organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 10| October 2015| Pages o805-o806

Crystal structure of 4-[(2,4-di­chloro­phen­yl)(5-hy­dr­oxy-3-methyl-1-phenyl-1H-pyrazol-4-yl)meth­yl]-5-methyl-2-phenyl-2,3-di­hydro-1H-pyrazol-3-one

CROSSMARK_Color_square_no_text.svg

aPost-Graduate Department of Physics & Electronics, University of Jammu, Jammu Tawi 180 006 , India, and bDepartment of Chemistry, University of Jammu, Jammu Tawi 180 006 , India
*Correspondence e-mail: vivek_gupta2k2@hotmail.com

Edited by J. Simpson, University of Otago, New Zealand (Received 19 September 2015; accepted 24 September 2015; online 30 September 2015)

In the title compound C27H22Cl2N4O2, the pyrazol-5-ol ring makes a dihedral angle of 34.80 (11)° with the phenyl ring to which it is bound, while the pyrazolone ring is inclined at 34.34 (12)° to its attached phenyl ring. In the crystal, N—H⋯O and C—H⋯Cl hydrogen bonds link the mol­ecules into chains along [010]. Inter­molecular ππ inter­actions are observed between the pyrazolone ring and the phenyl ring bound to the pyrazol-5-ol ring system [centroid–centroid separation = 3.916 (2) Å].

1. Related literature

For the biological activity of bis-pyrazolo­nes, see: Park et al. (2005[Park, H. J., Lee, K., Park, S. J., Ahn, B., Lee, J. C., Cho, H. Y. & Lee, K. I. (2005). Bioorg. Med. Chem. Lett. 15, 3307-3312.]), and for their applications see: Bailey et al. (1985[Bailey, D. M., Hansen, P. E., Hlavac, A. G., Baizman, E. R., Pearl, J., DeFelice, A. F. & Feigenson, M. E. (1985). J. Med. Chem. 28, 256-260.]); Rosiere & Grossman (1951[Rosiere, C. E. & Grossman, M. I. (1951). Science, 113, 651-651.]); Mahajan et al. (1991[Mahajan, R. N., Havaldar, F. H. & Fernandes, P. S. (1991). J. Indian Chem. Soc. 68, 245-246.]); Chauhan et al. (1993[Chauhan, P. M. S., Singh, S. & Chatterjee, R. K. (1993). Indian J. Chem. Sect. B, 32, 856-861.]); Hamama et al. (2001[Hamama, W. S. (2001). Synth. Commun. 31, 1335-1345.]). For the synthesis of similar compounds, see: Bhardwaj et al. (2015[Bhardwaj, M., Sahi, S., Mahajan, H., Paul, S. & Clark, J. H. (2015). J. Mol. Catal. A Chem. 408, 48-59.]); Niknam & Mirzaee (2011[Niknam, K. & Mirzaee, S. (2011). Synth. Commun. 41, 2403-2413.]). For related structures, see: Sharma et al. (2014[Sharma, N., Jadeja, R. N., Kant, R. & Gupta, K. V. (2014). AIP Conf. Proc. pp. 1206-1208.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C27H22Cl2N4O2

  • Mr = 505.39

  • Monoclinic P 21 /c

  • a = 19.8321 (19) Å

  • b = 7.8574 (5) Å

  • c = 16.3416 (16) Å

  • β = 106.815 (10)°

  • V = 2437.6 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.30 mm−1

  • T = 293 K

  • 0.30 × 0.20 × 0.20 mm

2.2. Data collection

  • Agilent Xcalibur, Sapphire3 diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2013[Agilent (2013). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.751, Tmax = 1.000

  • 9479 measured reflections

  • 4775 independent reflections

  • 2524 reflections with I > 2σ(I)

  • Rint = 0.042

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.060

  • wR(F2) = 0.174

  • S = 1.00

  • 4775 reflections

  • 318 parameters

  • H-atom parameters constrained

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.30 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O27i 0.86 2.08 2.756 (3) 135
C24—H24A⋯Cl1ii 0.96 2.93 3.823 (3) 156
Symmetry codes: (i) x, y-1, z; (ii) -x, -y+1, -z+1.

Data collection: CrysAlis PRO (Agilent, 2013[Agilent (2013). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Bis-pyrazolones are an important class of heterocyclic compounds which have risen to prominence in recent years due to their vital role in various biological activities such as selective COX-2 inhibition, antitumor and cytokine inhibition (Park et al., 2005). Bis-pyrazolones are also used as antidepressants (Bailey et al., 1985), gastric secretion stimulators (Rosiere & Grossman, 1951), or as antibacterial (Mahajan et al., 1991) and antifilarial agents (Chauhan et al., 1993). Moreover, 4,4'-(arylmethylene) bis(1H-pyrazol-5-ols) are used as pesticides, fungicides and dye stuffs (Hamama et al., 2001). In recent years, different reagents have been reported for the synthesis of 4,4'-(arylmethylene)bis(3-methyl-1-phenyl-pyrazol-5-ol) derivatives including the condensation reaction between arylaldehyde and 5-methyl-2-phenyl-2,4-dihydro-3H-pyrazol-3-one (Niknam & Mirzaee, 2011; Bhardwaj et al., 2015).

In the title compound C27H22C12N4O2, the pyrazole rings N1/N2/C3/C4/C5 and N6/N7/C8/C9/C10 make dihedral angle of 34.80 (11)° and 34.34 (12)° with the phenyl rings C18/C19/C20/C21/C22/C23 and C28/C29/C30/C31/C32/C33 respectively. The C5O26 double bond [1.277 (3) Å] is significantly longer than that normally observed for carbonyl bonds [1.19 Å], probably because the hydroxyl group and carbonyl oxygen atom are involved in an intermolecular O—H···O hydrogen bond and is comparable with that found in a related structure (Sharma et al., (2014). The bond lengths of C15—Cl1 [1.729 (4) Å] and C13—Cl2 [1.730 (4) Å], are comparable with the accepted value of 1.739 Å and are in good agreement with another molecule of this type (Sharma et al., 2014). π - π interactions are observed between the pyrazole ring (N1/N2/C3/C4/C5) and phenyl ring (C28/C29/C30/C31/C32/C33) [centroid–centroidi seperation = 3.916 (2) Å, interplanar spacing = 3.784 Å, centroid shift = 1.01 Å for symmetry operation: x, 1 + y, z]. Classical N–H···O and non-classical C–H···Cl hydrogen bonds, Table 1, also stabilise the crystal packing.

Related literature top

For the biological activity of bis-pyrazolones, see: Park et al. (2005). and for their applications see: Bailey et al. (1985); Rosiere & Grossman (1951); Mahajan et al. (1991); Chauhan et al. (1993); Hamama et al. (2001). For the synthesis of similar compounds, see Bhardwaj et al. (2015); Niknam & Mirzaee (2011). For related structures, see: Sharma et al. (2014).

Experimental top

Synthesis of 4-[(2,4-dichlorophenyl)(5-hydroxy-3-methyl-1-phenyl- 1H-pyrazol-4-yl)methyl]-1,2-dihydro-5-methyl-2-phenyl- 3H-pyrazol-3-one: To a mixture of 2,4-dichlorobenzaldehyde (1 mmol) and 5-methyl-2-phenyl-2, 4-dihydro-3H-pyrazol-3-one (2 mmol), melt of imidazole-DMU (30:70) was added and the reaction mixture was stirred at 70 ° C for the appropriate time. After completion of the reaction (monitored by TLC), the reaction mixture was cooled to room temperature and diluted with water (20 ml). The product was extracted with EtOAc (20 ml) and dried over anhydrous Na2SO4. Removal of the solvent under reduced pressure gave 4-[(2,4-dichlorophenyl)(5-hydroxy-3-methyl-1-phenyl-1H-pyrazol-4-yl) methyl]-1,2-dihydro-5-methyl-2-phenyl-3H-pyrazol-3-one which was purified by crystallization from ethyl acetate:pet ether. The product, was obtained as shiny white crystals.

Refinement top

All the H atoms were fixed geometrically and allowed to ride on their parent C atoms, with C—H distances of 0.93–0.98 Å; and with Uiso(H) = 1.2Ueq(C), except for the methyl group where Uiso(H) = 1.5Ueq(C).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2013); cell refinement: CrysAlis PRO (Agilent, 2013); data reduction: CrysAlis PRO (Agilent, 2013); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. ORTEP view of the molecule with the atom-labeling scheme. Displacement ellipsoids are drawn at the 40% probability level. H atoms are shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. The packing arrangement of molecules viewed along the a axis.
4-[(2,4-Dichlorophenyl)(5-hydroxy-3-methyl-1-phenyl-1H-pyrazol-4-yl)methyl]-5-methyl-2-phenyl-1H-2,3-dihydro-pyrazol-3-one top
Crystal data top
C27H22Cl2N4O2F(000) = 1048
Mr = 505.39Dx = 1.377 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2488 reflections
a = 19.8321 (19) Åθ = 3.8–27.6°
b = 7.8574 (5) ŵ = 0.30 mm1
c = 16.3416 (16) ÅT = 293 K
β = 106.815 (10)°Block, white
V = 2437.6 (4) Å30.30 × 0.20 × 0.20 mm
Z = 4
Data collection top
Agilent Xcalibur, Sapphire3
diffractometer
4775 independent reflections
Radiation source: fine-focus sealed tube2524 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.042
Detector resolution: 16.1049 pixels mm-1θmax = 26.0°, θmin = 3.5°
ω scansh = 2411
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2013)
k = 98
Tmin = 0.751, Tmax = 1.000l = 1720
9479 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.060Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.174H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0647P)2]
where P = (Fo2 + 2Fc2)/3
4775 reflections(Δ/σ)max < 0.001
318 parametersΔρmax = 0.29 e Å3
0 restraintsΔρmin = 0.30 e Å3
Crystal data top
C27H22Cl2N4O2V = 2437.6 (4) Å3
Mr = 505.39Z = 4
Monoclinic, P21/cMo Kα radiation
a = 19.8321 (19) ŵ = 0.30 mm1
b = 7.8574 (5) ÅT = 293 K
c = 16.3416 (16) Å0.30 × 0.20 × 0.20 mm
β = 106.815 (10)°
Data collection top
Agilent Xcalibur, Sapphire3
diffractometer
4775 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2013)
2524 reflections with I > 2σ(I)
Tmin = 0.751, Tmax = 1.000Rint = 0.042
9479 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0600 restraints
wR(F2) = 0.174H-atom parameters constrained
S = 1.00Δρmax = 0.29 e Å3
4775 reflectionsΔρmin = 0.30 e Å3
318 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.00677 (6)0.80461 (13)0.44350 (7)0.0924 (4)
O270.28998 (11)0.6772 (2)0.75223 (13)0.0473 (6)
H270.27520.61350.71120.071*
C100.26128 (16)0.6342 (4)0.81376 (18)0.0403 (7)
N20.26121 (14)0.0048 (3)0.69193 (16)0.0483 (7)
H20.26200.10160.68000.058*
O260.32799 (13)0.4092 (3)0.70772 (16)0.0637 (7)
N10.31308 (14)0.1203 (3)0.69305 (16)0.0468 (7)
C30.20859 (16)0.0860 (4)0.71276 (19)0.0433 (7)
C110.17730 (17)0.3891 (4)0.74490 (19)0.0445 (7)
H110.14290.32640.76590.053*
N60.27580 (14)0.7213 (3)0.88777 (16)0.0479 (7)
C120.13422 (17)0.4914 (4)0.6682 (2)0.0455 (8)
C50.29086 (17)0.2771 (4)0.70900 (19)0.0462 (8)
C90.21443 (17)0.5069 (3)0.8164 (2)0.0423 (7)
C180.37530 (18)0.0725 (4)0.6727 (2)0.0461 (8)
N70.24029 (15)0.6527 (4)0.94179 (16)0.0548 (7)
C130.06910 (18)0.5592 (4)0.6645 (2)0.0523 (8)
C80.20479 (18)0.5215 (4)0.8983 (2)0.0487 (8)
C40.22364 (17)0.2559 (4)0.7224 (2)0.0448 (8)
C150.0563 (2)0.6877 (4)0.5296 (2)0.0610 (10)
C230.4379 (2)0.1532 (4)0.7111 (2)0.0629 (10)
H230.43940.23970.75040.075*
C280.31742 (19)0.8696 (4)0.9144 (2)0.0536 (9)
C170.15898 (19)0.5269 (4)0.5982 (2)0.0605 (9)
H170.20250.48400.59740.073*
C200.4358 (2)0.0977 (5)0.5960 (2)0.0745 (12)
H200.43520.18330.55640.089*
C190.37351 (19)0.0548 (4)0.6142 (2)0.0592 (10)
H190.33160.11100.58750.071*
C140.02955 (19)0.6543 (4)0.5963 (2)0.0614 (10)
H140.01460.69510.59570.074*
C240.14727 (19)0.0126 (4)0.7233 (2)0.0642 (10)
H24A0.10740.00380.67400.096*
H24B0.13590.02640.77340.096*
H24C0.15910.13130.72930.096*
C210.4975 (2)0.0175 (5)0.6344 (3)0.0718 (11)
H210.53860.04780.62140.086*
C160.1201 (2)0.6255 (5)0.5291 (2)0.0678 (10)
H160.13790.64820.48340.081*
C220.4984 (2)0.1070 (5)0.6918 (3)0.0695 (10)
H220.54050.16200.71860.083*
C290.3772 (2)0.8959 (5)0.8911 (2)0.0730 (11)
H290.39160.81680.85730.088*
C250.1636 (2)0.4104 (5)0.9406 (2)0.0697 (11)
H25A0.17560.43781.00040.105*
H25B0.17480.29320.93400.105*
H25C0.11420.42880.91480.105*
C300.4165 (2)1.0431 (6)0.9185 (3)0.0920 (15)
H300.45731.06210.90260.110*
C330.2971 (3)0.9859 (6)0.9643 (3)0.1041 (18)
H330.25660.96760.98070.125*
C310.3961 (3)1.1586 (7)0.9681 (3)0.115 (2)
H310.42261.25610.98670.138*
C320.3362 (4)1.1294 (7)0.9901 (4)0.143 (3)
H320.32151.20881.02350.171*
Cl20.03200 (6)0.52304 (19)0.74666 (7)0.1010 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0896 (9)0.0657 (7)0.0978 (8)0.0008 (6)0.0113 (6)0.0091 (6)
O270.0627 (15)0.0263 (11)0.0621 (13)0.0044 (10)0.0328 (11)0.0077 (9)
C100.0476 (19)0.0304 (16)0.0489 (17)0.0064 (14)0.0233 (14)0.0018 (14)
N20.0479 (17)0.0221 (13)0.0779 (18)0.0050 (11)0.0232 (14)0.0084 (12)
O260.0655 (16)0.0256 (11)0.1200 (19)0.0075 (11)0.0583 (14)0.0091 (12)
N10.0478 (17)0.0259 (13)0.0726 (17)0.0010 (12)0.0269 (13)0.0013 (13)
C30.0413 (19)0.0286 (16)0.0617 (19)0.0007 (14)0.0177 (15)0.0025 (14)
C110.050 (2)0.0267 (15)0.065 (2)0.0010 (14)0.0296 (15)0.0016 (14)
N60.0531 (18)0.0389 (15)0.0586 (17)0.0062 (13)0.0270 (13)0.0058 (13)
C120.044 (2)0.0288 (16)0.067 (2)0.0038 (13)0.0208 (15)0.0079 (15)
C50.050 (2)0.0269 (15)0.068 (2)0.0014 (14)0.0269 (16)0.0055 (15)
C90.0458 (19)0.0253 (15)0.0615 (19)0.0004 (13)0.0248 (14)0.0004 (14)
C180.052 (2)0.0323 (16)0.0582 (19)0.0131 (14)0.0227 (16)0.0026 (14)
N70.0557 (19)0.0548 (18)0.0604 (17)0.0054 (15)0.0271 (14)0.0009 (14)
C130.042 (2)0.0426 (18)0.073 (2)0.0023 (16)0.0185 (17)0.0113 (17)
C80.049 (2)0.0450 (19)0.058 (2)0.0062 (16)0.0249 (16)0.0054 (16)
C40.0420 (19)0.0266 (15)0.069 (2)0.0015 (13)0.0208 (15)0.0040 (14)
C150.055 (2)0.0376 (19)0.079 (3)0.0053 (17)0.0003 (19)0.0054 (18)
C230.055 (2)0.048 (2)0.092 (3)0.0014 (18)0.030 (2)0.0124 (19)
C280.054 (2)0.048 (2)0.0577 (19)0.0084 (17)0.0153 (16)0.0079 (17)
C170.047 (2)0.058 (2)0.082 (2)0.0052 (18)0.0287 (19)0.008 (2)
C200.079 (3)0.071 (3)0.079 (3)0.027 (2)0.031 (2)0.012 (2)
C190.054 (2)0.056 (2)0.065 (2)0.0151 (18)0.0126 (17)0.0104 (18)
C140.042 (2)0.054 (2)0.084 (3)0.0018 (17)0.0121 (19)0.017 (2)
C240.048 (2)0.0358 (19)0.111 (3)0.0119 (16)0.026 (2)0.0087 (19)
C210.062 (3)0.072 (3)0.094 (3)0.024 (2)0.042 (2)0.011 (2)
C160.066 (3)0.063 (2)0.076 (3)0.003 (2)0.025 (2)0.013 (2)
C220.046 (2)0.063 (2)0.107 (3)0.0013 (19)0.034 (2)0.001 (2)
C290.064 (3)0.078 (3)0.086 (3)0.018 (2)0.035 (2)0.009 (2)
C250.078 (3)0.062 (2)0.080 (2)0.006 (2)0.041 (2)0.014 (2)
C300.083 (3)0.110 (4)0.089 (3)0.057 (3)0.033 (3)0.018 (3)
C330.110 (4)0.097 (3)0.131 (4)0.054 (3)0.075 (3)0.067 (3)
C310.162 (6)0.094 (4)0.099 (4)0.077 (4)0.053 (4)0.047 (3)
C320.179 (6)0.119 (4)0.166 (5)0.092 (5)0.107 (5)0.093 (4)
Cl20.0630 (8)0.1521 (12)0.1022 (9)0.0321 (7)0.0465 (6)0.0080 (8)
Geometric parameters (Å, º) top
Cl1—C151.729 (4)C23—C221.375 (5)
O27—C101.334 (3)C23—H230.9300
O27—H270.8200C28—C331.361 (5)
C10—N61.346 (4)C28—C291.362 (5)
C10—C91.375 (4)C17—C161.401 (5)
N2—C31.348 (4)C17—H170.9300
N2—N11.368 (3)C20—C211.357 (5)
N2—H20.8600C20—C191.395 (5)
O26—C51.277 (3)C20—H200.9300
N1—C51.358 (4)C19—H190.9300
N1—C181.418 (4)C14—H140.9300
C3—C41.367 (4)C24—H24A0.9600
C3—C241.493 (4)C24—H24B0.9600
C11—C91.506 (4)C24—H24C0.9600
C11—C41.507 (4)C21—C221.352 (5)
C11—C121.526 (4)C21—H210.9300
C11—H110.9800C16—H160.9300
N6—N71.388 (3)C22—H220.9300
N6—C281.421 (4)C29—C301.394 (5)
C12—C131.382 (4)C29—H290.9300
C12—C171.397 (4)C25—H25A0.9600
C5—C41.422 (4)C25—H25B0.9600
C9—C81.410 (4)C25—H25C0.9600
C18—C231.374 (5)C30—C311.354 (6)
C18—C191.377 (4)C30—H300.9300
N7—C81.332 (4)C33—C321.364 (6)
C13—C141.383 (5)C33—H330.9300
C13—Cl21.730 (4)C31—C321.356 (7)
C8—C251.495 (4)C31—H310.9300
C15—C161.360 (5)C32—H320.9300
C15—C141.368 (5)
C10—O27—H27109.5C33—C28—N6119.2 (3)
O27—C10—N6121.4 (3)C29—C28—N6120.9 (3)
O27—C10—C9130.4 (3)C12—C17—C16121.9 (3)
N6—C10—C9108.2 (3)C12—C17—H17119.1
C3—N2—N1108.5 (2)C16—C17—H17119.1
C3—N2—H2125.8C21—C20—C19121.6 (4)
N1—N2—H2125.8C21—C20—H20119.2
C5—N1—N2108.6 (2)C19—C20—H20119.2
C5—N1—C18129.6 (3)C18—C19—C20118.5 (4)
N2—N1—C18121.5 (2)C18—C19—H19120.7
N2—C3—C4109.4 (3)C20—C19—H19120.7
N2—C3—C24120.0 (3)C15—C14—C13119.1 (4)
C4—C3—C24130.6 (3)C15—C14—H14120.5
C9—C11—C4114.9 (3)C13—C14—H14120.5
C9—C11—C12110.2 (2)C3—C24—H24A109.5
C4—C11—C12113.7 (2)C3—C24—H24B109.5
C9—C11—H11105.7H24A—C24—H24B109.5
C4—C11—H11105.7C3—C24—H24C109.5
C12—C11—H11105.7H24A—C24—H24C109.5
C10—N6—N7111.0 (2)H24B—C24—H24C109.5
C10—N6—C28130.2 (3)C22—C21—C20119.1 (4)
N7—N6—C28118.7 (3)C22—C21—H21120.4
C13—C12—C17115.7 (3)C20—C21—H21120.4
C13—C12—C11122.2 (3)C15—C16—C17119.3 (4)
C17—C12—C11122.2 (3)C15—C16—H16120.3
O26—C5—N1120.9 (3)C17—C16—H16120.3
O26—C5—C4132.0 (3)C21—C22—C23120.9 (4)
N1—C5—C4107.1 (3)C21—C22—H22119.6
C10—C9—C8104.4 (3)C23—C22—H22119.6
C10—C9—C11127.3 (3)C28—C29—C30119.2 (4)
C8—C9—C11128.0 (3)C28—C29—H29120.4
C23—C18—C19119.4 (3)C30—C29—H29120.4
C23—C18—N1120.2 (3)C8—C25—H25A109.5
C19—C18—N1120.4 (3)C8—C25—H25B109.5
C8—N7—N6104.4 (2)H25A—C25—H25B109.5
C12—C13—C14123.2 (3)C8—C25—H25C109.5
C12—C13—Cl2120.3 (3)H25A—C25—H25C109.5
C14—C13—Cl2116.4 (3)H25B—C25—H25C109.5
N7—C8—C9111.9 (3)C31—C30—C29120.8 (4)
N7—C8—C25118.7 (3)C31—C30—H30119.6
C9—C8—C25129.4 (3)C29—C30—H30119.6
C3—C4—C5106.2 (3)C28—C33—C32120.0 (5)
C3—C4—C11125.3 (3)C28—C33—H33120.0
C5—C4—C11128.4 (3)C32—C33—H33120.0
C16—C15—C14120.8 (3)C30—C31—C32118.8 (4)
C16—C15—Cl1119.8 (3)C30—C31—H31120.6
C14—C15—Cl1119.4 (3)C32—C31—H31120.6
C18—C23—C22120.4 (3)C31—C32—C33121.3 (5)
C18—C23—H23119.8C31—C32—H32119.3
C22—C23—H23119.8C33—C32—H32119.3
C33—C28—C29119.9 (4)
C3—N2—N1—C54.1 (3)C24—C3—C4—C5176.8 (3)
C3—N2—N1—C18179.3 (3)N2—C3—C4—C11179.4 (3)
N1—N2—C3—C43.7 (3)C24—C3—C4—C111.9 (6)
N1—N2—C3—C24175.1 (3)O26—C5—C4—C3177.3 (3)
O27—C10—N6—N7179.6 (3)N1—C5—C4—C30.6 (3)
C9—C10—N6—N71.1 (3)O26—C5—C4—C114.1 (6)
O27—C10—N6—C283.5 (5)N1—C5—C4—C11178.0 (3)
C9—C10—N6—C28175.7 (3)C9—C11—C4—C3131.2 (3)
C9—C11—C12—C1379.3 (4)C12—C11—C4—C3100.5 (4)
C4—C11—C12—C13150.0 (3)C9—C11—C4—C547.1 (4)
C9—C11—C12—C1798.7 (3)C12—C11—C4—C581.1 (4)
C4—C11—C12—C1732.0 (4)C19—C18—C23—C220.4 (5)
N2—N1—C5—O26175.3 (3)N1—C18—C23—C22179.8 (3)
C18—N1—C5—O260.6 (5)C10—N6—C28—C33144.3 (4)
N2—N1—C5—C42.9 (3)N7—N6—C28—C3332.4 (5)
C18—N1—C5—C4177.6 (3)C10—N6—C28—C2936.1 (5)
O27—C10—C9—C8178.6 (3)N7—N6—C28—C29147.3 (3)
N6—C10—C9—C82.2 (3)C13—C12—C17—C160.2 (5)
O27—C10—C9—C116.1 (5)C11—C12—C17—C16177.9 (3)
N6—C10—C9—C11173.0 (3)C23—C18—C19—C200.1 (5)
C4—C11—C9—C1072.0 (4)N1—C18—C19—C20179.9 (3)
C12—C11—C9—C1057.9 (4)C21—C20—C19—C180.1 (6)
C4—C11—C9—C8113.8 (4)C16—C15—C14—C131.4 (5)
C12—C11—C9—C8116.2 (3)Cl1—C15—C14—C13179.3 (2)
C5—N1—C18—C2337.7 (5)C12—C13—C14—C151.7 (5)
N2—N1—C18—C23148.2 (3)Cl2—C13—C14—C15179.7 (3)
C5—N1—C18—C19142.1 (3)C19—C20—C21—C220.0 (6)
N2—N1—C18—C1932.0 (4)C14—C15—C16—C170.4 (6)
C10—N6—N7—C80.6 (3)Cl1—C15—C16—C17178.2 (3)
C28—N6—N7—C8177.8 (3)C12—C17—C16—C150.5 (6)
C17—C12—C13—C140.9 (5)C20—C21—C22—C230.3 (6)
C11—C12—C13—C14179.0 (3)C18—C23—C22—C210.5 (6)
C17—C12—C13—Cl2179.4 (2)C33—C28—C29—C300.3 (6)
C11—C12—C13—Cl22.5 (4)N6—C28—C29—C30180.0 (3)
N6—N7—C8—C92.1 (4)C28—C29—C30—C310.3 (7)
N6—N7—C8—C25176.2 (3)C29—C28—C33—C320.6 (7)
C10—C9—C8—N72.7 (4)N6—C28—C33—C32179.7 (5)
C11—C9—C8—N7172.5 (3)C29—C30—C31—C320.5 (9)
C10—C9—C8—C25175.2 (3)C30—C31—C32—C330.8 (10)
C11—C9—C8—C259.5 (6)C28—C33—C32—C310.9 (10)
N2—C3—C4—C51.9 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O27i0.862.082.756 (3)135
C24—H24A···Cl1ii0.962.933.823 (3)156
Symmetry codes: (i) x, y1, z; (ii) x, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O27i0.862.082.756 (3)135
C24—H24A···Cl1ii0.962.933.823 (3)156
Symmetry codes: (i) x, y1, z; (ii) x, y+1, z+1.
 

Acknowledgements

RK acknowledges the Department of Science & Technology for the single-crystal X-ray diffractometer sanctioned as a National Facility under project No. SR/S2/CMP-47/2003.

References

First citationAgilent (2013). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationBailey, D. M., Hansen, P. E., Hlavac, A. G., Baizman, E. R., Pearl, J., DeFelice, A. F. & Feigenson, M. E. (1985). J. Med. Chem. 28, 256–260.  CrossRef CAS PubMed Google Scholar
First citationBhardwaj, M., Sahi, S., Mahajan, H., Paul, S. & Clark, J. H. (2015). J. Mol. Catal. A Chem. 408, 48–59.  CrossRef CAS Google Scholar
First citationChauhan, P. M. S., Singh, S. & Chatterjee, R. K. (1993). Indian J. Chem. Sect. B, 32, 856-861.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHamama, W. S. (2001). Synth. Commun. 31, 1335–1345.  CrossRef CAS Google Scholar
First citationMahajan, R. N., Havaldar, F. H. & Fernandes, P. S. (1991). J. Indian Chem. Soc. 68, 245-246.  CAS Google Scholar
First citationNiknam, K. & Mirzaee, S. (2011). Synth. Commun. 41, 2403–2413.  CrossRef CAS Google Scholar
First citationPark, H. J., Lee, K., Park, S. J., Ahn, B., Lee, J. C., Cho, H. Y. & Lee, K. I. (2005). Bioorg. Med. Chem. Lett. 15, 3307–3312.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRosiere, C. E. & Grossman, M. I. (1951). Science, 113, 651–651.  CrossRef PubMed CAS Google Scholar
First citationSharma, N., Jadeja, R. N., Kant, R. & Gupta, K. V. (2014). AIP Conf. Proc. pp. 1206–1208.  CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 10| October 2015| Pages o805-o806
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds