organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 10| October 2015| Pages o796-o797

Crystal structure of 2-[2-(hy­dr­oxy­imino)-1-phenyl­propyl­­idene]-N-phen­ylhydrazinecarbo­thio­amide

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA
*Correspondence e-mail: jjasinski@keene.edu

Edited by J. Simpson, University of Otago, New Zealand (Received 13 September 2015; accepted 21 September 2015; online 26 September 2015)

In the title compound, C16H16N4OS, an intra­molecular C—H⋯S hydrogen bond is observed. With the exception of the phenyl ring of the phenyl­propyl­idene unit, the remainder of the mol­ecule has an almost planar skeleton with an r.m.s. deviation of 0.121 (5) Å from the plane through the remaining 16 atoms. In the crystal O—H⋯N hydrogen bonds are observed between the terminal hy­droxy­imino groups, forming inverson dimers with R22(6) graph-set motifs. Additional C—H⋯N contacts stack the dimers along [100]. While no ππ inter­actions are present, weak C—H⋯O and O—H⋯Cg inter­actions are also observed and help stabilize the crystal packing.

1. Related literature

For thio­semicarbazone ligands and their metal complexes, see: Lobana et al. (2009[Lobana, T. S., Sharma, R., Bawa, G. & Khanna, S. (2009). Coord. Chem. Rev. 253, 977-1055.], 2012[Lobana, T. S., Kumari, P., Bawa, G., Hundal, G., Butcher, R. J., Fernandez, F. J., Jasinski, J. P. & Golen, J. A. (2012). Z. Anorg. Allg. Chem. 638, 804-810.]). For the biological, anti-tumor and anti-fungal activity of palladium complexes with thio­semicarbazone ligands, see: Chellan et al. (2010[Chellan, P., Shunmoogam-Gounden, N., Hendricks, D. T., Gut, J., Rosenthal, P. J., Lategan, C., Smith, P. J., Chibale, K. & Smith, G. S. (2010). Eur. J. Inorg. Chem. pp. 3520-3528.]). For the biological activity of a thio­semicarbazone ligand with terminal dimethyl substitution, see: Kowol et al. (2009[Kowol, C. R., Trondl, R., Heffeter, P., Arion, V. B., Jakupec, M. A., Roller, A., Galanski, M., Berger, W. & Keppler, B. K. (2009). J. Med. Chem. 52, 5032-5043.]). For related structures, see Anderson et al. (2012[Anderson, B. J., Kennedy, C. J. & Jasinski, J. P. (2012). Acta Cryst. E68, o2982.], 2013[Anderson, B. J., Keeler, A. M., O'Rourke, K. A., Krauss, S. T. & Jasinski, J. P. (2013). Acta Cryst. E69, o11.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C16H16N4OS

  • Mr = 312.39

  • Monoclinic, P 21 /n

  • a = 5.4955 (6) Å

  • b = 27.973 (2) Å

  • c = 10.4175 (9) Å

  • β = 92.444 (9)°

  • V = 1600.0 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.21 mm−1

  • T = 173 K

  • 0.42 × 0.14 × 0.08 mm

2.2. Data collection

  • Agilent Eos, Gemini diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2014[Agilent (2014). CrysAlis PRO & CrysAlis RED. Agilent Technologies Ltd, Yarnton, England.]) Tmin = 0.747, Tmax = 1.000

  • 17587 measured reflections

  • 5402 independent reflections

  • 4006 reflections with I > 2σ(I)

  • Rint = 0.044

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.065

  • wR(F2) = 0.182

  • S = 1.04

  • 5402 reflections

  • 201 parameters

  • H-atom parameters constrained

  • Δρmax = 0.56 e Å−3

  • Δρmin = −0.37 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C4–C9 phenyl ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N4i 0.82 2.20 2.867 (2) 139
C5—H5⋯O1ii 0.93 2.84 3.451 (3) 124
C5—H5⋯N4ii 0.93 2.85 3.472 (2) 125
C6—H6⋯O1ii 0.93 2.82 3.442 (3) 125
C11—H11⋯S1 0.93 2.54 3.193 (2) 127
O1—H1⋯Cg1i   2.78 3.3309 (17) 126
Symmetry codes: (i) -x+3, -y+1, -z+1; (ii) -x+2, -y+1, -z+1.

Data collection: CrysAlis PRO (Agilent, 2014[Agilent (2014). CrysAlis PRO & CrysAlis RED. Agilent Technologies Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis RED (Agilent, 2014[Agilent (2014). CrysAlis PRO & CrysAlis RED. Agilent Technologies Ltd, Yarnton, England.]); program(s) used to solve structure: SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]); program(s) used to refine structure: SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]); molecular graphics: OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]); software used to prepare material for publication: OLEX2.

Supporting information


Comment top

In the title compound, C16H16N4OS, (I), one independent molecule crystallizes in the asymmetric unit and forms an intramolecular C11—H11···S1 hydrogen bond, (Fig. 1). With the exception of the C4···.C9 phenyl ring of the phenylpropylidene unit, the remainder of the molecule has an almost planar skeleton with an rms deviation of 0.121 (5) Å from the plane through the remaining 16 atoms. In the crystal O1—H1···N4 hydrogen bonds are observed between the terminal hydroxyimino groups forming inverson dimers with R22(6) graph-set motifs (Table 1) Additional C5—H5···N4 contacts stack the dimers along [1 0 0]. While no ππ interactions are present, weak C5—H5···O1, C6—H6···O1 and O1—H1···π interactions are also observed, and help stablize the crystal packing.

Related literature top

For thiosemicarbazone ligands and their metal complexes, see: Lobana et al. (2009, 2012). For the biological, anti-tumor and anti-fungal activity of palladium complexes with thiosemicarbazone ligands, see: Chellan et al. (2010). For the biological activity of a thiosemicarbazone ligand with terminal dimethyl substitution, see: Kowol et al. (2009). For related structures, see Anderson et al. (2012, 2013).

Experimental top

In a 25 ml round bottom flask 0.205 g (1.26 mmol) of 1-phenyl-1, 2-propanedione 2-oxine and 0.211 g (1.26 mmol) of 4-phenylthiosemicarbazide were dissolved in 20 ml of methanol. One drop of sulfuric acid was added to catalyze the reaction. The resulting clear solution was refluxed for 12 h and there was a noticeable yellow color change. The reaction was removed from the heat and cooled to room temperature. The resulting yellow solution was transferred to a 125 ml separatory funnel. Dichloromethane (10 ml) and water (10 ml) were added, and the organic layer was separated. The aqueous layer was extracted with an additional 10 ml of dichloromethane, and then the organic layers were combined, washed with brine (2 x 10 ml), dried with magnesium sulfate, and the solvent was removed in vacuo to give a yellow solid. The product was recrystallized from hot acetonitrile. m.p. 463–464 K.

Refinement top

Crystal data, data collection and structure refinement details are summarizedin Table 1. A l l H atoms were located in difference maps. The C–H and N–H atoms were treated as riding atoms in geometrically idealized positions with C—H, N—H distances of 0.93 Å, 0.86 Å and refined with Uiso(H) = 1.2Ueq(C, N). The CH3 and O–H atoms were also treated as riding atoms in geometrically idealized positions with the CH3, O—H distances of 0.96 Å, 0.84 Å and refined with Uiso(H) = 1.5Ueq(C, O).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2014); cell refinement: CrysAlis PRO (Agilent, 2014); data reduction: CrysAlis RED (Agilent, 2014); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: Olex2 (Dolomanov et al., 2009); software used to prepare material for publication: Olex2 (Dolomanov et al., 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of C16H16N4OS, (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. The dashed line indicates a weak C11—H11···S1 intramolecular contact.
[Figure 2] Fig. 2. Packing diagram of (I) viewed along the c axis. Dashed lines indicate O—H—N hydrogen bonds between the terminal hydroxy amino groups forming R22(6) inverson dimers stacked along [1 0 0]. The H atoms not involved in these interactions have been omitted for clarity.
2-[2-(Hydroxyimino)-1-phenylpropylidene]-N-phenylhydrazinecarbothioamide top
Crystal data top
C16H16N4OSF(000) = 656
Mr = 312.39Dx = 1.297 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 5.4955 (6) ÅCell parameters from 4571 reflections
b = 27.973 (2) Åθ = 3.5–32.9°
c = 10.4175 (9) ŵ = 0.21 mm1
β = 92.444 (9)°T = 173 K
V = 1600.0 (3) Å3Needle, colourless
Z = 40.42 × 0.14 × 0.08 mm
Data collection top
Agilent Eos, Gemini
diffractometer
5402 independent reflections
Radiation source: Enhance (Mo) X-ray Source4006 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.044
Detector resolution: 16.0416 pixels mm-1θmax = 33.0°, θmin = 3.5°
ω scansh = 76
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2014)
k = 3942
Tmin = 0.747, Tmax = 1.000l = 1415
17587 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.065H-atom parameters constrained
wR(F2) = 0.182 w = 1/[σ2(Fo2) + (0.0835P)2 + 0.6623P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
5402 reflectionsΔρmax = 0.56 e Å3
201 parametersΔρmin = 0.37 e Å3
0 restraints
Crystal data top
C16H16N4OSV = 1600.0 (3) Å3
Mr = 312.39Z = 4
Monoclinic, P21/nMo Kα radiation
a = 5.4955 (6) ŵ = 0.21 mm1
b = 27.973 (2) ÅT = 173 K
c = 10.4175 (9) Å0.42 × 0.14 × 0.08 mm
β = 92.444 (9)°
Data collection top
Agilent Eos, Gemini
diffractometer
5402 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2014)
4006 reflections with I > 2σ(I)
Tmin = 0.747, Tmax = 1.000Rint = 0.044
17587 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0650 restraints
wR(F2) = 0.182H-atom parameters constrained
S = 1.04Δρmax = 0.56 e Å3
5402 reflectionsΔρmin = 0.37 e Å3
201 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.45822 (11)0.63428 (2)0.03118 (5)0.04249 (17)
O11.5672 (3)0.55466 (5)0.56408 (13)0.0352 (3)
H11.63170.52920.58470.053*
N10.6605 (3)0.68290 (6)0.23282 (16)0.0396 (4)
H1A0.77320.68140.29250.047*
N20.8045 (3)0.60886 (5)0.19247 (14)0.0317 (3)
H20.80360.58260.14970.038*
N30.9654 (3)0.61454 (5)0.29421 (14)0.0292 (3)
N41.3985 (3)0.54711 (5)0.46248 (13)0.0261 (3)
C10.6445 (3)0.64429 (6)0.15726 (16)0.0283 (3)
C21.1020 (3)0.57835 (5)0.32323 (15)0.0248 (3)
C31.2802 (3)0.58508 (6)0.43056 (16)0.0275 (3)
C41.0875 (3)0.53131 (5)0.25667 (14)0.0234 (3)
C50.8957 (4)0.50060 (6)0.27837 (19)0.0351 (4)
H50.77490.50970.33330.042*
C60.8837 (4)0.45653 (7)0.2185 (2)0.0398 (4)
H60.75530.43590.23350.048*
C71.0618 (4)0.44308 (6)0.13634 (18)0.0327 (4)
H71.05400.41330.09680.039*
C81.2505 (4)0.47357 (7)0.11285 (18)0.0344 (4)
H81.36970.46450.05700.041*
C91.2637 (4)0.51787 (6)0.17228 (17)0.0311 (4)
H91.39080.53860.15560.037*
C100.5243 (4)0.72573 (6)0.23153 (18)0.0365 (4)
C110.3061 (6)0.73214 (9)0.1637 (3)0.0676 (9)
H110.23950.70750.11360.081*
C120.1862 (6)0.77580 (10)0.1708 (3)0.0749 (10)
H120.03840.78010.12560.090*
C130.2824 (6)0.81243 (9)0.2433 (3)0.0648 (8)
H130.20940.84240.24220.078*
C140.4845 (7)0.80392 (10)0.3160 (4)0.0897 (14)
H140.54350.82750.37210.108*
C150.6072 (6)0.76113 (9)0.3097 (3)0.0695 (10)
H150.74920.75660.36010.083*
C161.3123 (5)0.63254 (7)0.4947 (2)0.0491 (6)
H16A1.19630.63580.56050.074*
H16B1.28720.65750.43230.074*
H16C1.47430.63480.53250.074*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0480 (3)0.0359 (3)0.0417 (3)0.0114 (2)0.0199 (2)0.00529 (18)
O10.0361 (7)0.0355 (7)0.0326 (6)0.0052 (5)0.0142 (5)0.0002 (5)
N10.0474 (10)0.0274 (8)0.0420 (9)0.0158 (7)0.0197 (7)0.0071 (6)
N20.0390 (9)0.0235 (7)0.0316 (7)0.0117 (6)0.0107 (6)0.0037 (5)
N30.0349 (8)0.0248 (7)0.0272 (6)0.0086 (6)0.0069 (5)0.0020 (5)
N40.0256 (7)0.0276 (7)0.0244 (6)0.0044 (5)0.0055 (5)0.0006 (5)
C10.0322 (9)0.0226 (7)0.0297 (8)0.0055 (6)0.0040 (6)0.0024 (6)
C20.0273 (8)0.0221 (7)0.0248 (7)0.0046 (6)0.0024 (6)0.0000 (5)
C30.0311 (9)0.0240 (7)0.0271 (7)0.0032 (6)0.0035 (6)0.0012 (5)
C40.0256 (8)0.0206 (7)0.0236 (7)0.0045 (5)0.0037 (5)0.0002 (5)
C50.0335 (10)0.0273 (8)0.0453 (10)0.0007 (7)0.0102 (7)0.0021 (7)
C60.0398 (11)0.0264 (9)0.0535 (11)0.0069 (7)0.0074 (9)0.0015 (8)
C70.0405 (10)0.0221 (7)0.0349 (8)0.0011 (6)0.0036 (7)0.0030 (6)
C80.0383 (10)0.0321 (9)0.0332 (8)0.0006 (7)0.0059 (7)0.0070 (6)
C90.0320 (9)0.0286 (8)0.0332 (8)0.0041 (6)0.0059 (7)0.0051 (6)
C100.0435 (11)0.0274 (8)0.0375 (9)0.0130 (7)0.0100 (8)0.0034 (6)
C110.0659 (18)0.0420 (12)0.091 (2)0.0249 (12)0.0401 (15)0.0243 (12)
C120.074 (2)0.0538 (15)0.093 (2)0.0350 (14)0.0419 (17)0.0214 (14)
C130.078 (2)0.0420 (12)0.0712 (16)0.0336 (13)0.0279 (14)0.0210 (11)
C140.103 (3)0.0505 (15)0.109 (3)0.0422 (16)0.066 (2)0.0462 (16)
C150.078 (2)0.0453 (13)0.0806 (18)0.0310 (13)0.0487 (15)0.0319 (12)
C160.0690 (16)0.0278 (9)0.0481 (12)0.0066 (9)0.0249 (11)0.0100 (8)
Geometric parameters (Å, º) top
S1—C11.6543 (18)C7—H70.9300
O1—H10.8200C7—C81.373 (3)
O1—N41.3930 (17)C8—H80.9300
N1—H1A0.8600C8—C91.386 (2)
N1—C11.337 (2)C9—H90.9300
N1—C101.412 (2)C10—C111.377 (3)
N2—H20.8600C10—C151.349 (3)
N2—N31.3604 (19)C11—H110.9300
N2—C11.365 (2)C11—C121.391 (3)
N3—C21.288 (2)C12—H120.9300
N4—C31.282 (2)C12—C131.366 (4)
C2—C31.467 (2)C13—H130.9300
C2—C41.488 (2)C13—C141.339 (4)
C3—C161.493 (2)C14—H140.9300
C4—C51.386 (2)C14—C151.377 (3)
C4—C91.387 (2)C15—H150.9300
C5—H50.9300C16—H16A0.9600
C5—C61.382 (3)C16—H16B0.9600
C6—H60.9300C16—H16C0.9600
C6—C71.379 (3)
N4—O1—H1109.5C7—C8—H8120.0
C1—N1—H1A114.4C7—C8—C9120.09 (18)
C1—N1—C10131.15 (15)C9—C8—H8120.0
C10—N1—H1A114.4C4—C9—H9120.0
N3—N2—H2119.5C8—C9—C4120.06 (17)
N3—N2—C1120.97 (14)C8—C9—H9120.0
C1—N2—H2119.5C11—C10—N1124.38 (18)
C2—N3—N2116.34 (14)C15—C10—N1116.84 (18)
C3—N4—O1112.67 (13)C15—C10—C11118.60 (19)
N1—C1—S1128.83 (13)C10—C11—H11120.3
N1—C1—N2113.76 (15)C10—C11—C12119.4 (2)
N2—C1—S1117.40 (13)C12—C11—H11120.3
N3—C2—C3116.19 (14)C11—C12—H12119.5
N3—C2—C4124.51 (14)C13—C12—C11121.0 (2)
C3—C2—C4119.30 (13)C13—C12—H12119.5
N4—C3—C2113.98 (14)C12—C13—H13120.9
N4—C3—C16124.84 (16)C14—C13—C12118.1 (2)
C2—C3—C16121.17 (15)C14—C13—H13120.9
C5—C4—C2119.88 (15)C13—C14—H14119.2
C5—C4—C9119.45 (15)C13—C14—C15121.6 (2)
C9—C4—C2120.67 (15)C15—C14—H14119.2
C4—C5—H5120.0C10—C15—C14120.9 (2)
C6—C5—C4120.09 (17)C10—C15—H15119.6
C6—C5—H5120.0C14—C15—H15119.6
C5—C6—H6119.9C3—C16—H16A109.5
C7—C6—C5120.12 (18)C3—C16—H16B109.5
C7—C6—H6119.9C3—C16—H16C109.5
C6—C7—H7119.9H16A—C16—H16B109.5
C8—C7—C6120.17 (16)H16A—C16—H16C109.5
C8—C7—H7119.9H16B—C16—H16C109.5
O1—N4—C3—C2179.66 (14)C3—C2—C4—C975.1 (2)
O1—N4—C3—C160.9 (3)C4—C2—C3—N44.6 (2)
N1—C10—C11—C12179.2 (3)C4—C2—C3—C16176.00 (19)
N1—C10—C15—C14179.2 (3)C4—C5—C6—C70.4 (3)
N2—N3—C2—C3178.26 (15)C5—C4—C9—C81.6 (3)
N2—N3—C2—C42.4 (3)C5—C6—C7—C80.6 (3)
N3—N2—C1—S1179.26 (14)C6—C7—C8—C90.4 (3)
N3—N2—C1—N11.4 (3)C7—C8—C9—C40.7 (3)
N3—C2—C3—N4174.81 (16)C9—C4—C5—C61.4 (3)
N3—C2—C3—C164.6 (3)C10—N1—C1—S11.7 (4)
N3—C2—C4—C574.1 (2)C10—N1—C1—N2177.6 (2)
N3—C2—C4—C9105.6 (2)C10—C11—C12—C130.4 (6)
C1—N1—C10—C1114.2 (4)C11—C10—C15—C143.9 (5)
C1—N1—C10—C15170.8 (3)C11—C12—C13—C145.6 (6)
C1—N2—N3—C2177.18 (17)C12—C13—C14—C156.1 (7)
C2—C4—C5—C6178.89 (17)C13—C14—C15—C101.4 (7)
C2—C4—C9—C8178.75 (16)C15—C10—C11—C124.3 (5)
C3—C2—C4—C5105.27 (19)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C4–C9 phenyl ring.
D—H···AD—HH···AD···AD—H···A
O1—H1···N4i0.822.202.867 (2)139
C5—H5···O1ii0.932.843.451 (3)124
C5—H5···N4ii0.932.853.472 (2)125
C6—H6···O1ii0.932.823.442 (3)125
C11—H11···S10.932.543.193 (2)127
O1—H1···Cg1i2.783.3309 (17)126
Symmetry codes: (i) x+3, y+1, z+1; (ii) x+2, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C4–C9 phenyl ring.
D—H···AD—HH···AD···AD—H···A
O1—H1···N4i0.822.202.867 (2)139.3
C5—H5···O1ii0.932.843.451 (3)124.0
C5—H5···N4ii0.932.853.472 (2)125.3
C6—H6···O1ii0.932.823.442 (3)125.0
C11—H11···S10.932.543.193 (2)127.3
O1—H1···Cg1i.2.783.3309 (17)126
Symmetry codes: (i) x+3, y+1, z+1; (ii) x+2, y+1, z+1.
 

Acknowledgements

JPJ acknowledges the NSF–MRI program (grant No. CHE-1039027) for funds to purchase the X-ray diffractometer.

References

First citationAgilent (2014). CrysAlis PRO & CrysAlis RED. Agilent Technologies Ltd, Yarnton, England.  Google Scholar
First citationAnderson, B. J., Keeler, A. M., O'Rourke, K. A., Krauss, S. T. & Jasinski, J. P. (2013). Acta Cryst. E69, o11.  CSD CrossRef IUCr Journals Google Scholar
First citationAnderson, B. J., Kennedy, C. J. & Jasinski, J. P. (2012). Acta Cryst. E68, o2982.  CSD CrossRef IUCr Journals Google Scholar
First citationChellan, P., Shunmoogam-Gounden, N., Hendricks, D. T., Gut, J., Rosenthal, P. J., Lategan, C., Smith, P. J., Chibale, K. & Smith, G. S. (2010). Eur. J. Inorg. Chem. pp. 3520–3528.  Web of Science CSD CrossRef Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationKowol, C. R., Trondl, R., Heffeter, P., Arion, V. B., Jakupec, M. A., Roller, A., Galanski, M., Berger, W. & Keppler, B. K. (2009). J. Med. Chem. 52, 5032–5043.  CSD CrossRef PubMed CAS Google Scholar
First citationLobana, T. S., Kumari, P., Bawa, G., Hundal, G., Butcher, R. J., Fernandez, F. J., Jasinski, J. P. & Golen, J. A. (2012). Z. Anorg. Allg. Chem. 638, 804–810.  Web of Science CSD CrossRef CAS Google Scholar
First citationLobana, T. S., Sharma, R., Bawa, G. & Khanna, S. (2009). Coord. Chem. Rev. 253, 977–1055.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 10| October 2015| Pages o796-o797
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds