound, [Re2(C3H7COO)2Cl4{(CH3)2SO}2], comprises binuclear complex mol­ecules [Re—Re = 2.24502 (13) Å] involving cis-oriented double carboxyl­ate bridges, four equatorial chloride ions and two weakly bonded O atoms from dimethyl sulfoxide ligands in the axial positions at the ReIII atoms. In the crystal, mol­ecules are linked into corrugated layers parallel to (101) by very weak C—H⋯Cl and C—H⋯O hydrogen-bonding inter­actions. C—H⋯Cl hydrogen bonding provides the links between layers to consolidate a three-dimensional framework.

1. Chemical context

Binuclear rhenium(III) clusters are classical complexes with a unique quadruple metal–metal bond (Cotton et al., 2005[Cotton, F. A., Murillo, C. A. & Walton, R. A. (2005). Multiple Bonds between Metal Atoms, 3rd ed., pp. 271-376. New York: Springer Science and Business Media Inc.], Golichenko & Shtemenko, 2006[Golichenko, A. A. & Shtemenko, A. V. (2006). Russ. J. Coord. Chem. 32, 242-249.]). In our previous work we have shown that such compounds with chloride and alkyl­carboxyl­ate equatorial ligands exhibit anti­tumor, anti­radical and hepato- and nephroprotective biological activity with low toxicity (Dimitrov et al., 1978[Dimitrov, N. V. & Eastland, G. W. (1978). Current Chemotherapy, edited by W. Siegenthaler & R. Luthy, Vol. 2, pp. 1319-1321. Washington, DC: American Society for Microbiology Publishing.], Shtemenko et al., 2007[Shtemenko, N., Collery, P. & Shtemenko, A. (2007). Anticancer Res. 27, 2487-2492.], 2008[Shtemenko, A., Golichenko, A., Tretyak, S., Shtemenko, N. & Randarevich, M. (2008). Metal Ions in Biology and Medicine, Vol. 10, pp. 229-234. Paris: John Libbey Eurotext.], 2009[Shtemenko, A. V., Collery, P., Shtemenko, N. I., Domasevitch, K. V., Zabitskaya, E. D. & Golichenko, A. A. (2009). Dalton Trans. pp. 5132-5136.], 2013[Shtemenko, N. I., Chifotides, H. T., Domasevitch, K. V., Golichenko, A. A., Babiy, S. A., Li, Z., Paramonova, K. V., Shtemenko, A. V. & Dunbar, K. R. (2013). J. Inorg. Biochem. 129, 127-134.]).

[Scheme 1]

Labile axial ligands and equatorial chloride groups are the reactive centers in inter­actions with other chemical compounds and biological macromolecules in vitro and in vivo (Shtemenko et al., 2013[Shtemenko, N. I., Chifotides, H. T., Domasevitch, K. V., Golichenko, A. A., Babiy, S. A., Li, Z., Paramonova, K. V., Shtemenko, A. V. & Dunbar, K. R. (2013). J. Inorg. Biochem. 129, 127-134.]). In this context, we present the synthesis and the structure of the title dirhenium(III) complex with isobutyrate equatorial ligands as biologically active groups, which can exhibit anti­tumor activity in the tetra­carboxyl­ate compound Re2(i-C3H7COO)4Cl2 (Shtemenko et al., 2007[Shtemenko, N., Collery, P. & Shtemenko, A. (2007). Anticancer Res. 27, 2487-2492.]).

2. Structural commentary

The quadruple Re—Re bond [2.24502 (13) Å] is typical for related di­carboxyl­ato clusters (Cotton et al., 2005[Cotton, F. A., Murillo, C. A. & Walton, R. A. (2005). Multiple Bonds between Metal Atoms, 3rd ed., pp. 271-376. New York: Springer Science and Business Media Inc.], Shtemenko et al., 2009[Shtemenko, A. V., Collery, P., Shtemenko, N. I., Domasevitch, K. V., Zabitskaya, E. D. & Golichenko, A. A. (2009). Dalton Trans. pp. 5132-5136.]) and the coordination of each of the rhenium ions also comprises two chlorides and two oxygen atoms of carboxyl­ate ligands (Fig. 1[link]). The distorted octa­hedral coordination geometry of Re1 and Re2 is completed by weakly bonded oxygen atoms from dimethyl sulfoxide ligands [Re1—O6 = 2.3282 (15) and Re2—O5 = 2.3938 (15) Å], in trans-positions to the Re—Re bond. This may be compared with a similar weak binding of N- or O-donors, which is characteristic of di­carboxyl­atodirhenium compounds (Bera et al., 2003[Bera, J. K., Vo, T.-T., Walton, R. A. & Dunbar, K. R. (2003). Polyhedron, 22, 3009-3014.], Shtemenko et al., 2009[Shtemenko, A. V., Collery, P., Shtemenko, N. I., Domasevitch, K. V., Zabitskaya, E. D. & Golichenko, A. A. (2009). Dalton Trans. pp. 5132-5136.], Golichenko et al., 2015[Golichenko, A. A., Domasevitch, K. V., Kytova, D. E. & Shtemenko, A. V. (2015). Acta Cryst. E71, 45-47.]).

[Figure 1]
Figure 1
The structure of cis-Re2Cl4{i-C3H7COO}2·2(CH3)2SO, showing displacement ellipsoids drawn at the 50% probability level. H atoms are shown as small spheres of arbitrary radii.

3. Supra­molecular features

Inter­molecular bonding is only very weak: it comprises distal, though relatively directional, C—H⋯O and C—H⋯Cl hydrogen-bond inter­actions between the methine- and methyl-H of the carboxyl­ate and DMSO ligands (Table 1[link]). The shortest bonds found for the chloride acceptors are C6—H6⋯Cl3ii [C6⋯Cl3ii = 3.519 (2) Å; symmetry code (ii): [{1\over 2}] − x, [{1\over 2}] + y, [{1\over 2}] − z], which unite the mol­ecules into chains along the b axis (Fig. 2[link]). The hydrogen bonds adopted by two methyl groups of DMSO mol­ecules (referenced by a sulfur atoms S2) assemble these chains into corrugated layers parallel to (101). A very weak bond of this type is found also between adjacent layers: C12⋯Cl2iii = 3.751 (3) Å; symmetry code (iii): −[{1\over 2}] − x, [{1\over 2}] + y, [{1\over 2}] − z] (Table 1[link]). The latter extends the structure into a third direction and provides the formation of a hydrogen-bonded framework.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C11—H11B⋯O2i 0.98 2.40 3.324 (3) 156
C6—H6⋯Cl3ii 1.00 2.73 3.519 (2) 136
C12—H12A⋯Cl2iii 0.98 2.82 3.751 (3) 159
C12—H12B⋯Cl3i 0.98 2.82 3.760 (3) 161
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [-x-{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].
[Figure 2]
Figure 2
A fragment of the structure, showing weak C—H⋯O and C—H⋯Cl hydrogen-bond inter­actions (dashed lines), which assemble the mol­ecules into corrugated layers parallel to (101). [Symmetry codes: (i) −[{1\over 2}] + x, [{1\over 2}] − y, [{1\over 2}] + z; (ii) [{1\over 2}] − x, [{1\over 2}] + y, [{1\over 2}] − z.]

4. Synthesis and crystallization

[NBu4]2[Re2Cl8] (0.2 g, 0.175 mmol) was added to isobutyric acid (10 ml). The mixture was heated for 3 h in a water bath under an inert atmosphere. DMSO (0.5 ml) was then added to the resulting blue solution at room temperature. A dark-blue crystalline product (0.12 g, yield 81%) was obtained after 12 h, was collected by filtration and dried in air.

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. All H were refined using a riding-model approximation, with C—H = 0.98–1.00 Å, and with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C) for methyl H atoms. A rotating model was used for the methyl groups. Six outliers (2 6 1, 3 3 3, [\overline{2}] 4 3, 0 1 1, [\overline{4}] 3 4, 3 3 7) were omitted in the last cycles of refinement.

Table 2
Experimental details

Crystal data
Chemical formula [Re2(C4H7O2)2Cl4(C2H6OS)2]
Mr 844.65
Crystal system, space group Monoclinic, P21/n
Temperature (K) 110
a, b, c (Å) 10.5581 (4), 14.7406 (5), 15.6088 (6)
β (°) 100.794 (2)
V3) 2386.26 (15)
Z 4
Radiation type Mo Kα
μ (mm−1) 10.78
Crystal size (mm) 0.22 × 0.18 × 0.09
 
Data collection
Diffractometer Siemens SMART CCD area-detector
Absorption correction Multi-scan (SADABS; Bruker, 2008[Bruker (2008). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.133, 0.478
No. of measured, independent and observed [I > 2σ(I)] reflections 93039, 14497, 11921
Rint 0.040
(sin θ/λ)max−1) 0.909
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.025, 0.049, 1.00
No. of reflections 14497
No. of parameters 243
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.71, −1.14
Computer programs: APEX2 and SAINT (Bruker, 2008[Bruker (2008). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Chemical context top

Binuclear rhenium(III) clusters are classical complexes with a unique quadruple metal–metal bond (Cotton et al., 2005, Golichenko & Shtemenko, 2006). In our previous works we have shown that such compounds with chloride and alkyl­carboxyl­ate equatorial ligands exhibit anti­tumor, anti­radical and hepato- and nephroprotective biological activity with low toxicity (Dimitrov et al., 1978, Shtemenko et al., 2007, 2008, 2009, 2013).

Labile axial ligands and equatorial chloride groups are the reactive centers in inter­actions with other chemical compounds and biological macromolecules in vitro and in vivo (Shtemenko et al., 2013). In this context, we present the synthesis and the structure of the title dirhenium(III) complex with isobutyrate equatorial ligands as biologically active groups, which can exhibit anti­tumor activity in the tetra­carboxyl­ate compound Re2(i-C3H7COO)4Cl2 (Shtemenko et al., 2007).

Structural commentary top

The quadruple Re—Re bond [2.24502 (13) Å] is typical for related di­carboxyl­ato clusters (Cotton et al., 2005, Shtemenko et al., 2009) and the coordination of each of the rhenium ions also comprises two chlorides and two oxygen atoms of carboxyl­ate ligands (Fig. 1). The distorted o­cta­hedral coordination geometry of Re1 and Re2 is completed by weakly bonded oxygen atoms from di­methyl sulfoxide ligands [Re1—O6 = 2.3282 (15) and Re2—O5 = 2.3938 (15) Å], in a trans-position to the Re—Re bond. This may be compared with a similar weak binding of N- or O-donors, which is characteristic of di­carboxyl­atodirhenium compounds (Bera et al., 2003, Shtemenko et al., 2009, Golichenko et al., 2015).

Supra­molecular features top

The title compound adopts a typical molecular structure. Inter­molecular bonding is only very weak: it comprises distal, though relatively directional, C—H···O and C—H···Cl hydrogen-bond inter­actions with the methyl and methine groups of the carboxyl­ate and DMSO ligands (Table 1). The shortest bonds found for the chloride acceptors are C6—H6···Cl3ii [C6···Cl3ii = 3.519 (2) Å; symmetry code (ii): 1/2 - x, 1/2 + y, 1/2 - z], which unite the molecules into chains along the b axis (Fig. 2). The hydrogen bonds adopted by two methyl groups of DMSO molecules (referenced by a sulfur atoms S2) assemble these chains into corrugated layers parallel to the (101) plane. A very weak bond of this type is found also between adjacent layers: C12···Cl2iii = 3.751 (3) Å; symmetry code (iii): -1/2 - x, 1/2 + y, 1/2 - z] (Table 1). The latter extends the structure into a third direction and provides the formation of a hydrogen-bonded framework.

Synthesis and crystallization top

0.2 g (0.175 mmol) of [NBu4]2[Re2Cl8] was added to 10 ml of isobutyric acid. The mixture was heated for 3 h in a water bath under an inert atmosphere. 0.5 ml of di­methyl sulfoxide was then added to the resulting blue solution at room temperature. A dark-blue crystalline product (0.12 g, yield 81%) was obtained after 12 h, was collected by filtration and dried in air.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 2. All H were refined using a riding-model approximation, with C—H = 0.98–1.00 Å, and with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C) for methyl H atoms. A rotating model was used for the methyl groups. Six outliers (2 6 1, 3 3 3, 2 4 3, 0 1 1, 4 3 4, 3 3 7) were omitted in the last cycles of refinement.

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: WinGX (Farrugia, 2012).

Figures top
[Figure 1] Fig. 1. The structure of cis-Re2Cl4{i-C3H7COO}2·2(CH3)2SO, showing displacement ellipsoids drawn at the 50% probability level. H atoms are shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. A fragment of the structure, showing weak C—H···O and C—H···Cl hydrogen-bond interactions (dashed lines), which assemble the molecules into corrugated layers parallel to the (101) plane. [Symmetry codes: (i) -1/2 + x, 1/2 - y, 1/2 + z; (ii) 1/2 - x, 1/2 + y, 1/2 - z.]
Di-µ-isobutyrato-κ4O:O'-bis[cis-dichlorido(dimethyl sulfoxide-κS)rhenium(III)] top
Crystal data top
[Re2(C4H7O2)2Cl4(C2H6OS)2]F(000) = 1584
Mr = 844.65Dx = 2.351 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 10.5581 (4) ÅCell parameters from 9919 reflections
b = 14.7406 (5) Åθ = 2.4–39.0°
c = 15.6088 (6) ŵ = 10.78 mm1
β = 100.794 (2)°T = 110 K
V = 2386.26 (15) Å3Plate, blue
Z = 40.22 × 0.18 × 0.09 mm
Data collection top
Siemens SMART CCD area-detector
diffractometer
11921 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.040
phi and ω scansθmax = 40.2°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1918
Tmin = 0.133, Tmax = 0.478k = 2526
93039 measured reflectionsl = 2827
14497 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.025H-atom parameters constrained
wR(F2) = 0.049 w = 1/[σ2(Fo2) + (0.0183P)2 + 1.7981P]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max = 0.002
14497 reflectionsΔρmax = 1.71 e Å3
243 parametersΔρmin = 1.14 e Å3
Crystal data top
[Re2(C4H7O2)2Cl4(C2H6OS)2]V = 2386.26 (15) Å3
Mr = 844.65Z = 4
Monoclinic, P21/nMo Kα radiation
a = 10.5581 (4) ŵ = 10.78 mm1
b = 14.7406 (5) ÅT = 110 K
c = 15.6088 (6) Å0.22 × 0.18 × 0.09 mm
β = 100.794 (2)°
Data collection top
Siemens SMART CCD area-detector
diffractometer
14497 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
11921 reflections with I > 2σ(I)
Tmin = 0.133, Tmax = 0.478Rint = 0.040
93039 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0250 restraints
wR(F2) = 0.049H-atom parameters constrained
S = 1.00Δρmax = 1.71 e Å3
14497 reflectionsΔρmin = 1.14 e Å3
243 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Re10.06723 (2)0.17363 (2)0.27880 (2)0.01130 (2)
Re20.10986 (2)0.16371 (2)0.21905 (2)0.01147 (2)
Cl10.01954 (5)0.08982 (4)0.40554 (3)0.02107 (9)
Cl20.19965 (5)0.05974 (3)0.21084 (3)0.01810 (8)
Cl30.06421 (5)0.04494 (3)0.12210 (3)0.01726 (8)
Cl40.25202 (5)0.07759 (3)0.31739 (3)0.02151 (9)
S10.41251 (5)0.24240 (4)0.20176 (3)0.01935 (9)
S20.23871 (5)0.25929 (3)0.42297 (3)0.01756 (9)
O10.14493 (13)0.26371 (9)0.18365 (9)0.0142 (2)
O20.02927 (14)0.25241 (9)0.12399 (9)0.0145 (2)
O30.18421 (14)0.27603 (9)0.28722 (9)0.0159 (3)
O40.01121 (14)0.28533 (9)0.34802 (9)0.0158 (3)
O50.28531 (14)0.20575 (10)0.14988 (10)0.0189 (3)
O60.24413 (14)0.23612 (10)0.32675 (9)0.0189 (3)
C10.07803 (18)0.29012 (12)0.12848 (12)0.0133 (3)
C20.1181 (2)0.37225 (13)0.07331 (14)0.0181 (4)
H20.10900.35850.01200.022*
C30.2560 (2)0.40050 (17)0.07314 (17)0.0274 (5)
H3A0.27880.45160.03300.041*
H3B0.26470.41880.13210.041*
H3C0.31380.34940.05420.041*
C40.0227 (3)0.44808 (16)0.1087 (2)0.0354 (6)
H4A0.06580.42600.11250.053*
H4B0.03580.46620.16680.053*
H4C0.03710.50040.06940.053*
C50.1204 (2)0.31512 (13)0.33854 (12)0.0152 (3)
C60.1796 (2)0.39547 (14)0.38935 (14)0.0197 (4)
H60.22830.43130.35180.024*
C70.0785 (3)0.4565 (2)0.4167 (2)0.0469 (8)
H7A0.01760.47640.36490.070*
H7B0.12060.50950.44760.070*
H7C0.03210.42290.45540.070*
C80.2750 (3)0.36103 (19)0.46883 (17)0.0337 (6)
H8A0.33800.32070.44950.051*
H8B0.22820.32760.50740.051*
H8C0.32000.41270.50040.051*
C90.4146 (3)0.36054 (17)0.1775 (2)0.0360 (6)
H9A0.40470.36890.11430.054*
H9B0.49680.38680.20650.054*
H9C0.34350.39080.19840.054*
C100.5306 (2)0.20667 (18)0.14113 (18)0.0291 (5)
H10A0.53670.14030.14250.044*
H10B0.61440.23290.16690.044*
H10C0.50570.22720.08060.044*
C110.3361 (3)0.17496 (16)0.46035 (17)0.0286 (5)
H11A0.41910.17090.42000.043*
H11B0.35080.19130.51860.043*
H11C0.29220.11620.46310.043*
C120.3441 (3)0.35344 (17)0.42132 (18)0.0338 (6)
H12A0.30870.40570.39500.051*
H12B0.35290.36850.48110.051*
H12C0.42890.33810.38700.051*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Re10.01040 (3)0.01222 (3)0.01171 (3)0.00114 (2)0.00320 (2)0.00002 (2)
Re20.00953 (3)0.01154 (3)0.01360 (3)0.00081 (2)0.00288 (2)0.00041 (2)
Cl10.0222 (2)0.0241 (2)0.0166 (2)0.00111 (18)0.00305 (17)0.00674 (16)
Cl20.0161 (2)0.01640 (19)0.0219 (2)0.00426 (15)0.00380 (17)0.00305 (15)
Cl30.0169 (2)0.01521 (19)0.0201 (2)0.00138 (15)0.00460 (16)0.00402 (14)
Cl40.0167 (2)0.0215 (2)0.0244 (2)0.00463 (17)0.00088 (18)0.00541 (17)
S10.0130 (2)0.0223 (2)0.0230 (2)0.00283 (17)0.00407 (18)0.00136 (17)
S20.0194 (2)0.0189 (2)0.0162 (2)0.00284 (17)0.00824 (17)0.00281 (15)
O10.0120 (6)0.0153 (6)0.0159 (6)0.0000 (5)0.0041 (5)0.0022 (4)
O20.0133 (6)0.0153 (6)0.0157 (6)0.0025 (5)0.0048 (5)0.0026 (4)
O30.0136 (6)0.0161 (6)0.0186 (6)0.0023 (5)0.0044 (5)0.0023 (5)
O40.0156 (7)0.0163 (6)0.0162 (6)0.0038 (5)0.0050 (5)0.0034 (5)
O50.0108 (6)0.0225 (7)0.0238 (7)0.0020 (5)0.0040 (5)0.0011 (5)
O60.0164 (7)0.0255 (7)0.0167 (7)0.0009 (5)0.0076 (5)0.0038 (5)
C10.0134 (8)0.0128 (7)0.0135 (8)0.0015 (6)0.0022 (6)0.0002 (5)
C20.0175 (9)0.0170 (8)0.0199 (9)0.0037 (7)0.0034 (7)0.0046 (6)
C30.0184 (10)0.0275 (11)0.0353 (13)0.0065 (8)0.0025 (9)0.0084 (9)
C40.0254 (12)0.0162 (10)0.0617 (18)0.0007 (8)0.0004 (12)0.0048 (10)
C50.0161 (9)0.0132 (8)0.0155 (8)0.0013 (6)0.0015 (7)0.0012 (6)
C60.0206 (10)0.0179 (9)0.0204 (9)0.0062 (7)0.0028 (7)0.0044 (7)
C70.0375 (16)0.0298 (14)0.072 (2)0.0008 (11)0.0079 (15)0.0319 (14)
C80.0341 (14)0.0370 (14)0.0254 (12)0.0122 (11)0.0065 (10)0.0026 (9)
C90.0340 (14)0.0203 (11)0.0549 (17)0.0051 (10)0.0113 (13)0.0022 (10)
C100.0134 (9)0.0340 (13)0.0412 (14)0.0010 (8)0.0083 (9)0.0067 (10)
C110.0379 (14)0.0239 (11)0.0294 (12)0.0072 (9)0.0206 (11)0.0015 (8)
C120.0494 (17)0.0237 (11)0.0322 (13)0.0104 (11)0.0172 (12)0.0002 (9)
Geometric parameters (Å, º) top
Re1—O12.0459 (13)C3—H3C0.9800
Re1—O42.0565 (13)C4—H4A0.9800
Re1—Re22.2450 (1)C4—H4B0.9800
Re1—Cl12.3065 (5)C4—H4C0.9800
Re1—Cl22.3115 (5)C5—C61.495 (3)
Re1—O62.3282 (15)C6—C71.517 (4)
Re2—O22.0401 (13)C6—C81.531 (3)
Re2—O32.0437 (14)C6—H61.0000
Re2—Cl32.3052 (5)C7—H7A0.9800
Re2—Cl42.3147 (5)C7—H7B0.9800
Re2—O52.3938 (15)C7—H7C0.9800
S1—O51.5310 (15)C8—H8A0.9800
S1—C101.780 (2)C8—H8B0.9800
S1—C91.783 (3)C8—H8C0.9800
S2—O61.5308 (15)C9—H9A0.9800
S2—C121.776 (3)C9—H9B0.9800
S2—C111.780 (2)C9—H9C0.9800
O1—C11.273 (2)C10—H10A0.9800
O2—C11.276 (2)C10—H10B0.9800
O3—C51.276 (2)C10—H10C0.9800
O4—C51.268 (3)C11—H11A0.9800
C1—C21.500 (3)C11—H11B0.9800
C2—C31.514 (3)C11—H11C0.9800
C2—C41.536 (3)C12—H12A0.9800
C2—H21.0000C12—H12B0.9800
C3—H3A0.9800C12—H12C0.9800
C3—H3B0.9800
O1—Re1—O485.93 (6)C2—C3—H3C109.5
O1—Re1—Re289.58 (4)H3A—C3—H3C109.5
O4—Re1—Re289.18 (4)H3B—C3—H3C109.5
O1—Re1—Cl1164.51 (4)C2—C4—H4A109.5
O4—Re1—Cl188.65 (4)C2—C4—H4B109.5
Re2—Re1—Cl1104.857 (14)H4A—C4—H4B109.5
O1—Re1—Cl290.71 (4)C2—C4—H4C109.5
O4—Re1—Cl2166.43 (4)H4A—C4—H4C109.5
Re2—Re1—Cl2103.960 (13)H4B—C4—H4C109.5
Cl1—Re1—Cl291.189 (19)O4—C5—O3121.00 (17)
O1—Re1—O674.92 (5)O4—C5—C6120.74 (18)
O4—Re1—O677.45 (6)O3—C5—C6118.24 (18)
Re2—Re1—O6160.04 (4)C5—C6—C7111.87 (19)
Cl1—Re1—O689.75 (4)C5—C6—C8108.26 (18)
Cl2—Re1—O688.98 (4)C7—C6—C8111.1 (2)
O2—Re2—O385.80 (6)C5—C6—H6108.5
O2—Re2—Re189.66 (4)C7—C6—H6108.5
O3—Re2—Re189.97 (4)C8—C6—H6108.5
O2—Re2—Cl390.11 (4)C6—C7—H7A109.5
O3—Re2—Cl3165.87 (4)C6—C7—H7B109.5
Re1—Re2—Cl3103.544 (13)H7A—C7—H7B109.5
O2—Re2—Cl4164.60 (4)C6—C7—H7C109.5
O3—Re2—Cl487.76 (4)H7A—C7—H7C109.5
Re1—Re2—Cl4104.318 (15)H7B—C7—H7C109.5
Cl3—Re2—Cl492.789 (18)C6—C8—H8A109.5
O2—Re2—O576.03 (5)C6—C8—H8B109.5
O3—Re2—O576.76 (5)H8A—C8—H8B109.5
Re1—Re2—O5161.00 (4)C6—C8—H8C109.5
Cl3—Re2—O589.13 (4)H8A—C8—H8C109.5
Cl4—Re2—O588.89 (4)H8B—C8—H8C109.5
O5—S1—C10104.28 (10)S1—C9—H9A109.5
O5—S1—C9106.08 (12)S1—C9—H9B109.5
C10—S1—C997.94 (14)H9A—C9—H9B109.5
O6—S2—C12104.59 (11)S1—C9—H9C109.5
O6—S2—C11104.36 (10)H9A—C9—H9C109.5
C12—S2—C1198.71 (14)H9B—C9—H9C109.5
C1—O1—Re1119.46 (12)S1—C10—H10A109.5
C1—O2—Re2119.54 (12)S1—C10—H10B109.5
C5—O3—Re2119.74 (13)H10A—C10—H10B109.5
C5—O4—Re1120.10 (13)S1—C10—H10C109.5
S1—O5—Re2121.94 (8)H10A—C10—H10C109.5
S2—O6—Re1121.25 (8)H10B—C10—H10C109.5
O1—C1—O2121.00 (17)S2—C11—H11A109.5
O1—C1—C2120.20 (17)S2—C11—H11B109.5
O2—C1—C2118.55 (17)H11A—C11—H11B109.5
C1—C2—C3112.98 (18)S2—C11—H11C109.5
C1—C2—C4106.60 (17)H11A—C11—H11C109.5
C3—C2—C4111.48 (19)H11B—C11—H11C109.5
C1—C2—H2108.6S2—C12—H12A109.5
C3—C2—H2108.6S2—C12—H12B109.5
C4—C2—H2108.6H12A—C12—H12B109.5
C2—C3—H3A109.5S2—C12—H12C109.5
C2—C3—H3B109.5H12A—C12—H12C109.5
H3A—C3—H3B109.5H12B—C12—H12C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11—H11B···O2i0.982.403.324 (3)156
C6—H6···Cl3ii1.002.733.519 (2)136
C12—H12A···Cl2iii0.982.823.751 (3)159
C12—H12B···Cl3i0.982.823.760 (3)161
Symmetry codes: (i) x1/2, y+1/2, z+1/2; (ii) x+1/2, y+1/2, z+1/2; (iii) x1/2, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11—H11B···O2i0.982.403.324 (3)156
C6—H6···Cl3ii1.002.733.519 (2)136
C12—H12A···Cl2iii0.982.823.751 (3)159
C12—H12B···Cl3i0.982.823.760 (3)161
Symmetry codes: (i) x1/2, y+1/2, z+1/2; (ii) x+1/2, y+1/2, z+1/2; (iii) x1/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Re2(C4H7O2)2Cl4(C2H6OS)2]
Mr844.65
Crystal system, space groupMonoclinic, P21/n
Temperature (K)110
a, b, c (Å)10.5581 (4), 14.7406 (5), 15.6088 (6)
β (°) 100.794 (2)
V3)2386.26 (15)
Z4
Radiation typeMo Kα
µ (mm1)10.78
Crystal size (mm)0.22 × 0.18 × 0.09
Data collection
DiffractometerSiemens SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.133, 0.478
No. of measured, independent and
observed [I > 2σ(I)] reflections
93039, 14497, 11921
Rint0.040
(sin θ/λ)max1)0.909
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.025, 0.049, 1.00
No. of reflections14497
No. of parameters243
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.71, 1.14

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick 2008), SHELXL2014 (Sheldrick, 2015), DIAMOND (Brandenburg, 1999), WinGX (Farrugia, 2012).

 

Acknowledgements

This work was supported by the fund Grant for Science Research (No. 0111U000111) from the Ministry of Education and Science of Ukraine. We also thank COST Action CM 1105 for supporting this study. We thank Joseph H. Reibenspies (Texas A&M University, College Station, USA) and Professor Konstantin V. Domasevitch (National Taras Shevchenko University of Kyiv, Ukraine) for providing facilities for a portion of these studies, and helpful discussions.

References

First citationBera, J. K., Vo, T.-T., Walton, R. A. & Dunbar, K. R. (2003). Polyhedron, 22, 3009–3014.  Web of Science CSD CrossRef CAS Google Scholar
First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2008). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCotton, F. A., Murillo, C. A. & Walton, R. A. (2005). Multiple Bonds between Metal Atoms, 3rd ed., pp. 271–376. New York: Springer Science and Business Media Inc.  Google Scholar
First citationDimitrov, N. V. & Eastland, G. W. (1978). Current Chemotherapy, edited by W. Siegenthaler & R. Luthy, Vol. 2, pp. 1319–1321. Washington, DC: American Society for Microbiology Publishing.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGolichenko, A. A., Domasevitch, K. V., Kytova, D. E. & Shtemenko, A. V. (2015). Acta Cryst. E71, 45–47.  CSD CrossRef IUCr Journals Google Scholar
First citationGolichenko, A. A. & Shtemenko, A. V. (2006). Russ. J. Coord. Chem. 32, 242–249.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShtemenko, N. I., Chifotides, H. T., Domasevitch, K. V., Golichenko, A. A., Babiy, S. A., Li, Z., Paramonova, K. V., Shtemenko, A. V. & Dunbar, K. R. (2013). J. Inorg. Biochem. 129, 127–134.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationShtemenko, N., Collery, P. & Shtemenko, A. (2007). Anticancer Res. 27, 2487–2492.  Web of Science PubMed CAS Google Scholar
First citationShtemenko, A. V., Collery, P., Shtemenko, N. I., Domasevitch, K. V., Zabitskaya, E. D. & Golichenko, A. A. (2009). Dalton Trans. pp. 5132–5136.  Web of Science CSD CrossRef Google Scholar
First citationShtemenko, A., Golichenko, A., Tretyak, S., Shtemenko, N. & Randarevich, M. (2008). Metal Ions in Biology and Medicine, Vol. 10, pp. 229–234. Paris: John Libbey Eurotext.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 10| October 2015| Pages 1219-1221
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds