research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 10| October 2015| Pages 1230-1235

Crystal structures of three new N-halo­methyl­ated quaternary ammonium salts

CROSSMARK_Color_square_no_text.svg

aDepartamento de Química, Universidad de Caldas, Manizales, Caldas, Colombia, bDepartment of Chemistry, Illinois State University, Normal, Illinois, USA, and cInstituto de Química, UNAM, Circuito Exterior, Ciudad Universitaria, Delegación Coyoacán, C.P. 04510, México, D.F., Mexico
*Correspondence e-mail: amalia.rios@ucaldas.edu.co

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 22 July 2015; accepted 14 September 2015; online 26 September 2015)

In the crystals of the title N-halo­methyl­ated quaternary ammonium salts, C19H23IN+·I, (I) [systematic name: N-(4,4-di­phenyl­but-3-en-1-yl)-N-iodo­methyl-N,N-di­methyl­ammonium iodide], C20H25IN+·I, (II) [systematic name: N-(5,5-di­phenyl­pent-4-en-1-yl)-N-iodo­methyl-N,N-di­methyl­ammonium iodide], and C21H27IN+·I, (III) [systematic name: N-(6,6-di­phenyl­hex-5-en-1-yl)-N-iodo­methyl-N,N-di­methyl­ammonium iodide], there are short I⋯I inter­actions of 3.564 (4), 3.506 (1) and 3.557 (1) Å for compounds (I), (II) and (III), respectively. Compound (I) crystallizes in the Sohncke group P21 as an `enanti­opure' compound and is therefore a potential material for NLO properties. In the crystal of compound (I), mol­ecules are linked by C—H⋯I and C—H⋯π inter­actions which, together with the I⋯I inter­actions, lead to the formation of ribbons along [100]. In (II), there are only C—H⋯I inter­actions which, together with the I⋯I inter­actions, lead to the formation of helices along [010]. In (III), apart from the I⋯I inter­actions, there are no significant inter­molecular inter­actions present.

1. Chemical context and background to halogen bonding and cation–π inter­actions

Quaternary ammonium salts have been widely studied as anti-cancer (Wang et al., 2012[Wang, W., Bai, Z., Zhang, F., Wang, C., Yuan, Y. & Shao, J. (2012). Eur. J. Med. Chem. 56, 320-331.]; Song et al., 2013[Song, D., Yang, J. S., Oh, C., Cui, S., Kim, B. K., Won, M., Lee, J. I., Kim, H. M. & Han, G. (2013). Eur. J. Med. Chem. 69, 670-677.]), anti-fungal (Ng et al., 2006[Ng, K. L. C., Obando, D., Widmer, F., Wright, L. C., Sorrell, T. C. & Jolliffe, K. A. (2006). J. Med. Chem. 49, 811-816.]), anti-HIV-1 (Shiraishi et al., 2000[Shiraishi, M., Aramaki, Y., Seto, M., Imoto, H., Nishikawa, Y., Kanzaki, N., Okamoto, M., Sawada, H., Nishimura, O., Baba, M. & Fujino, M. (2000). J. Med. Chem. 43, 2049-2063.]), anti-bacterial (Calvani et al., 1998[Calvani, M., Critelli, L., Gallo, G., Giorgi, F., Gramiccioli, G., Santaniello, M., Scafetta, N., Tinti, M. O. & De Angelis, F. (1998). J. Med. Chem. 41, 2227-2233.]), anti-malarial (Calas et al., 1997[Calas, M., Cordina, G., Bompart, J., Ben Bari, M., Jei, T., Ancelin, M. L. & Vial, H. (1997). J. Med. Chem. 40, 3557-3566.]; Calas et al., 2000[Calas, M., Ancelin, M. L., Cordina, G., Portefaix, P., Piquet, G., Vidal-Sailhan, V. & Vial, H. (2000). J. Med. Chem. 43, 505-516.]) and anti-leishmanial (Mavromoustakos et al., 2001[Mavromoustakos, T., Calogeropoulou, T., Koufaki, M., Kolocouris, A., Daliani, I., Demetzos, D., Meng, Z., Makriyannis, A., Balzarini, J. & De Clercq, E. (2001). J. Med. Chem. 44, 1702-1709.]) pharmaceuticals. Our research group has been working in the past few years on the activity of quaternary N-halomethyl ammonium salts for likely pharmaceutical purposes, specifically against axenic L. (V) panamensis and L. (L) amazonensis parasites, human pathogenic species that cause cutaneous and mucocutaneous leishmaniasis. The experiments proved that these compounds are very promising anti-leishmanial mol­ecules, and very significant changes in their activity were observed upon a slight modification of the carbon skeleton by only a single methyl­ene unit (Ríos-Vásquez et al., 2015[Ríos-Vásquez, L. A., Ocampo-Cardona, R., Duque-Benítez, S. M., Cedeño, D. L., Jones, M., Robledo-Restrepo, S. M. & Vélez-Bernal, I. D. (2015). US Patent No. 9,145,352 (September 29, 2015).]). A preliminary effort at understanding a structure–activity relationship with three N-iodo­methyl quaternary ammonium salts (I)[link], (II)[link] and (III)[link] of the form [ICH2N(CH3)3(CH2)nCH=C(Ph)2]+·I (with n = 2, 3 and 4, respectively) is currently being carried out. One possible approach to understand the different activities is to establish what kind of inter­actions are present in compounds (I)–(III), for example whether C—I⋯I (Desiraju et al., 2013[Desiraju, G. R., Ho, P. S., Kloo, L., Legon, A. C., Marquardt, R., Metrangolo, P., Politzer, P., Resnati, G. & Rissanen, K. (2013). Pure Appl. Chem. 85, 1711-1713.]), C—H⋯I (Glidewell et al., 1994[Glidewell, C., Zakaria, C. M., Ferguson, G. & Gallagher, J. F. (1994). Acta Cryst. C50, 233-238.]), C—H⋯π (Nishio et al., 1998[Nishio, M., Hirota, M. & Umezawa, Y. (1998). In The C—H⋯p Interaction. Evidence, Nature, and Consequences. New York: Wiley-VCH.]) or cation–π (Dougherty, 1996[Dougherty, D. A. (1996). Science, 271, 163-168.]), and if so, how these inter­actions may affect their structure and biological properties.

As defined by Inter­national Union for Pure and Applied Chemistry (IUPAC): a halogen bond occurs when there is evidence of a net attractive inter­action between an electrophilic region associated with a halogen atom in a mol­ecular entity and a nucleophilic region in another, or the same, mol­ecular entity (Desiraju et al., 2013[Desiraju, G. R., Ho, P. S., Kloo, L., Legon, A. C., Marquardt, R., Metrangolo, P., Politzer, P., Resnati, G. & Rissanen, K. (2013). Pure Appl. Chem. 85, 1711-1713.]). Halogen bonds are characterized by XX distances that are clearly shorter than the van der Waals radii sum (Formigué, 2009[Formigué, M. (2009). Curr. Opin. Solid State Mater. Sci. 13, 36-45.]; Awwadi et al.; 2006[Awwadi, F. F., Willett, R. D., Peterson, K. A. & Twamley, B. (2006). Chem. Eur. J. 12, 8952-8960.]); otherwise this inter­action is neglected. In a similar way, the existence of C—H⋯X hydrogen bonds (X = F, Cl, Br or I) in neutral organic mol­ecules (Aakeröy & Seddon, 1993[Aakeröy, C. B. & Seddon, K. R. (1993). Z. Naturforsch Teil B, 48, 1023-1025.]) and even in organic salts has been recognized. On the other hand, a special kind of hydrogen bond, defined as a weak inter­action between a soft acid (i.e. an sp3, sp2 or sp C—H system) and a soft base (i.e. an aromatic, olefinic or acetilenic p system), with a significant role on diverse chemical and biological phenomena has recently been described (Nishio, 2012[Nishio, M. (2012). J. Mol. Struct. 1018, 2-7.]). In particular, this inter­action exerts an observable influence on host–guest recognition and crystal packing in the solid state. A related attraction is the cation–π inter­action, which is regarded as an electrostatic attraction between a positive charge and the quadrupole moment of an aromatic ring (Dougherty, 1996[Dougherty, D. A. (1996). Science, 271, 163-168.]). A cation–π inter­action between aromatic and ammonium ions is known to play an important role in many biological systems (Ma & Dougherty, 1997[Ma, J. C. & Dougherty, D. A. (1997). Chem. Rev. 97, 1303-1324.]; Dougherty, 2013[Dougherty, D. A. (2013). Acc. Chem. Res. 46, 885-893.]; Sussman et al., 1991[Sussman, J. L., Harel, M., Frolow, F., Oefner, C., Goldman, A., Toker, L. & Silman, I. (1991). Science, 253, 872-879.]; Chen et al., 2011[Chen, C. C., Hsu, W., Hwang, K. C., Hwu, J. R., Lin, C. C. & Horng, J. (2011). Arch. Biochem. Biophys. 508, 46-53.]). Part of our research inter­est is focused not only in understanding the reactive nature of alpha ammonium distonic radical cations which are generated from N-halo­methyl­ated quaternary ammonium salts (Ríos et al., 1996[Ríos, L. A., Dolbier, W. R., Paredes, R., Lusztyk, J., Ingold, K. U. & Jonsson, M. (1996). J. Am. Chem. Soc. 118, 11313-11314.]; Ríos, Bartberger et al., 1997[Ríos, L. A., Bartberger, M. D., Dolbier, W. R. & Paredes, R. (1997). Tetrahedron Lett. 38, 7041-7044.]), but also in trying to understand how these salts behave against Leishmania parasites (Ríos-Vásquez et al., 2015[Ríos-Vásquez, L. A., Ocampo-Cardona, R., Duque-Benítez, S. M., Cedeño, D. L., Jones, M., Robledo-Restrepo, S. M. & Vélez-Bernal, I. D. (2015). US Patent No. 9,145,352 (September 29, 2015).]). The recognition of the occurrence of some supra­molecular inter­actions in these salts may lead to a better understanding of the likely novel biological binding sites, and therefore to new suggestions about biocatalytic mechanisms.

[Scheme 1]

The title N-iodo­methyl quaternary ammonium salts, (I)–(III), were synthesized following standard procedures used for other related compounds (Newcomb et al., 1993[Newcomb, M., Horner, J. H. & Shahin, H. (1993). Tetrahedron Lett. 34, 5523-5526.]; Horner et al., 1995[Horner, J. H., Martínez, F. N., Musa, O. M., Newcomb, M. & Shahin, H. E. (1995). J. Am. Chem. Soc. 117, 11124-11133.]) and suitable crystals were obtained (Múnera-Orozco, 2014[Múnera-Orozco, C. (2014). MSc thesis, Universidad de Caldas, Manizales, Colombia.]). This paper reports a comparative crystal structure and supra­molecular inter­actions analysis for the aforementioned compounds.

2. Structural commentary

Compound (I)[link], Fig. 1[link], crystallizes in the non-centrosymmetric monoclinic space group P21 and is therefore, a potential material for NLO properties. The asymmetric unit consists of an ammonium cation and an iodide anion. In the geminal-substituted di­phenyl­ethene unit, the phenyl rings (C5–C10 and C11–C16) are inclined to one another by 74.6 (2)°, and are twisted from the mean plane of the central C=C bond fragment (C2–C5/C11) by 33.2 (2) and 61.4 (2)°, respectively. Co-planarity of the olefin skeleton and the peripheral phenyl rings is prevented because of steric congestion between the associated phenyl rings. The conformation of the side chain reveals an all-trans extended conformation with the iodo­methyl moiety on one side of the backbone chain, with bond lengths and angles in the expected ranges.

[Figure 1]
Figure 1
The mol­ecular structure of compound (I)[link], showing the atom labelling. Displacement ellipsoids are drawn at the 50% probability level.

In compound (II)[link], Fig. 2[link], the dihedral angles between the mean planes of the C=C double-bond fragment (C3–C6/C12) and the two phenyl rings (C6–C11 and C12–C17) are 31.1 (4) and 58.6 (4)°, respectively, while the phenyl rings are inclined to one another by 76.2 (4)°. The N-iodo­methyl-N,N-dimethyl-N-propyl­ammonium moiety adopts a fully extended conformation with one methyl group and the iodo­methyl unit on opposite sides of the backbone of the side chain (Fig. 2[link]). This conformation seems to be partially supported by a C—H⋯I hydrogen bond (Table 2 and Supra­molecular features).

[Figure 2]
Figure 2
The mol­ecular structure of compound (II)[link], showing the atom labelling. Displacement ellipsoids are drawn at the 50% probability level.

In compound (III)[link], Fig. 3[link], the phenyl rings are twisted out of the plane defined by the ethyl­ene moiety (C4–C7/C13), making dihedral angles of 38.7 (4) and 78.7 (6)° for the trans (C7–C12) and cis (C13–C18) phenyl rings, respectively. The phenyl rings are inclined to one another by 78.5 (6)°. The alkyl­amino side chain is almost fully extended away from the geminal-substituted ethene group.

[Figure 3]
Figure 3
The mol­ecular structure of compound (III)[link], showing the atom labelling. Displacement ellipsoids are drawn at the 50% probability level.

3. Supra­molecular features

In the crystal of (I)[link], ribbons are formed, by I1⋯I2i contacts [3.564 (4) Å; symmetry code: (i) −x − 1, y − [{1\over 2}], −z + 1] and C—H⋯I hydrogen bonds, along the a-axis direction. The chains are reinforced by C—H⋯π inter­actions (Fig. 4[link] and Table 1[link]).

Table 1
Hydrogen-bond geometry (Å, °) for (I)[link]

Cg is the centroid of the C11–C16 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C17—H17B⋯I2i 0.97 3.00 3.919 (5) 159
C7—H7⋯Cgii 0.93 2.84 3.030 (5) 143
Symmetry codes: (i) [-x, y-{\script{1\over 2}}, -z+1]; (ii) x+1, y, z.
[Figure 4]
Figure 4
The crystal packing of compound (I)[link], viewed along the b axis, showing the inter­molecular contacts (dashed lines; see Table 1[link]).

In the crystal of (II)[link], helical chains along the b-axis direction are formed by mol­ecules linked via C—H⋯I (Table 2[link]) and I1⋯I2ii inter­actions [3.506 (1) Å; symmetry code: (ii) −x + [{1\over 2}], y − [{1\over 2}], −z + [{1\over 2}]]; as shown in Fig. 5[link]. Here no C—H⋯π inter­actions are present in the crystal packing. The closest distance between the ammonium substituents and any of the phenyl rings is ca 7.18 Å. These features clearly rule out an intra­molecular cation–π inter­action for this mol­ecule in the solid state. However, in studies of distonic radical cation (Ríos et al. 1996[Ríos, L. A., Dolbier, W. R., Paredes, R., Lusztyk, J., Ingold, K. U. & Jonsson, M. (1996). J. Am. Chem. Soc. 118, 11313-11314.]; Yates et al., 1986[Yates, B. F., Bouma, W. J. & Radom, L. (1986). Tetrahedron, 42, 6225-6234.]), evidence is presented that the active conformation of the alkyl­amino side chain is oriented toward and above the plane of the C=C double bond of the geminal-substituted ethene group. These results confirm that there is considerable freedom of rotation about the bonds separating the basic amino function and the tricyclic system, and thus numerous inter­convertible side-chain conformations, differing only slightly in potential energy, may exist.

Table 2
Hydrogen-bond geometry (Å, °) for (II)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2B⋯I2 0.97 3.06 4.001 (7) 165
[Figure 5]
Figure 5
The crystal packing of compound (II)[link], viewed along the b axis, showing the inter­molecular contacts (dashed lines; see Table 2[link]).

In the crystal of (III)[link], apart from the I1⋯I2iii contact of 3.557 (1) Å [symmetry code: (iii) −x, −y + 1, −z], there are no other significant inter­molecular contacts present (Fig. 6[link]). The only possible conclusion regarding the crystal structure of (III)[link] is that the steric requirements in this mol­ecule outweigh the additional stabilization obtained by an intra­molecular cation–π inter­action.

[Figure 6]
Figure 6
The crystal packing of compound (III)[link], viewed along the b axis.

4. Synthesis and crystallization

The general procedure for the preparation of the title quaternary ammonium salts is illustrated in Fig. 7[link] for compounds (I)–(III)[link]. The reactions were carried out following a standard literature method (Ríos et al., 1996[Ríos, L. A., Dolbier, W. R., Paredes, R., Lusztyk, J., Ingold, K. U. & Jonsson, M. (1996). J. Am. Chem. Soc. 118, 11313-11314.]) starting from the appropriate amine [N,N-dimethyl-4,4-di­phenyl­but-3-en-1-amine 1(a), N,N-dimethyl-5,5-di­phenyl­pent-4-en-1-amine 1(b) and N,N-dimethyl-6,6-di­phenyl­hex-5-en-1-amine 1(c)]. Typically, CH2I2 (4 eq) and 1 eq of the starting tertiary amine [for example, compound 1(a) for the synthesis of (I)[link]; as shown in Fig. 7[link]] were dissolved in aceto­nitrile. The reactions were allowed to run overnight at room temperature, and the precipitated salts were filtered off and washed several times with diethyl ether, and then recrystallized from a binary mixture water–iso­propanol. The desired products were obtained as colourless crystals.

[Figure 7]
Figure 7
The general procedure for the preparation of the title quaternary ammonium salts.

Compound (I): The product was obtained as a white solid in 74% yield; m.p. 425–427 K. 1H NMR (DMSO, 300 MHz, δ, p.p.m.): 2.49 (m, 2H), 3.12 (s, 6H), 3.50 (m, 2H), 5.05 (s, 2H), 6.07 (t, J = 7.4 Hz, 1H), 7.15–7.58 (m, 10H) p.p.m. 13C NMR (DMSO, 75 MHz,, p.p.m.) 23.70, 31.49, 51.66, 63.58, 121.92, 127.19–129.51, 138.79, 141.62, 145.03 p.p.m. Elemental analysis calculated for C19H23NI2: C, 43.95%; H, 4.46%; N, 2.70%; found, C, 43.48%; H, 4.35%; N, 2.68%. MS–ESI calculated for C19H23NI: 392.09, found: 391.95.

Compound (II): The product was obtained as a white solid in 77% yield; m.p. 430–437 K. 1H NMR (DMSO, 300 MHz, δ, p.p.m.): 1.85 (m, 2H), 2.12 (m, 2H), 2.51 (m, 2H), 3.15 (s, 6H), 5.18 (s, 2H), 6.14 (t, J = 7.2 Hz, 1H), 7.11–7.51 (10H). 13C NMR (DMSO, 75 MHz, p.p.m.): 22.30, 25.91, 39.01, 51.19, 63.84, 126.84–141.68. ESI–MS m/z calculated for C20H25NI: 406.10, found: 406.20.

Compound (III): The product was obtained as a white solid in 72% yield; m.p. 429–431 K. 1H NMR (DMSO, 300 MHz, δ, p.p.m.): 1.45 (m, 2H), 1.68 (m, 2H), 2.12 (m, 2H), 2.51 (m, 2H), 3.10 (s, 6H), 5.14 (s, 2H), 6.14 (t, J = 7.3 Hz, 1H), 7.06–7.51 (m, 10H) p.p.m. 13C NMR (DMSO, 75 MHz, p.p.m.): 25.07, 28.91, 31.91, 35.35, 54.29, 67.34, 129.89–132.50, 130.19, 142.45, 144.34, 145.02. Elemental analysis calculated for C21H27NI2: C, 46.09%; H, 4.97%; N, 2.56%; found C, 45.91%; H, 4.93%; N, 2.58%. ESI–MS m/z calculated for C21H27NI: 420.12, found: 420.20.

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. For all three compounds the C-bound H atoms were included in calculated positions and treated as riding atoms: C—H = 0.93–0.99 Å with Uiso(H) = 1.5Ueq(C) for methyl H atoms and 1.2Ueq(C) for other H atoms. Refining the structure of compound (I)[link] in the non-centrosymmetric space group gives a value of 0.02 (3) for the Flack parameter (Flack & Bernardinelli, 1999[Flack, H. D. & Bernardinelli, G. (1999). Acta Cryst. A55, 908-915.]), confirming that the direction of the polar axis has been correctly determined. The studied crystal of compound (III)[link] was a non-merohedral twin with a ratio of two major domains of 0.374 (2):0.626 (2). The two domains are rotated from each other by 180.0° about the reciprocal axis a*, as determined by the CELL NOW program (Sheldrick, 2004[Sheldrick, G. M. (2004). CELL NOW. University of Göttingen, Germany.]). The final refinement was carried out using the twinned data set.

Table 3
Experimental details

  (I) (II) (III)
Crystal data
Chemical formula C19H23IN+·I C20H25IN+·I C21H27IN+·I
Mr 519.18 533.21 547.23
Crystal system, space group Monoclinic, P21 Monoclinic, C2/c Monoclinic, P21/c
Temperature (K) 298 298 298
a, b, c (Å) 7.9254 (2), 13.6161 (3), 9.4632 (2) 37.778 (7), 6.6323 (12), 17.021 (3) 8.9423 (12), 24.058 (3), 10.3749 (13)
β (°) 103.320 (1) 100.567 (4) 103.656 (3)
V3) 993.73 (4) 4192.3 (13) 2168.9 (5)
Z 2 8 4
Radiation type Mo Kα Mo Kα Mo Kα
μ (mm−1) 3.16 3.00 2.90
Crystal size (mm) 0.23 × 0.19 × 0.12 0.21 × 0.20 × 0.08 0.32 × 0.22 × 0.04
 
Data collection
Diffractometer Bruker SMART APEX CCD Bruker SMART APEX CCD Bruker SMART APEX CCD
Absorption correction Multi-scan (SADABS; Bruker, 2012[Bruker (2012). APEX2, SAINT, SADABS and TWINABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Multi-scan (SADABS; Bruker, 2012[Bruker (2012). APEX2, SAINT, SADABS and TWINABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Multi-scan (TWINABS; Bruker, 2012[Bruker (2012). APEX2, SAINT, SADABS and TWINABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.624, 0.745 0.349, 0.745 0.273, 0.429
No. of measured, independent and observed [I > 2σ(I)] reflections 5791, 3085, 3013 16925, 3808, 3114 3961, 3961, 2941
Rint 0.016 0.079 0.079
(sin θ/λ)max−1) 0.602 0.602 0.603
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.017, 0.038, 1.08 0.052, 0.145, 1.05 0.060, 0.138, 1.05
No. of reflections 3085 3808 3961
No. of parameters 202 210 220
No. of restraints 1 0 0
H-atom treatment H-atom parameters constrained H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.27, −0.46 1.90, −1.98 0.82, −0.80
Absolute structure Refined as an inversion twin
Absolute structure parameter 0.02 (3)
Computer programs: APEX2 and SAINT (Bruker, 2012[Bruker (2012). APEX2, SAINT, SADABS and TWINABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Chemical context and background to halogen bonding and cation–π inter­actions top

Quaternary ammonium salts have been widely studied as anti-cancer (Wang et al., 2012; Song et al., 2013), anti-fungal (Ng et al., 2006), anti-HIV-1 (Shiraishi et al., 2000), anti-bacterial (Calvani et al., 1998), anti-malarial (Calas et al., 1997; Calas et al., 2000) and anti-leishmanial (Mavromoustakos et al., 2001) pharmaceuticals. Our research group has been working in the past few years on the activity of quaternary N-halo­methyl ammonium salts for likely pharmaceutical purposes, specifically against axenic L. (V) panamensis and L. (L) amazonensis parasites, human pathogenic species that cause cutaneous and mucocutaneous leishmaniasis. The experiments proved that these compounds are very promising anti-leishmanial molecules, and very significant changes in their activity were observed upon a slight modification of the carbon skeleton by only a single methyl­ene unit (Ríos-Vásquez et al., 2015). A preliminary effort at understanding a structure–activity relationship with three N-iodo­methyl quaternary ammonium salts (I), (II) and (III) of the form [ICH2N(CH3)3(CH2)nCH=C(Ph)2]+·I- (with n = 2, 3 and 4, respectively) is currently being carried out. One possible approach to understand the different activities is to establish what kind of inter­actions are present in compounds (I)–(III), for example whether C—I···I (Desiraju et al., 2013), C—H···I (Glidewell et al., 1994), C—H···π (Nishio et al., 1998) or cation–π (Dougherty, 1996), and if so, how these inter­actions may affect their structure and biological properties.

As defined by Inter­national Union for Pure and Applied Chemistry (IUPAC): a halogen bond occurs when there is evidence of a net attractive inter­action between an electrophilic region associated with a halogen atom in a molecular entity and a nucleophilic region in another, or the same, molecular entity (Desiraju et al., 2013). Halogen bonds are characterized by X···X distances that are clearly shorter than the van der Waals radii sum (Formigué, 2009; Awwadi et al.; 2006); otherwise this inter­action is neglected. In a similar way, the existence of C—H···X hydrogen bonds (X = F, Cl, Br or I) in neutral organic molecules (Aakeröy & Seddon, 1993) and even in organic salts has been recognized. On the other hand, a special kind of hydrogen bond, defined as a weak inter­action between a soft acid (i.e. an sp3, sp2 or sp C—H system) and a soft base (i.e. an aromatic, olefinic or acetilenic p system), with a significant role on diverse chemical and biological phenomena has recently been described (Nishio, 2012). In particular, this inter­action exerts an observable influence on host–guest recognition and crystal packing in the solid state. A related attraction is the cation–π inter­action, which is regarded as an electrostatic attraction between a positive charge and the quadrupole moment of an aromatic ring (Dougherty, 1996). A cation–π inter­action between aromatic and ammonium ions is known to play an important role in many biological systems (Ma & Dougherty, 1997; Dougherty, 2013; Sussman et al., 1991; Chen et al., 2011). Part of our research inter­est is focused not only in understanding the reactive nature of alpha ammonium distonic radical cations which are generated from N-halo­methyl­ated quaternary ammonium salts (Ríos et al., 1996; Ríos, Bartberger et al., 1997), but also in trying to understand how these salts behave against Leishmania parasites (Ríos-Vásquez et al., 2015). The recognition of the occurrence of some supra­molecular inter­actions in these salts will lead to a better understanding of the likely novel biological binding sites, and therefore to new suggestions about biocatalytic mechanisms.

The title N-iodo­methyl quaternary ammonium salts, (I)–(III), were synthesized following standard procedures used for other related compounds (Newcomb et al., 1993; Horner et al., 1995) and suitable crystals were obtained (Múnera-Orozco, 2014). This paper reports a comparative crystal structure and supra­molecular inter­actions analysis for the aforementioned compounds.

Structural commentary top

Compound (I), Fig. 1, crystallizes in the non-centrosymmetric monoclinic space group P21 and is therefore, a potential material for NLO properties.. The asymmetric unit consists of an ammonium cation and an iodide anion. In the geminal-substituted di­phenyl­ethene unit, the two phenyl rings (C5–C10 and C11–C16) are inclined to one another by 74.6 (2)°, and are twisted from the mean plane of the central C=C bond fragment (C2–C5/C11) by 33.2 (2) and 61.4 (2)°, respectively. Co-planarity of the olefin skeleton and the peripheral phenyl rings is prevented because of steric congestion between the associated phenyl rings. The conformation of the side chain reveals an all-trans extended conformation with the iodo­methyl moiety on one side of the backbone chain, with bond lengths and angles in the expected ranges.

In compound (II), Fig. 2, the dihedral angles between the mean planes of the CC double-bond fragment (C3–C6/C12) and the two phenyl rings (C6–C11 and C12–C17) are 31.1 (4) and 58.6 (4)°, respectively, while the two phenyl rings are inclined to one another by 76.2 (4)°. The N-iodo­methyl-N,N-di­methyl-N-propyl­ammonium moiety adopts a fully extended conformation with one methyl group and the iodo­methyl unit on opposite sides of the backbone of the side chain (Fig. 2). This conformation seems to be partially held by a C—H···I- hydrogen bond (Table 2 and Section 3).

In compound (III), Fig. 3, the two phenyl rings are twisted out of the plane defined by the ethyl­ene moiety (C4--C7/C13), making dihedral angles of 38.7 (4) and 78.7 (6)° for the trans (C7–C12) and cis (C13–C18) phenyl rings, respectively. The two phenyl rings are inclined to one another by 78.5 (6)°. The alkyl­amino side chain is almost fully extended away from the geminal-substituted ethene group.

Supra­molecular features top

In the crystal of (I), ribbons are formed, by I1···I2i contacts [3.564 (4) Å; symmetry code: -x - 1, y - 1/2, -z + 1] and CH2—I···I- halogen bonds, along the a-axis direction. The chains are reinforced by T-shaped (phenyl)C—H···π inter­actions (Fig. 4 and Table 1).

In the crystal of (II), helical chains along the b-axis direction are formed by molecules linked via C—H···I (Table 2) and I1···I2ii inter­actions [3.506 (1) Å; symmetry code: (ii) -x + 1/2, y - 1/2, -z + 1/2]; as shown in Fig 5. Here no C—H···π inter­actions are present in the crystal packing. The closest distance between the ammonium substituents and any of the phenyl rings is ca 7.18 Å. These features clearly rule out an intra­molecular cation–π inter­action for this molecule in the solid state. However, in studies of distonic radical cation (Ríos et al. 1996; Yates et al., 1986), evidence is presented that the active conformation of the alkyl­amino side chain is oriented toward and above the plane of the CC double bond of the geminal-substituted ethene group. These results confirm that there is considerable freedom of rotation about the bonds separating the basic amino function and the tricyclic system, and thus numerous inter­convertible side-chain conformations, differing only slightly in potential energy, may exist.

In the crystal of (III), apart from the I1···I2iii contact of 3.557 (1) Å [symmetry code: (iii) -x, -y + 1, -z], there are no other significant inter­molecular contacts present (Fig. 6). The only possible conclusion regarding the crystal structure of (III) is that the steric requirements in this molecule outweigh the additional stabilization obtained by an intra­molecular cation–π inter­action.

Synthesis and crystallization top

The general procedure for the preparation of the title quaternary ammonium salts is illustrated in Fig. 7 for compound (I). The reactions were carried out following a standard literature method (Ríos et al., 1996) starting from the appropriate amine [N,N-di­methyl-4,4-di­phenyl­but-3-en-1-amine, N,N-di­methyl-5,5-di­phenyl­pent-4-en-1-amine and N,N-di­methyl-6,6-di­phenyl­hex-5-en-1-amine for (I), (II) and (III), respectively]. Typically, CH2I2 (4 eq) and 1 eq of the starting tertiary amine [for example, compound 1(a) for the synthesis of (I); as shown in Fig. 7] were dissolved in aceto­nitrile. The reactions were allowed to run overnight at room temperature, and the precipitated salts were filtered off and washed several times with di­ethyl ether, and then recrystallized from a binary mixture water–iso­propanol. The desired products were obtained as colourless crystals.

Compound (I): The product was obtained as a white solid in 74 % yield; m.p. 425–427 K. 1H NMR (DMSO, 300 MHz, δ, p.p.m.): 2.49 (m, 2H), 3.12 (s, 6H), 3.50 (m, 2H), 5.05 (s, 2H), 6.07 (t, J = 7.4 Hz, 1H), 7.15–7.58 (m, 10H) p.p.m. 13C NMR (DMSO, 75 MHz, , p.p.m.) 23.70, 31.49, 51.66, 63.58, 121.92, 127.19–129.51, 138.79, 141.62, 145.03 p.p.m. Elemental analysis calculated for C19H23NI2: C, 43.95%; H, 4.46%; N, 2.70%; found, C, 43.48%; H, 4.35%; N, 2.68%. MS–ESI calculated for C19H23NI: 392.09, found: 391.95.

Compound (II): The product was obtained as a white solid in 77 % yield; m.p. 430–437 K. 1H NMR (DMSO, 300 MHz, δ, p.p.m.): 1.85 (m, 2H), 2.12 (m, 2H), 2.51 (m, 2H), 3.15 (s, 6H), 5.18 (s, 2H), 6.14 (t, J = 7.2 Hz, 1H), 7.11–7.51 (10H). 13C NMR (DMSO, 75 MHz, p.p.m.): 22.30, 25.91, 39.01, 51.19, 63.84, 126.84–141.68. ESI–MS m/z calculated for C20H25NI: 406.10, found: 406.20.

Compound (III): The product was obtained as a white solid in 72 % yield; m.p. 429–431 K. 1H NMR (DMSO, 300 MHz, δ, p.p.m.): 1.45 (m, 2H), 1.68 (m, 2H), 2.12 (m, 2H), 2.51 (m, 2H), 3.10 (s, 6H), 5.14 (s, 2H), 6.14 (t, J = 7.3 Hz, 1H), 7.06–7.51 (m, 10H) p.p.m. 13C NMR (DMSO, 75 MHz, p.p.m.): 25.07, 28.91, 31.91, 35.35, 54.29, 67.34, 129.89–132.50, 130.19, 142.45, 144.34, 145.02. Elemental analysis calculated for C21H27NI2: C, 46.09%; H, 4.97%; N, 2.56%; found C, 45.91%; H, 4.93%; N, 2.58%. ESI–MS m/z calculated for C21H27NI: 420.12, found: 420.20.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 3. For all three compounds the C-bound H atoms were included in calculated positions and treated as riding atoms: C—H = 0.93–0.99 Å with Uiso(H) = 1.5Ueq(C) for methyl H atoms and 1.2Ueq(C) for other H atoms. Refining the structure of compound (I) in the non-centrosymmetric space group gives a value of 0.02 (3) for the Flack parameter (Flack & Bernardinelli, 1999), confirming that the direction of the polar axis has been correctly determined. The studied crystal of compound (III) was a non-merohedral twin with a ratio of two major domains of 0.374 (2):0.626 (2). The two domains are rotated from each other by 180.0° about the reciprocal axis a*, as determined by the CELL NOW program (Sheldrick, 2004). The final refinement was carried out using the twinned data set.

Related literature top

For related literature, see: Aakeröy & Seddon (1993); Awwadi et al. (2006); Calas et al. (1997, 2000); Calvani et al. (1998); Chen et al. (2011); Desiraju et al. (2013); Dougherty (1996, 2013); Flack & Bernardinelli (1999); Formigué (2009); Glidewell et al. (1994); Horner et al. (1995); Múnera-Orozco (2014); Ma & Dougherty (1997); Mavromoustakos et al. (2001); Newcomb et al. (1993); Ng et al. (2006); Nishio (2012); Nishio et al. (1998); Ríos et al. (1996, 1997); Ríos-Vásquez, Ocampo-Cardona, Duque-Benítez, Cedeño, Jones, Robledo-Restrepo & Vélez-Bernal (2015); Sheldrick (2004); Shiraishi et al. (2000); Song et al. (2013); Sussman et al. (1991); Wang et al. (2012); Yates et al. (1986).

Computing details top

For all compounds, data collection: APEX2 (Bruker, 2012); cell refinement: SAINT (Bruker, 2012); data reduction: SAINT (Bruker, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of compound (I), showing the atom labelling. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. The molecular structure of compound (II), showing the atom labelling. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 3] Fig. 3. The molecular structure of compound (III), showing the atom labelling. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 4] Fig. 4. The crystal packing of compound (I), viewed along the b axis, showing the intermolecular contacts (dashed lines; see Table 1).
[Figure 5] Fig. 5. The crystal packing of compound (II), viewed along the b axis, showing the intermolecular contacts (dashed lines; see Table 2).
[Figure 6] Fig. 6. The crystal packing of compound (III), viewed along the b axis.
[Figure 7] Fig. 7. The general procedure for the preparation of the title quaternary ammonium salts.
(I) N-(4,4-Diphenylbut-3-en-1-yl)-N-iodomethyl-N,N-dimethylammonium iodide top
Crystal data top
C19H23IN+·IDx = 1.735 Mg m3
Mr = 519.18Melting point = 425–427 K
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
a = 7.9254 (2) ÅCell parameters from 4987 reflections
b = 13.6161 (3) Åθ = 2.2–25.3°
c = 9.4632 (2) ŵ = 3.16 mm1
β = 103.320 (1)°T = 298 K
V = 993.73 (4) Å3Prism, colourless
Z = 20.23 × 0.19 × 0.12 mm
F(000) = 500
Data collection top
Bruker SMART APEX CCD
diffractometer
3085 independent reflections
Radiation source: fine-focus sealed tube3013 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.016
Detector resolution: 8.333 pixels mm-1θmax = 25.3°, θmin = 2.2°
ω–scansh = 99
Absorption correction: multi-scan
(SADABS; Bruker, 2012)
k = 1616
Tmin = 0.624, Tmax = 0.745l = 1111
5791 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.017H-atom parameters constrained
wR(F2) = 0.038 w = 1/[σ2(Fo2) + (0.0138P)2 + 0.0203P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max = 0.001
3085 reflectionsΔρmax = 0.27 e Å3
202 parametersΔρmin = 0.46 e Å3
1 restraintAbsolute structure: Refined as an inversion twin
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.02 (3)
Crystal data top
C19H23IN+·IV = 993.73 (4) Å3
Mr = 519.18Z = 2
Monoclinic, P21Mo Kα radiation
a = 7.9254 (2) ŵ = 3.16 mm1
b = 13.6161 (3) ÅT = 298 K
c = 9.4632 (2) Å0.23 × 0.19 × 0.12 mm
β = 103.320 (1)°
Data collection top
Bruker SMART APEX CCD
diffractometer
3085 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2012)
3013 reflections with I > 2σ(I)
Tmin = 0.624, Tmax = 0.745Rint = 0.016
5791 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.017H-atom parameters constrained
wR(F2) = 0.038Δρmax = 0.27 e Å3
S = 1.08Δρmin = 0.46 e Å3
3085 reflectionsAbsolute structure: Refined as an inversion twin
202 parametersAbsolute structure parameter: 0.02 (3)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refined as a 2-component inversion twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I10.65685 (3)0.06224 (2)0.13054 (3)0.04839 (9)
I20.06519 (4)0.44189 (2)0.91487 (3)0.04368 (9)
N10.3770 (4)0.2023 (3)0.0555 (4)0.0376 (8)
C10.1849 (5)0.2322 (4)0.0948 (5)0.0402 (10)
H1A0.11440.17330.10190.048*
H1B0.16090.27190.01660.048*
C20.1311 (5)0.2891 (3)0.2358 (5)0.0409 (11)
H2A0.18880.35240.22490.049*
H2B0.16760.25360.31240.049*
C30.0613 (6)0.3044 (3)0.2779 (5)0.0382 (10)
H30.11010.34080.21430.046*
C40.1686 (5)0.2711 (3)0.3970 (4)0.0329 (9)
C50.3545 (5)0.3021 (3)0.4380 (4)0.0349 (9)
C60.4815 (6)0.2388 (4)0.5116 (5)0.0457 (11)
H60.45140.17520.53180.055*
C70.6528 (6)0.2687 (4)0.5557 (5)0.0546 (13)
H70.73620.22480.60400.065*
C80.7001 (6)0.3612 (5)0.5292 (6)0.0598 (15)
H80.81480.38120.56100.072*
C90.5768 (7)0.4253 (4)0.4549 (7)0.0661 (16)
H90.60870.48870.43570.079*
C100.4056 (6)0.3959 (4)0.4085 (6)0.0532 (13)
H100.32390.43950.35690.064*
C110.1128 (5)0.2030 (3)0.5013 (4)0.0326 (9)
C120.0439 (6)0.1106 (3)0.4575 (5)0.0422 (10)
H120.03140.09090.36160.051*
C130.0060 (6)0.0480 (3)0.5561 (5)0.0500 (12)
H130.05220.01340.52580.060*
C140.0124 (6)0.0761 (4)0.6978 (5)0.0523 (13)
H140.01980.03340.76370.063*
C150.0784 (6)0.1674 (4)0.7431 (5)0.0467 (12)
H150.08830.18710.83880.056*
C160.1298 (5)0.2295 (4)0.6457 (5)0.0403 (10)
H160.17680.29050.67740.048*
C170.4036 (5)0.1302 (3)0.1685 (5)0.0411 (10)
H17A0.38210.16370.26140.049*
H17B0.31740.07870.17610.049*
C180.4928 (7)0.2892 (4)0.0510 (7)0.0633 (15)
H18A0.61060.27030.01000.095*
H18B0.45900.33970.00760.095*
H18C0.48320.31350.14780.095*
C190.4089 (7)0.1546 (5)0.0910 (5)0.0596 (14)
H19A0.52900.13690.12180.089*
H19B0.33850.09670.08550.089*
H19C0.37960.19970.15960.089*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.03965 (16)0.05161 (19)0.05521 (18)0.00709 (15)0.01359 (13)0.00180 (15)
I20.04705 (17)0.03979 (15)0.04515 (16)0.00372 (15)0.01257 (12)0.00767 (14)
N10.0317 (17)0.043 (2)0.0351 (19)0.0020 (17)0.0010 (15)0.0047 (16)
C10.029 (2)0.051 (3)0.039 (2)0.005 (2)0.0042 (18)0.006 (2)
C20.035 (2)0.043 (3)0.042 (3)0.001 (2)0.004 (2)0.001 (2)
C30.038 (2)0.037 (2)0.038 (2)0.004 (2)0.0058 (19)0.003 (2)
C40.034 (2)0.031 (2)0.033 (2)0.0022 (18)0.0073 (18)0.0027 (18)
C50.033 (2)0.037 (2)0.035 (2)0.002 (2)0.0087 (18)0.0047 (19)
C60.037 (3)0.055 (3)0.046 (3)0.003 (2)0.012 (2)0.011 (2)
C70.033 (2)0.083 (4)0.049 (3)0.007 (3)0.010 (2)0.009 (3)
C80.034 (3)0.080 (4)0.065 (4)0.009 (3)0.011 (3)0.014 (3)
C90.049 (3)0.048 (4)0.103 (4)0.019 (3)0.021 (3)0.017 (3)
C100.040 (3)0.037 (2)0.082 (4)0.003 (2)0.012 (3)0.003 (3)
C110.0266 (19)0.035 (2)0.035 (2)0.0031 (18)0.0054 (17)0.0010 (18)
C120.043 (2)0.040 (2)0.045 (2)0.002 (2)0.013 (2)0.004 (2)
C130.054 (3)0.032 (3)0.068 (3)0.001 (2)0.022 (2)0.004 (2)
C140.046 (3)0.054 (3)0.061 (3)0.009 (3)0.019 (2)0.023 (3)
C150.043 (3)0.065 (3)0.031 (2)0.007 (3)0.008 (2)0.007 (2)
C160.031 (2)0.048 (3)0.040 (2)0.004 (2)0.0043 (19)0.004 (2)
C170.035 (2)0.049 (3)0.037 (2)0.005 (2)0.0035 (18)0.005 (2)
C180.041 (3)0.049 (3)0.091 (4)0.009 (3)0.002 (3)0.013 (3)
C190.055 (3)0.084 (4)0.036 (3)0.014 (3)0.003 (2)0.001 (3)
Geometric parameters (Å, º) top
I1—C172.164 (4)C8—H80.9300
I1—I2i3.5640 (4)C9—C101.386 (7)
N1—C181.492 (6)C9—H90.9300
N1—C191.499 (6)C10—H100.9300
N1—C171.502 (5)C11—C161.390 (6)
N1—C11.536 (5)C11—C121.396 (6)
C1—C21.517 (6)C12—C131.387 (6)
C1—H1A0.9700C12—H120.9300
C1—H1B0.9700C13—C141.370 (7)
C2—C31.499 (6)C13—H130.9300
C2—H2A0.9700C14—C151.379 (7)
C2—H2B0.9700C14—H140.9300
C3—C41.326 (6)C15—C161.379 (6)
C3—H30.9300C15—H150.9300
C4—C111.493 (6)C16—H160.9300
C4—C51.495 (6)C17—H17A0.9700
C5—C61.385 (6)C17—H17B0.9700
C5—C101.388 (6)C18—H18A0.9600
C6—C71.387 (7)C18—H18B0.9600
C6—H60.9300C18—H18C0.9600
C7—C81.353 (8)C19—H19A0.9600
C7—H70.9300C19—H19B0.9600
C8—C91.376 (8)C19—H19C0.9600
C17—I1—I2i176.81 (12)C9—C10—C5120.8 (5)
C18—N1—C19110.2 (4)C9—C10—H10119.6
C18—N1—C17110.7 (4)C5—C10—H10119.6
C19—N1—C17110.7 (4)C16—C11—C12118.0 (4)
C18—N1—C1111.4 (4)C16—C11—C4120.8 (4)
C19—N1—C1106.6 (3)C12—C11—C4121.2 (4)
C17—N1—C1107.1 (3)C13—C12—C11120.5 (4)
C2—C1—N1114.2 (3)C13—C12—H12119.8
C2—C1—H1A108.7C11—C12—H12119.8
N1—C1—H1A108.7C14—C13—C12120.3 (5)
C2—C1—H1B108.7C14—C13—H13119.9
N1—C1—H1B108.7C12—C13—H13119.9
H1A—C1—H1B107.6C13—C14—C15120.2 (4)
C3—C2—C1111.6 (4)C13—C14—H14119.9
C3—C2—H2A109.3C15—C14—H14119.9
C1—C2—H2A109.3C14—C15—C16119.7 (4)
C3—C2—H2B109.3C14—C15—H15120.2
C1—C2—H2B109.3C16—C15—H15120.2
H2A—C2—H2B108.0C15—C16—C11121.4 (4)
C4—C3—C2126.3 (4)C15—C16—H16119.3
C4—C3—H3116.8C11—C16—H16119.3
C2—C3—H3116.8N1—C17—I1116.0 (3)
C3—C4—C11123.0 (4)N1—C17—H17A108.3
C3—C4—C5121.6 (4)I1—C17—H17A108.3
C11—C4—C5115.3 (3)N1—C17—H17B108.3
C6—C5—C10117.5 (4)I1—C17—H17B108.3
C6—C5—C4120.9 (4)H17A—C17—H17B107.4
C10—C5—C4121.6 (4)N1—C18—H18A109.5
C5—C6—C7121.1 (5)N1—C18—H18B109.5
C5—C6—H6119.4H18A—C18—H18B109.5
C7—C6—H6119.4N1—C18—H18C109.5
C8—C7—C6120.7 (5)H18A—C18—H18C109.5
C8—C7—H7119.6H18B—C18—H18C109.5
C6—C7—H7119.6N1—C19—H19A109.5
C7—C8—C9119.4 (5)N1—C19—H19B109.5
C7—C8—H8120.3H19A—C19—H19B109.5
C9—C8—H8120.3N1—C19—H19C109.5
C8—C9—C10120.5 (5)H19A—C19—H19C109.5
C8—C9—H9119.8H19B—C19—H19C109.5
C10—C9—H9119.8
C18—N1—C1—C255.2 (5)C6—C5—C10—C91.8 (8)
C19—N1—C1—C2175.5 (4)C4—C5—C10—C9176.1 (5)
C17—N1—C1—C265.9 (5)C3—C4—C11—C16120.5 (5)
N1—C1—C2—C3172.5 (4)C5—C4—C11—C1657.8 (5)
C1—C2—C3—C4117.9 (5)C3—C4—C11—C1260.2 (6)
C2—C3—C4—C116.6 (7)C5—C4—C11—C12121.5 (4)
C2—C3—C4—C5171.6 (4)C16—C11—C12—C130.2 (6)
C3—C4—C5—C6148.1 (5)C4—C11—C12—C13179.5 (4)
C11—C4—C5—C633.5 (5)C11—C12—C13—C140.3 (7)
C3—C4—C5—C1034.0 (6)C12—C13—C14—C150.9 (7)
C11—C4—C5—C10144.3 (4)C13—C14—C15—C161.5 (7)
C10—C5—C6—C70.9 (7)C14—C15—C16—C111.5 (7)
C4—C5—C6—C7177.0 (4)C12—C11—C16—C150.8 (6)
C5—C6—C7—C80.7 (7)C4—C11—C16—C15179.9 (4)
C6—C7—C8—C91.4 (8)C18—N1—C17—I164.6 (4)
C7—C8—C9—C100.5 (9)C19—N1—C17—I157.9 (4)
C8—C9—C10—C51.1 (9)C1—N1—C17—I1173.8 (3)
Symmetry code: (i) x1, y1/2, z+1.
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C11–C16 ring.
D—H···AD—HH···AD···AD—H···A
C17—H17B···I2ii0.973.003.919 (5)159
C7—H7···Cgiii0.932.843.030 (5)143
Symmetry codes: (ii) x, y1/2, z+1; (iii) x+1, y, z.
(II) N-(5,5-Diphenylpent-4-en-1-yl)-N-iodomethyl-N,N-dimethylammonium iodide top
Crystal data top
C20H25IN+·IDx = 1.690 Mg m3
Mr = 533.21Melting point = 430–431 K
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 37.778 (7) ÅCell parameters from 4726 reflections
b = 6.6323 (12) Åθ = 2.2–25.3°
c = 17.021 (3) ŵ = 3.00 mm1
β = 100.567 (4)°T = 298 K
V = 4192.3 (13) Å3Platy-prism, colourless
Z = 80.21 × 0.20 × 0.08 mm
F(000) = 2064
Data collection top
Bruker SMART APEX CCD
diffractometer
3808 independent reflections
Radiation source: fine-focus sealed tube3114 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.079
ω–scansθmax = 25.4°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2012)
h = 4545
Tmin = 0.349, Tmax = 0.745k = 77
16925 measured reflectionsl = 2020
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.145H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0918P)2]
where P = (Fo2 + 2Fc2)/3
3808 reflections(Δ/σ)max = 0.001
210 parametersΔρmax = 1.90 e Å3
0 restraintsΔρmin = 1.98 e Å3
Crystal data top
C20H25IN+·IV = 4192.3 (13) Å3
Mr = 533.21Z = 8
Monoclinic, C2/cMo Kα radiation
a = 37.778 (7) ŵ = 3.00 mm1
b = 6.6323 (12) ÅT = 298 K
c = 17.021 (3) Å0.21 × 0.20 × 0.08 mm
β = 100.567 (4)°
Data collection top
Bruker SMART APEX CCD
diffractometer
3808 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2012)
3114 reflections with I > 2σ(I)
Tmin = 0.349, Tmax = 0.745Rint = 0.079
16925 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0520 restraints
wR(F2) = 0.145H-atom parameters constrained
S = 1.05Δρmax = 1.90 e Å3
3808 reflectionsΔρmin = 1.98 e Å3
210 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I10.25244 (2)0.01229 (6)0.13640 (2)0.04488 (19)
I20.30512 (2)0.07869 (7)0.42246 (3)0.04999 (19)
N10.31227 (12)0.3200 (8)0.1496 (2)0.0383 (11)
C10.32956 (18)0.4989 (9)0.1981 (4)0.0446 (15)
H1A0.34630.56290.16900.053*
H1B0.31090.59650.20290.053*
C20.34941 (19)0.4459 (10)0.2810 (4)0.0503 (16)
H2A0.37130.37360.27700.060*
H2B0.33450.35830.30690.060*
C30.35877 (18)0.6363 (11)0.3312 (4)0.0498 (15)
H3A0.37690.71340.31070.060*
H3B0.33750.71990.32840.060*
C40.37268 (18)0.5764 (12)0.4160 (4)0.0536 (17)
H40.35770.49350.43940.064*
C50.40427 (16)0.6276 (11)0.4628 (3)0.0476 (15)
C60.41456 (18)0.5452 (12)0.5446 (4)0.0537 (18)
C70.4042 (2)0.3523 (14)0.5653 (4)0.066 (2)
H70.39050.27190.52650.080*
C80.4140 (2)0.2791 (17)0.6421 (5)0.083 (3)
H80.40680.15060.65440.099*
C90.4346 (2)0.396 (2)0.7012 (5)0.095 (4)
H90.44110.34680.75300.114*
C100.4453 (2)0.586 (2)0.6822 (5)0.098 (4)
H100.45920.66520.72130.117*
C110.43528 (19)0.6603 (16)0.6054 (4)0.073 (2)
H110.44250.78930.59370.088*
C120.42943 (16)0.7710 (12)0.4341 (3)0.0494 (16)
C130.4190 (2)0.9644 (13)0.4097 (5)0.067 (2)
H130.39571.00670.41210.080*
C140.4417 (3)1.0942 (16)0.3824 (6)0.087 (3)
H140.43391.22260.36550.104*
C150.4761 (3)1.036 (2)0.3796 (7)0.097 (4)
H150.49141.12570.36040.117*
C160.4882 (2)0.849 (2)0.4045 (5)0.091 (3)
H160.51180.81150.40260.109*
C170.46478 (18)0.7137 (15)0.4330 (4)0.067 (2)
H170.47290.58650.45090.080*
C180.28176 (16)0.2484 (10)0.1869 (3)0.0425 (14)
H18A0.26480.35870.18530.051*
H18B0.29110.22010.24280.051*
C190.33945 (17)0.1549 (11)0.1464 (4)0.0509 (16)
H19A0.32880.05160.11010.076*
H19B0.34680.09820.19880.076*
H19C0.36010.20980.12830.076*
C200.29821 (18)0.3908 (10)0.0658 (3)0.0495 (16)
H20A0.28700.28010.03430.074*
H20B0.31780.44160.04270.074*
H20C0.28080.49590.06680.074*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.0501 (3)0.0520 (3)0.0289 (3)0.01023 (17)0.00240 (18)0.00087 (16)
I20.0512 (3)0.0512 (3)0.0461 (3)0.00415 (19)0.0052 (2)0.01397 (19)
N10.041 (3)0.050 (3)0.021 (2)0.003 (2)0.0006 (19)0.002 (2)
C10.052 (4)0.047 (4)0.033 (3)0.013 (3)0.001 (3)0.003 (3)
C20.052 (4)0.062 (4)0.031 (3)0.008 (3)0.009 (3)0.005 (3)
C30.044 (3)0.062 (4)0.039 (3)0.010 (3)0.003 (3)0.011 (3)
C40.047 (4)0.082 (5)0.028 (3)0.012 (3)0.001 (3)0.011 (3)
C50.042 (3)0.067 (4)0.031 (3)0.009 (3)0.000 (2)0.019 (3)
C60.035 (3)0.089 (5)0.036 (3)0.001 (3)0.004 (3)0.008 (3)
C70.064 (5)0.088 (6)0.046 (4)0.000 (4)0.008 (3)0.002 (4)
C80.066 (5)0.126 (8)0.058 (5)0.013 (5)0.018 (4)0.021 (5)
C90.051 (5)0.188 (12)0.044 (5)0.007 (6)0.002 (4)0.014 (6)
C100.059 (5)0.190 (12)0.039 (4)0.033 (7)0.004 (4)0.024 (6)
C110.057 (4)0.118 (7)0.042 (4)0.023 (5)0.001 (3)0.021 (4)
C120.040 (3)0.075 (5)0.029 (3)0.008 (3)0.003 (2)0.016 (3)
C130.057 (5)0.075 (5)0.061 (5)0.012 (4)0.007 (4)0.020 (4)
C140.079 (6)0.092 (7)0.079 (6)0.027 (5)0.014 (5)0.009 (5)
C150.073 (7)0.136 (10)0.076 (6)0.044 (6)0.004 (5)0.025 (7)
C160.047 (4)0.167 (11)0.056 (5)0.019 (6)0.004 (4)0.005 (6)
C170.043 (4)0.111 (7)0.042 (4)0.004 (4)0.002 (3)0.004 (4)
C180.044 (3)0.058 (4)0.025 (3)0.009 (3)0.003 (2)0.004 (3)
C190.048 (4)0.058 (4)0.044 (3)0.005 (3)0.002 (3)0.011 (3)
C200.057 (4)0.061 (4)0.028 (3)0.004 (3)0.000 (3)0.006 (3)
Geometric parameters (Å, º) top
I1—C182.146 (6)C9—C101.381 (16)
I1—I2i3.5058 (7)C9—H90.9300
N1—C181.492 (7)C10—C111.382 (12)
N1—C201.504 (7)C10—H100.9300
N1—C191.509 (8)C11—H110.9300
N1—C11.522 (8)C12—C131.383 (11)
C1—C21.513 (9)C12—C171.392 (9)
C1—H1A0.9700C13—C141.357 (12)
C1—H1B0.9700C13—H130.9300
C2—C31.530 (9)C14—C151.361 (14)
C2—H2A0.9700C14—H140.9300
C2—H2B0.9700C15—C161.363 (16)
C3—C41.496 (9)C15—H150.9300
C3—H3A0.9700C16—C171.410 (13)
C3—H3B0.9700C16—H160.9300
C4—C51.351 (9)C17—H170.9300
C4—H40.9300C18—H18A0.9700
C5—C61.480 (10)C18—H18B0.9700
C5—C121.489 (9)C19—H19A0.9600
C6—C71.402 (12)C19—H19B0.9600
C6—C111.404 (10)C19—H19C0.9600
C7—C81.379 (11)C20—H20A0.9600
C7—H70.9300C20—H20B0.9600
C8—C91.390 (14)C20—H20C0.9600
C8—H80.9300
C18—I1—I2i170.16 (15)C9—C10—C11120.3 (9)
C18—N1—C20109.7 (4)C9—C10—H10119.9
C18—N1—C19111.6 (5)C11—C10—H10119.9
C20—N1—C19108.5 (5)C10—C11—C6121.6 (9)
C18—N1—C1107.8 (4)C10—C11—H11119.2
C20—N1—C1108.2 (5)C6—C11—H11119.2
C19—N1—C1111.0 (5)C13—C12—C17118.1 (7)
C2—C1—N1114.4 (5)C13—C12—C5121.8 (6)
C2—C1—H1A108.6C17—C12—C5120.1 (7)
N1—C1—H1A108.6C14—C13—C12121.8 (8)
C2—C1—H1B108.6C14—C13—H13119.1
N1—C1—H1B108.6C12—C13—H13119.1
H1A—C1—H1B107.6C13—C14—C15120.0 (10)
C1—C2—C3110.7 (6)C13—C14—H14120.0
C1—C2—H2A109.5C15—C14—H14120.0
C3—C2—H2A109.5C14—C15—C16121.0 (9)
C1—C2—H2B109.5C14—C15—H15119.5
C3—C2—H2B109.5C16—C15—H15119.5
H2A—C2—H2B108.1C15—C16—C17119.3 (9)
C4—C3—C2108.9 (6)C15—C16—H16120.3
C4—C3—H3A109.9C17—C16—H16120.3
C2—C3—H3A109.9C12—C17—C16119.7 (9)
C4—C3—H3B109.9C12—C17—H17120.1
C2—C3—H3B109.9C16—C17—H17120.1
H3A—C3—H3B108.3N1—C18—I1117.9 (4)
C5—C4—C3128.2 (7)N1—C18—H18A107.8
C5—C4—H4115.9I1—C18—H18A107.8
C3—C4—H4115.9N1—C18—H18B107.8
C4—C5—C6120.9 (6)I1—C18—H18B107.8
C4—C5—C12121.0 (6)H18A—C18—H18B107.2
C6—C5—C12118.1 (5)N1—C19—H19A109.5
C7—C6—C11117.0 (7)N1—C19—H19B109.5
C7—C6—C5122.5 (6)H19A—C19—H19B109.5
C11—C6—C5120.5 (7)N1—C19—H19C109.5
C8—C7—C6121.4 (8)H19A—C19—H19C109.5
C8—C7—H7119.3H19B—C19—H19C109.5
C6—C7—H7119.3N1—C20—H20A109.5
C7—C8—C9120.4 (10)N1—C20—H20B109.5
C7—C8—H8119.8H20A—C20—H20B109.5
C9—C8—H8119.8N1—C20—H20C109.5
C10—C9—C8119.3 (8)H20A—C20—H20C109.5
C10—C9—H9120.3H20B—C20—H20C109.5
C8—C9—H9120.3
C18—N1—C1—C269.2 (7)C7—C6—C11—C100.4 (12)
C20—N1—C1—C2172.2 (5)C5—C6—C11—C10179.9 (8)
C19—N1—C1—C253.3 (7)C4—C5—C12—C1357.8 (9)
N1—C1—C2—C3167.8 (5)C6—C5—C12—C13121.2 (7)
C1—C2—C3—C4170.6 (6)C4—C5—C12—C17123.6 (8)
C2—C3—C4—C5124.9 (8)C6—C5—C12—C1757.4 (8)
C3—C4—C5—C6176.7 (7)C17—C12—C13—C142.5 (11)
C3—C4—C5—C124.3 (12)C5—C12—C13—C14179.0 (7)
C4—C5—C6—C732.1 (11)C12—C13—C14—C151.0 (14)
C12—C5—C6—C7148.9 (7)C13—C14—C15—C160.4 (16)
C4—C5—C6—C11147.5 (7)C14—C15—C16—C170.4 (16)
C12—C5—C6—C1131.5 (10)C13—C12—C17—C162.5 (10)
C11—C6—C7—C80.0 (11)C5—C12—C17—C16179.0 (6)
C5—C6—C7—C8179.7 (7)C15—C16—C17—C121.1 (13)
C6—C7—C8—C90.0 (12)C20—N1—C18—I164.9 (6)
C7—C8—C9—C100.2 (14)C19—N1—C18—I155.4 (5)
C8—C9—C10—C110.6 (15)C1—N1—C18—I1177.5 (4)
C9—C10—C11—C60.7 (14)
Symmetry code: (i) x+1/2, y1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2B···I20.973.064.001 (7)165
(III) N-(6,6-Diphenylhex-5-en-1-yl)-N-iodomethyl-N,N-dimethylammonium iodide top
Crystal data top
C21H27IN+·IDx = 1.676 Mg m3
Mr = 547.23Melting point = 429–431 K
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 8.9423 (12) ÅCell parameters from 3046 reflections
b = 24.058 (3) Åθ = 2.3–24.4°
c = 10.3749 (13) ŵ = 2.90 mm1
β = 103.656 (3)°T = 298 K
V = 2168.9 (5) Å3Prism, colourless
Z = 40.32 × 0.22 × 0.04 mm
F(000) = 1064
Data collection top
Bruker SMART APEX CCD
diffractometer
3961 independent reflections
Radiation source: fine-focus sealed tube2941 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.079
Detector resolution: 8.333 pixels mm-1θmax = 25.4°, θmin = 1.7°
ω–scansh = 1010
Absorption correction: multi-scan
(TWINABS; Bruker, 2012)
k = 028
Tmin = 0.273, Tmax = 0.429l = 012
3961 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.060Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.138H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0515P)2 + 2.9321P]
where P = (Fo2 + 2Fc2)/3
3961 reflections(Δ/σ)max < 0.001
220 parametersΔρmax = 0.82 e Å3
0 restraintsΔρmin = 0.80 e Å3
Crystal data top
C21H27IN+·IV = 2168.9 (5) Å3
Mr = 547.23Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.9423 (12) ŵ = 2.90 mm1
b = 24.058 (3) ÅT = 298 K
c = 10.3749 (13) Å0.32 × 0.22 × 0.04 mm
β = 103.656 (3)°
Data collection top
Bruker SMART APEX CCD
diffractometer
3961 independent reflections
Absorption correction: multi-scan
(TWINABS; Bruker, 2012)
2941 reflections with I > 2σ(I)
Tmin = 0.273, Tmax = 0.429Rint = 0.079
3961 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0600 restraints
wR(F2) = 0.138H-atom parameters constrained
S = 1.05Δρmax = 0.82 e Å3
3961 reflectionsΔρmin = 0.80 e Å3
220 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refined as a 2-component twin. The studied crystal was a nonmerohedral twin with a ratio of two major domains of 0.374 (2):0.626 (2). The two domains were rotated from each other by 180.0° about the recipocal axis (1 0 0), which was determined by the CELL NOW program (Sheldrick, 2004). The final refinement was carried out using twinned data set.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I10.29957 (8)0.44339 (3)0.01740 (6)0.0597 (2)
I20.17494 (8)0.51476 (3)0.26901 (6)0.0598 (2)
N10.3411 (8)0.4415 (4)0.3070 (7)0.056 (2)
C10.1733 (11)0.4319 (4)0.3631 (10)0.063 (3)
H1A0.11590.45250.31030.076*
H1B0.14590.44690.45240.076*
C20.1252 (12)0.3731 (4)0.3678 (12)0.072 (3)
H2A0.14070.35840.27860.087*
H2B0.18600.35120.41530.087*
C30.0467 (11)0.3699 (4)0.4394 (11)0.068 (3)
H3A0.10290.39710.40010.082*
H3B0.05780.38000.53170.082*
C40.1182 (12)0.3134 (4)0.4333 (15)0.091 (4)
H4A0.10130.30190.34130.109*
H4B0.06810.28660.47890.109*
C50.2892 (10)0.3135 (4)0.4957 (12)0.068 (3)
H50.33810.34780.51200.082*
C60.3743 (10)0.2685 (3)0.5287 (10)0.055 (2)
C70.5451 (11)0.2703 (3)0.5813 (9)0.052 (2)
C80.6398 (11)0.2322 (4)0.5435 (11)0.066 (3)
H80.59660.20310.48810.080*
C90.8003 (12)0.2359 (5)0.5862 (14)0.091 (4)
H90.86360.21090.55600.109*
C100.8623 (15)0.2778 (5)0.6747 (14)0.097 (5)
H100.96830.27980.70790.116*
C110.7701 (16)0.3158 (5)0.7133 (14)0.094 (4)
H110.81280.34460.76990.113*
C120.6122 (14)0.3116 (5)0.6681 (11)0.079 (3)
H120.54950.33730.69690.094*
C130.3026 (11)0.2115 (3)0.5086 (10)0.055 (2)
C140.2723 (13)0.1847 (4)0.6156 (12)0.074 (3)
H140.29930.20120.69900.089*
C150.2004 (14)0.1323 (4)0.6000 (16)0.088 (4)
H150.18400.11350.67380.105*
C160.1551 (14)0.1091 (5)0.4782 (18)0.095 (4)
H160.10100.07570.46810.114*
C170.1888 (18)0.1347 (6)0.3678 (16)0.116 (6)
H170.16140.11840.28420.139*
C180.2659 (17)0.1861 (5)0.3880 (12)0.091 (4)
H180.29260.20340.31640.109*
C190.4077 (11)0.4192 (4)0.1718 (10)0.065 (3)
H19A0.51480.43040.14600.078*
H19B0.40580.37890.17710.078*
C200.3648 (13)0.5048 (4)0.3059 (11)0.074 (3)
H20A0.47230.51310.27400.111*
H20B0.30780.52180.24880.111*
H20C0.32940.51910.39430.111*
C210.4312 (12)0.4165 (5)0.3995 (10)0.071 (3)
H21A0.53820.42560.36840.107*
H21B0.39360.43130.48720.107*
H21C0.41890.37690.40150.107*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.0559 (4)0.0659 (4)0.0605 (4)0.0039 (3)0.0202 (3)0.0118 (3)
I20.0586 (4)0.0618 (4)0.0632 (4)0.0015 (3)0.0228 (3)0.0043 (3)
N10.041 (4)0.081 (6)0.046 (4)0.002 (4)0.012 (4)0.020 (4)
C10.045 (5)0.078 (7)0.069 (6)0.006 (5)0.015 (5)0.014 (5)
C20.058 (6)0.056 (6)0.106 (9)0.003 (5)0.024 (6)0.001 (6)
C30.057 (6)0.069 (6)0.075 (7)0.012 (5)0.007 (6)0.017 (6)
C40.054 (7)0.065 (7)0.158 (12)0.006 (5)0.036 (8)0.023 (8)
C50.040 (5)0.043 (5)0.123 (9)0.002 (4)0.022 (6)0.012 (6)
C60.047 (5)0.038 (5)0.082 (7)0.005 (4)0.019 (5)0.010 (5)
C70.052 (6)0.038 (5)0.069 (6)0.002 (4)0.019 (5)0.010 (4)
C80.051 (6)0.055 (6)0.090 (7)0.004 (5)0.009 (6)0.006 (5)
C90.051 (7)0.083 (8)0.140 (11)0.017 (6)0.026 (8)0.022 (8)
C100.066 (8)0.077 (8)0.129 (11)0.028 (7)0.014 (8)0.022 (8)
C110.100 (10)0.054 (7)0.116 (11)0.008 (7)0.001 (9)0.007 (7)
C120.075 (8)0.074 (7)0.087 (8)0.007 (6)0.019 (7)0.002 (7)
C130.056 (6)0.040 (5)0.067 (6)0.012 (4)0.011 (5)0.014 (5)
C140.079 (8)0.053 (6)0.101 (9)0.004 (6)0.043 (7)0.012 (6)
C150.085 (9)0.041 (6)0.152 (13)0.009 (6)0.058 (9)0.011 (7)
C160.053 (7)0.063 (7)0.155 (14)0.001 (6)0.004 (9)0.005 (10)
C170.135 (14)0.072 (9)0.108 (11)0.001 (9)0.038 (10)0.002 (8)
C180.116 (11)0.069 (8)0.075 (8)0.001 (8)0.002 (7)0.001 (7)
C190.049 (6)0.080 (7)0.073 (7)0.005 (5)0.029 (5)0.024 (6)
C200.066 (7)0.071 (7)0.089 (8)0.009 (6)0.027 (6)0.008 (6)
C210.056 (6)0.091 (8)0.072 (7)0.006 (6)0.025 (6)0.032 (6)
Geometric parameters (Å, º) top
I1—C192.138 (9)C9—C101.388 (17)
I1—I2i3.5565 (9)C9—H90.9300
N1—C191.489 (12)C10—C111.353 (18)
N1—C11.494 (12)C10—H100.9300
N1—C211.515 (11)C11—C121.383 (16)
N1—C201.537 (12)C11—H110.9300
C1—C21.477 (13)C12—H120.9300
C1—H1A0.9700C13—C181.360 (14)
C1—H1B0.9700C13—C141.365 (14)
C2—C31.543 (13)C14—C151.407 (14)
C2—H2A0.9700C14—H140.9300
C2—H2B0.9700C15—C161.353 (18)
C3—C41.510 (14)C15—H150.9300
C3—H3A0.9700C16—C171.39 (2)
C3—H3B0.9700C16—H160.9300
C4—C51.514 (14)C17—C181.409 (17)
C4—H4A0.9700C17—H170.9300
C4—H4B0.9700C18—H180.9300
C5—C61.323 (12)C19—H19A0.9700
C5—H50.9300C19—H19B0.9700
C6—C71.497 (12)C20—H20A0.9600
C6—C131.507 (12)C20—H20B0.9600
C7—C81.366 (12)C20—H20C0.9600
C7—C121.379 (14)C21—H21A0.9600
C8—C91.401 (14)C21—H21B0.9600
C8—H80.9300C21—H21C0.9600
C19—I1—I2i171.6 (3)C11—C10—C9120.6 (11)
C19—N1—C1116.9 (8)C11—C10—H10119.7
C19—N1—C21107.4 (7)C9—C10—H10119.7
C1—N1—C21109.1 (7)C10—C11—C12119.7 (12)
C19—N1—C20109.1 (7)C10—C11—H11120.1
C1—N1—C20106.3 (7)C12—C11—H11120.1
C21—N1—C20107.8 (8)C7—C12—C11121.7 (12)
C2—C1—N1114.8 (8)C7—C12—H12119.1
C2—C1—H1A108.6C11—C12—H12119.1
N1—C1—H1A108.6C18—C13—C14119.1 (9)
C2—C1—H1B108.6C18—C13—C6122.5 (9)
N1—C1—H1B108.6C14—C13—C6118.4 (9)
H1A—C1—H1B107.5C13—C14—C15120.1 (12)
C1—C2—C3108.2 (8)C13—C14—H14119.9
C1—C2—H2A110.1C15—C14—H14119.9
C3—C2—H2A110.1C16—C15—C14120.4 (12)
C1—C2—H2B110.1C16—C15—H15119.8
C3—C2—H2B110.1C14—C15—H15119.8
H2A—C2—H2B108.4C15—C16—C17120.6 (11)
C4—C3—C2114.0 (9)C15—C16—H16119.7
C4—C3—H3A108.7C17—C16—H16119.7
C2—C3—H3A108.7C16—C17—C18117.3 (13)
C4—C3—H3B108.7C16—C17—H17121.3
C2—C3—H3B108.7C18—C17—H17121.3
H3A—C3—H3B107.6C13—C18—C17122.2 (13)
C3—C4—C5112.1 (9)C13—C18—H18118.9
C3—C4—H4A109.2C17—C18—H18118.9
C5—C4—H4A109.2N1—C19—I1117.2 (6)
C3—C4—H4B109.2N1—C19—H19A108.0
C5—C4—H4B109.2I1—C19—H19A108.0
H4A—C4—H4B107.9N1—C19—H19B108.0
C6—C5—C4124.8 (9)I1—C19—H19B108.0
C6—C5—H5117.6H19A—C19—H19B107.2
C4—C5—H5117.6N1—C20—H20A109.5
C5—C6—C7123.1 (8)N1—C20—H20B109.5
C5—C6—C13120.7 (8)H20A—C20—H20B109.5
C7—C6—C13116.2 (7)N1—C20—H20C109.5
C8—C7—C12117.9 (10)H20A—C20—H20C109.5
C8—C7—C6121.6 (9)H20B—C20—H20C109.5
C12—C7—C6120.5 (9)N1—C21—H21A109.5
C7—C8—C9121.6 (10)N1—C21—H21B109.5
C7—C8—H8119.2H21A—C21—H21B109.5
C9—C8—H8119.2N1—C21—H21C109.5
C10—C9—C8118.4 (11)H21A—C21—H21C109.5
C10—C9—H9120.8H21B—C21—H21C109.5
C8—C9—H9120.8
C19—N1—C1—C255.7 (12)C8—C7—C12—C111.8 (16)
C21—N1—C1—C266.3 (12)C6—C7—C12—C11176.9 (10)
C20—N1—C1—C2177.7 (9)C10—C11—C12—C72 (2)
N1—C1—C2—C3174.9 (8)C5—C6—C13—C1878.5 (15)
C1—C2—C3—C4171.1 (10)C7—C6—C13—C1898.8 (13)
C2—C3—C4—C5175.7 (10)C5—C6—C13—C14100.9 (13)
C3—C4—C5—C6165.3 (12)C7—C6—C13—C1481.9 (12)
C4—C5—C6—C7175.5 (11)C18—C13—C14—C151.6 (16)
C4—C5—C6—C131.5 (18)C6—C13—C14—C15177.7 (9)
C5—C6—C7—C8140.0 (11)C13—C14—C15—C162.7 (18)
C13—C6—C7—C837.2 (13)C14—C15—C16—C174.7 (19)
C5—C6—C7—C1238.6 (15)C15—C16—C17—C182 (2)
C13—C6—C7—C12144.2 (10)C14—C13—C18—C174.0 (19)
C12—C7—C8—C92.7 (16)C6—C13—C18—C17175.3 (11)
C6—C7—C8—C9175.9 (10)C16—C17—C18—C132 (2)
C7—C8—C9—C103.5 (18)C1—N1—C19—I154.3 (10)
C8—C9—C10—C113.4 (19)C21—N1—C19—I1177.2 (7)
C9—C10—C11—C123 (2)C20—N1—C19—I166.3 (9)
Symmetry code: (i) x, y+1, z.

Experimental details

(I)(II)(III)
Crystal data
Chemical formulaC19H23IN+·IC20H25IN+·IC21H27IN+·I
Mr519.18533.21547.23
Crystal system, space groupMonoclinic, P21Monoclinic, C2/cMonoclinic, P21/c
Temperature (K)298298298
a, b, c (Å)7.9254 (2), 13.6161 (3), 9.4632 (2)37.778 (7), 6.6323 (12), 17.021 (3)8.9423 (12), 24.058 (3), 10.3749 (13)
β (°) 103.320 (1) 100.567 (4) 103.656 (3)
V3)993.73 (4)4192.3 (13)2168.9 (5)
Z284
Radiation typeMo KαMo KαMo Kα
µ (mm1)3.163.002.90
Crystal size (mm)0.23 × 0.19 × 0.120.21 × 0.20 × 0.080.32 × 0.22 × 0.04
Data collection
DiffractometerBruker SMART APEX CCD
diffractometer
Bruker SMART APEX CCD
diffractometer
Bruker SMART APEX CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2012)
Multi-scan
(SADABS; Bruker, 2012)
Multi-scan
(TWINABS; Bruker, 2012)
Tmin, Tmax0.624, 0.7450.349, 0.7450.273, 0.429
No. of measured, independent and
observed [I > 2σ(I)] reflections
5791, 3085, 3013 16925, 3808, 3114 3961, 3961, 2941
Rint0.0160.0790.079
(sin θ/λ)max1)0.6020.6020.603
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.017, 0.038, 1.08 0.052, 0.145, 1.05 0.060, 0.138, 1.05
No. of reflections308538083961
No. of parameters202210220
No. of restraints100
H-atom treatmentH-atom parameters constrainedH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.27, 0.461.90, 1.980.82, 0.80
Absolute structureRefined as an inversion twin??
Absolute structure parameter0.02 (3)??

Computer programs: APEX2 (Bruker, 2012), SAINT (Bruker, 2012), SHELXS97 (Sheldrick, 2008), Mercury (Macrae et al., 2008), SHELXL2014 (Sheldrick, 2015), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) for (I) top
Cg is the centroid of the C11–C16 ring.
D—H···AD—HH···AD···AD—H···A
C17—H17B···I2i0.973.003.919 (5)159
C7—H7···Cgii0.932.843.030 (5)143
Symmetry codes: (i) x, y1/2, z+1; (ii) x+1, y, z.
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
C2—H2B···I20.973.064.001 (7)165
 

Footnotes

Current address: Millennium Pain Center, Basic Science, 1015 S Mercer Ave Bloomington, IL 61701 USA.

Acknowledgements

Special thanks are extended to Dr Guillermo Delgado Lamas (Universidad Nacional Autónoma de México) and Dr Eunice Ríos Vásquez [Universidad Nacional Autónoma de México and Universidad del Quindío (Colombia)] for assistance with the structural analyses. The authors also acknowledge financial support from the Universidad de Caldas, Colombia, and Illinois State University, USA.

References

First citationAakeröy, C. B. & Seddon, K. R. (1993). Z. Naturforsch Teil B, 48, 1023–1025.  Google Scholar
First citationAwwadi, F. F., Willett, R. D., Peterson, K. A. & Twamley, B. (2006). Chem. Eur. J. 12, 8952–8960.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2012). APEX2, SAINT, SADABS and TWINABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCalas, M., Ancelin, M. L., Cordina, G., Portefaix, P., Piquet, G., Vidal-Sailhan, V. & Vial, H. (2000). J. Med. Chem. 43, 505–516.  CrossRef PubMed CAS Google Scholar
First citationCalas, M., Cordina, G., Bompart, J., Ben Bari, M., Jei, T., Ancelin, M. L. & Vial, H. (1997). J. Med. Chem. 40, 3557–3566.  CrossRef CAS PubMed Web of Science Google Scholar
First citationCalvani, M., Critelli, L., Gallo, G., Giorgi, F., Gramiccioli, G., Santaniello, M., Scafetta, N., Tinti, M. O. & De Angelis, F. (1998). J. Med. Chem. 41, 2227–2233.  CrossRef CAS PubMed Google Scholar
First citationChen, C. C., Hsu, W., Hwang, K. C., Hwu, J. R., Lin, C. C. & Horng, J. (2011). Arch. Biochem. Biophys. 508, 46–53.  CrossRef CAS PubMed Google Scholar
First citationDesiraju, G. R., Ho, P. S., Kloo, L., Legon, A. C., Marquardt, R., Metrangolo, P., Politzer, P., Resnati, G. & Rissanen, K. (2013). Pure Appl. Chem. 85, 1711–1713.  Web of Science CrossRef CAS Google Scholar
First citationDougherty, D. A. (1996). Science, 271, 163–168.  CrossRef CAS PubMed Web of Science Google Scholar
First citationDougherty, D. A. (2013). Acc. Chem. Res. 46, 885–893.  Web of Science CrossRef CAS PubMed Google Scholar
First citationFlack, H. D. & Bernardinelli, G. (1999). Acta Cryst. A55, 908–915.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFormigué, M. (2009). Curr. Opin. Solid State Mater. Sci. 13, 36–45.  Google Scholar
First citationGlidewell, C., Zakaria, C. M., Ferguson, G. & Gallagher, J. F. (1994). Acta Cryst. C50, 233–238.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHorner, J. H., Martínez, F. N., Musa, O. M., Newcomb, M. & Shahin, H. E. (1995). J. Am. Chem. Soc. 117, 11124–11133.  CrossRef CAS Google Scholar
First citationMa, J. C. & Dougherty, D. A. (1997). Chem. Rev. 97, 1303–1324.  CrossRef PubMed CAS Web of Science Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMavromoustakos, T., Calogeropoulou, T., Koufaki, M., Kolocouris, A., Daliani, I., Demetzos, D., Meng, Z., Makriyannis, A., Balzarini, J. & De Clercq, E. (2001). J. Med. Chem. 44, 1702–1709.  CrossRef PubMed CAS Google Scholar
First citationMúnera-Orozco, C. (2014). MSc thesis, Universidad de Caldas, Manizales, Colombia.  Google Scholar
First citationNewcomb, M., Horner, J. H. & Shahin, H. (1993). Tetrahedron Lett. 34, 5523–5526.  CrossRef CAS Google Scholar
First citationNg, K. L. C., Obando, D., Widmer, F., Wright, L. C., Sorrell, T. C. & Jolliffe, K. A. (2006). J. Med. Chem. 49, 811–816.  CrossRef PubMed CAS Google Scholar
First citationNishio, M. (2012). J. Mol. Struct. 1018, 2–7.  CrossRef CAS Google Scholar
First citationNishio, M., Hirota, M. & Umezawa, Y. (1998). In The C—H⋯p Interaction. Evidence, Nature, and Consequences. New York: Wiley–VCH.  Google Scholar
First citationRíos, L. A., Bartberger, M. D., Dolbier, W. R. & Paredes, R. (1997). Tetrahedron Lett. 38, 7041–7044.  Google Scholar
First citationRíos, L. A., Dolbier, W. R., Paredes, R., Lusztyk, J., Ingold, K. U. & Jonsson, M. (1996). J. Am. Chem. Soc. 118, 11313–11314.  Google Scholar
First citationRíos-Vásquez, L. A., Ocampo-Cardona, R., Duque-Benítez, S. M., Cedeño, D. L., Jones, M., Robledo-Restrepo, S. M. & Vélez-Bernal, I. D. (2015). US Patent No. 9,145,352 (September 29, 2015).  Google Scholar
First citationSheldrick, G. M. (2004). CELL NOW. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShiraishi, M., Aramaki, Y., Seto, M., Imoto, H., Nishikawa, Y., Kanzaki, N., Okamoto, M., Sawada, H., Nishimura, O., Baba, M. & Fujino, M. (2000). J. Med. Chem. 43, 2049–2063.  CrossRef PubMed CAS Google Scholar
First citationSong, D., Yang, J. S., Oh, C., Cui, S., Kim, B. K., Won, M., Lee, J. I., Kim, H. M. & Han, G. (2013). Eur. J. Med. Chem. 69, 670–677.  CrossRef CAS PubMed Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSussman, J. L., Harel, M., Frolow, F., Oefner, C., Goldman, A., Toker, L. & Silman, I. (1991). Science, 253, 872–879.  CrossRef PubMed CAS Web of Science Google Scholar
First citationWang, W., Bai, Z., Zhang, F., Wang, C., Yuan, Y. & Shao, J. (2012). Eur. J. Med. Chem. 56, 320–331.  CrossRef CAS PubMed Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYates, B. F., Bouma, W. J. & Radom, L. (1986). Tetrahedron, 42, 6225–6234.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 10| October 2015| Pages 1230-1235
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds