organic compounds
E)-2-(4-chlorobenzylidene)-3,4-dihydronaphthalen-1(2H)-one: a second monoclinic polymorph
of (aDepartment of Chemistry, Mirpur University of Science and Technology (MUST), Mirpur, Azad Jammu and Kashmir, Pakistan, and bDepartment of Physics, University of Sargodha, Sargodha, Punjab, Pakistan
*Correspondence e-mail: dmntahir_uos@yahoo.com
The title compound, C17H13ClO, is the second monoclinic polymorph to crystallize in the P21/c. The first polymorph crystallized with two independent molecules in the [Bolognesi et al. (1975). Acta Cryst. A31, S119; Z′ = 2; no atomic coordinates available], whereas the title compound has Z′ = 1. In the title polymorph, the dihedral angle between the plane of the benzene ring of the tetralone moiety and that of the 4-chlorobenzyl ring is 52.21 (11)°. The cyclohex-2-en-1-one ring of the tetralone moiety has a screw-boat conformation. In the crystal, molecules are liked by pairs of C—H⋯π interactions forming inversion dimers. There are no other significant intermolecular interactions present.
Keywords: crystal structure; α-tetralone; C—H⋯π interactions.
CCDC reference: 1421217
1. Related literature
For a brief description of the first monoclinic polymorph of the title compound, see: Bolognesi et al. (1975). For the crystal structures of related compounds, see: Asiri et al. (2012); Dimmock et al. (2002); Oloo et al. (2002). For the synthesis, see: Kerbal et al. (1988).
2. Experimental
2.1. Crystal data
|
2.3. Refinement
|
|
Data collection: APEX2 (Bruker, 2007); cell SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 2012) and PLATON.
Supporting information
CCDC reference: 1421217
10.1107/S2056989015016151/su5197sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S2056989015016151/su5197Isup2.hkl
Supporting information file. DOI: 10.1107/S2056989015016151/su5197Isup3.cml
The
of 2-(p-chlorobenzylidene)-tetral-1-one (Bolognesi et al., 1975) is the first monoclinic polymorph of the title compound, however no atomic coordinates were reported. The crystal structures of the related structures 2-(2,4-dichlorophenylmethylene)-1- tetralone (Oloo et al., 2002), 2-[(E)-4-methoxybenzylidene]-1,2,3,4-tetrahydronaphthalen-1-one (Asiri et al., 2012), and 2-(3,4-dichlorophenylmethylene)-1-tetralone (Dimmock et al., 2002) have been published.The molecular structure of the title polymorph is illustrated in Fig. 1. The benzene ring (C2–C7) of tetralone (systematic name: 3,4-dihydronaphthalen-1(2H)-one) and the mean plane of part of the 4-chlorobenzylidene (C11–C17/Cl1) moiety are inclined to one another by 52.03 (6)°. The cyclohex-2-en-1-one ring, (C1/C2/C7–C10), has puckering amplitude (Q) = 0.471 (2) Å, and θ = 65.6 (2)° and φ = 210.5 (3)°, and can be described as having a screw-boat conformation.
In the crystal, molecules are liked by pairs of C—H···π interactions forming inversion dimers (Table 1). There are no other significant intermolecular interactions present.
The synthesis of the title compound was carried out following a published procedure (Kerbal et al., 1988), viz. by a condensation of equimolar amounts of 4-chlorobenzaldehyde and α-tetralone using sodium hydroxide in methanol (yield; 87%; m.p.: 426–428 K). The synthesized compound was crystallized in tetrahydrofuran under slow evaporation yielding light-orange prismatic crystals.
Data collection: APEX2 (Bruker, 2007); cell
SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 2012) and PLATON (Spek, 2009).Fig. 1. View of the molecular structure of the title compound, with atom labelling. Displacement ellipsoids are drawn at the 50% probability level. |
C17H13ClO | F(000) = 560 |
Mr = 268.72 | Dx = 1.320 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 13.3791 (8) Å | Cell parameters from 1901 reflections |
b = 14.9352 (10) Å | θ = 2.7–27.0° |
c = 6.7849 (3) Å | µ = 0.27 mm−1 |
β = 93.968 (3)° | T = 296 K |
V = 1352.51 (14) Å3 | Prism, light orange |
Z = 4 | 0.38 × 0.30 × 0.26 mm |
Bruker Kappa APEXII CCD diffractometer | 2954 independent reflections |
Radiation source: fine-focus sealed tube | 1901 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.029 |
Detector resolution: 7.70 pixels mm-1 | θmax = 27.0°, θmin = 2.7° |
ω scans | h = −17→17 |
Absorption correction: multi-scan (SADABS; Bruker, 2007) | k = −19→18 |
Tmin = 0.906, Tmax = 0.930 | l = −8→8 |
11640 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.051 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.170 | H-atom parameters constrained |
S = 1.05 | w = 1/[σ2(Fo2) + (0.0931P)2 + 0.1261P] where P = (Fo2 + 2Fc2)/3 |
2954 reflections | (Δ/σ)max < 0.001 |
172 parameters | Δρmax = 0.37 e Å−3 |
0 restraints | Δρmin = −0.18 e Å−3 |
C17H13ClO | V = 1352.51 (14) Å3 |
Mr = 268.72 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 13.3791 (8) Å | µ = 0.27 mm−1 |
b = 14.9352 (10) Å | T = 296 K |
c = 6.7849 (3) Å | 0.38 × 0.30 × 0.26 mm |
β = 93.968 (3)° |
Bruker Kappa APEXII CCD diffractometer | 2954 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2007) | 1901 reflections with I > 2σ(I) |
Tmin = 0.906, Tmax = 0.930 | Rint = 0.029 |
11640 measured reflections |
R[F2 > 2σ(F2)] = 0.051 | 0 restraints |
wR(F2) = 0.170 | H-atom parameters constrained |
S = 1.05 | Δρmax = 0.37 e Å−3 |
2954 reflections | Δρmin = −0.18 e Å−3 |
172 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cl1 | −0.45111 (6) | 0.12595 (6) | 0.64763 (13) | 0.1115 (4) | |
O1 | 0.01032 (15) | 0.14379 (12) | −0.1910 (2) | 0.0905 (6) | |
C1 | 0.04921 (18) | 0.13078 (12) | −0.0242 (3) | 0.0592 (5) | |
C2 | 0.15886 (18) | 0.13063 (12) | 0.0132 (3) | 0.0594 (5) | |
C3 | 0.2190 (2) | 0.16509 (15) | −0.1286 (4) | 0.0758 (7) | |
H3 | 0.1893 | 0.1867 | −0.2471 | 0.091* | |
C4 | 0.3206 (2) | 0.16757 (17) | −0.0960 (5) | 0.0903 (8) | |
H4 | 0.3597 | 0.1910 | −0.1918 | 0.108* | |
C5 | 0.3657 (2) | 0.13533 (18) | 0.0791 (5) | 0.0947 (9) | |
H5 | 0.4350 | 0.1373 | 0.1021 | 0.114* | |
C6 | 0.3064 (2) | 0.09969 (16) | 0.2216 (4) | 0.0767 (7) | |
H6 | 0.3369 | 0.0774 | 0.3389 | 0.092* | |
C7 | 0.20322 (18) | 0.09703 (13) | 0.1913 (3) | 0.0597 (5) | |
C8 | 0.13788 (16) | 0.05948 (14) | 0.3412 (3) | 0.0638 (6) | |
H8A | 0.1739 | 0.0605 | 0.4703 | 0.077* | |
H8B | 0.1220 | −0.0024 | 0.3086 | 0.077* | |
C9 | 0.04115 (17) | 0.11253 (13) | 0.3489 (3) | 0.0588 (5) | |
H9A | −0.0018 | 0.0835 | 0.4390 | 0.071* | |
H9B | 0.0564 | 0.1721 | 0.3992 | 0.071* | |
C10 | −0.01328 (17) | 0.11966 (12) | 0.1487 (3) | 0.0550 (5) | |
C11 | −0.11281 (18) | 0.11818 (12) | 0.1126 (3) | 0.0599 (6) | |
H11 | −0.1350 | 0.1175 | −0.0203 | 0.072* | |
C12 | −0.19169 (17) | 0.11744 (12) | 0.2505 (3) | 0.0572 (5) | |
C13 | −0.28306 (18) | 0.07683 (15) | 0.1952 (3) | 0.0736 (6) | |
H13 | −0.2913 | 0.0487 | 0.0729 | 0.088* | |
C14 | −0.36166 (18) | 0.07709 (18) | 0.3162 (4) | 0.0859 (8) | |
H14 | −0.4212 | 0.0477 | 0.2782 | 0.103* | |
C15 | −0.3506 (2) | 0.12143 (16) | 0.4938 (4) | 0.0779 (7) | |
C16 | −0.26219 (17) | 0.16368 (14) | 0.5526 (3) | 0.0689 (6) | |
H16 | −0.2559 | 0.1942 | 0.6723 | 0.083* | |
C17 | −0.18321 (17) | 0.16064 (13) | 0.4338 (3) | 0.0614 (5) | |
H17 | −0.1229 | 0.1878 | 0.4760 | 0.074* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl1 | 0.0757 (5) | 0.1284 (7) | 0.1334 (8) | 0.0051 (4) | 0.0296 (5) | −0.0236 (5) |
O1 | 0.1112 (14) | 0.1190 (15) | 0.0393 (8) | −0.0036 (11) | −0.0092 (8) | 0.0101 (8) |
C1 | 0.0875 (16) | 0.0509 (11) | 0.0383 (10) | −0.0005 (10) | −0.0030 (9) | 0.0017 (8) |
C2 | 0.0872 (15) | 0.0442 (10) | 0.0469 (10) | 0.0026 (9) | 0.0066 (10) | 0.0004 (8) |
C3 | 0.103 (2) | 0.0587 (13) | 0.0674 (14) | 0.0112 (12) | 0.0194 (13) | 0.0091 (10) |
C4 | 0.103 (2) | 0.0666 (15) | 0.105 (2) | 0.0074 (14) | 0.0359 (16) | 0.0120 (14) |
C5 | 0.0834 (19) | 0.0756 (17) | 0.126 (3) | 0.0051 (14) | 0.0139 (18) | −0.0056 (16) |
C6 | 0.0839 (18) | 0.0650 (14) | 0.0801 (16) | 0.0072 (12) | −0.0013 (13) | −0.0022 (12) |
C7 | 0.0798 (15) | 0.0456 (10) | 0.0529 (11) | 0.0036 (9) | −0.0008 (10) | −0.0052 (8) |
C8 | 0.0849 (15) | 0.0601 (12) | 0.0446 (10) | 0.0039 (10) | −0.0093 (9) | 0.0068 (9) |
C9 | 0.0785 (14) | 0.0581 (11) | 0.0387 (9) | −0.0024 (10) | −0.0037 (9) | 0.0037 (8) |
C10 | 0.0790 (15) | 0.0441 (10) | 0.0404 (10) | −0.0013 (9) | −0.0070 (9) | 0.0016 (7) |
C11 | 0.0843 (16) | 0.0474 (11) | 0.0453 (10) | 0.0016 (9) | −0.0137 (10) | −0.0023 (8) |
C12 | 0.0691 (13) | 0.0440 (10) | 0.0563 (11) | 0.0052 (8) | −0.0109 (9) | −0.0017 (8) |
C13 | 0.0747 (15) | 0.0690 (14) | 0.0740 (14) | 0.0063 (12) | −0.0172 (12) | −0.0173 (11) |
C14 | 0.0631 (15) | 0.0827 (17) | 0.109 (2) | 0.0007 (12) | −0.0133 (14) | −0.0218 (15) |
C15 | 0.0698 (16) | 0.0701 (15) | 0.0940 (18) | 0.0099 (11) | 0.0064 (13) | −0.0040 (13) |
C16 | 0.0787 (16) | 0.0575 (12) | 0.0696 (13) | 0.0069 (11) | −0.0009 (11) | −0.0084 (10) |
C17 | 0.0744 (14) | 0.0477 (11) | 0.0607 (12) | −0.0011 (9) | −0.0068 (10) | −0.0051 (9) |
Cl1—C15 | 1.759 (3) | C8—H8B | 0.9700 |
O1—C1 | 1.227 (2) | C9—C10 | 1.500 (3) |
C1—C2 | 1.471 (3) | C9—H9A | 0.9700 |
C1—C10 | 1.496 (3) | C9—H9B | 0.9700 |
C2—C3 | 1.394 (3) | C10—C11 | 1.337 (3) |
C2—C7 | 1.402 (3) | C11—C12 | 1.458 (3) |
C3—C4 | 1.363 (4) | C11—H11 | 0.9300 |
C3—H3 | 0.9300 | C12—C13 | 1.393 (3) |
C4—C5 | 1.382 (4) | C12—C17 | 1.399 (3) |
C4—H4 | 0.9300 | C13—C14 | 1.378 (3) |
C5—C6 | 1.398 (4) | C13—H13 | 0.9300 |
C5—H5 | 0.9300 | C14—C15 | 1.374 (4) |
C6—C7 | 1.383 (3) | C14—H14 | 0.9300 |
C6—H6 | 0.9300 | C15—C16 | 1.376 (3) |
C7—C8 | 1.495 (3) | C16—C17 | 1.373 (3) |
C8—C9 | 1.521 (3) | C16—H16 | 0.9300 |
C8—H8A | 0.9700 | C17—H17 | 0.9300 |
O1—C1—C2 | 120.87 (19) | C8—C9—H9A | 109.3 |
O1—C1—C10 | 121.1 (2) | C10—C9—H9B | 109.3 |
C2—C1—C10 | 117.97 (16) | C8—C9—H9B | 109.3 |
C3—C2—C7 | 119.8 (2) | H9A—C9—H9B | 108.0 |
C3—C2—C1 | 119.8 (2) | C11—C10—C1 | 117.49 (17) |
C7—C2—C1 | 120.46 (18) | C11—C10—C9 | 125.41 (19) |
C4—C3—C2 | 121.0 (2) | C1—C10—C9 | 117.09 (19) |
C4—C3—H3 | 119.5 | C10—C11—C12 | 129.69 (18) |
C2—C3—H3 | 119.5 | C10—C11—H11 | 115.2 |
C3—C4—C5 | 120.1 (3) | C12—C11—H11 | 115.2 |
C3—C4—H4 | 120.0 | C13—C12—C17 | 117.1 (2) |
C5—C4—H4 | 120.0 | C13—C12—C11 | 119.44 (18) |
C4—C5—C6 | 119.5 (3) | C17—C12—C11 | 123.31 (19) |
C4—C5—H5 | 120.2 | C14—C13—C12 | 122.0 (2) |
C6—C5—H5 | 120.2 | C14—C13—H13 | 119.0 |
C7—C6—C5 | 121.1 (2) | C12—C13—H13 | 119.0 |
C7—C6—H6 | 119.4 | C15—C14—C13 | 119.0 (2) |
C5—C6—H6 | 119.4 | C15—C14—H14 | 120.5 |
C6—C7—C2 | 118.5 (2) | C13—C14—H14 | 120.5 |
C6—C7—C8 | 122.29 (19) | C14—C15—C16 | 120.9 (2) |
C2—C7—C8 | 119.2 (2) | C14—C15—Cl1 | 119.9 (2) |
C7—C8—C9 | 111.51 (16) | C16—C15—Cl1 | 119.2 (2) |
C7—C8—H8A | 109.3 | C17—C16—C15 | 119.8 (2) |
C9—C8—H8A | 109.3 | C17—C16—H16 | 120.1 |
C7—C8—H8B | 109.3 | C15—C16—H16 | 120.1 |
C9—C8—H8B | 109.3 | C16—C17—C12 | 121.2 (2) |
H8A—C8—H8B | 108.0 | C16—C17—H17 | 119.4 |
C10—C9—C8 | 111.52 (17) | C12—C17—H17 | 119.4 |
C10—C9—H9A | 109.3 | ||
O1—C1—C2—C3 | 14.6 (3) | C2—C1—C10—C11 | −178.76 (17) |
C10—C1—C2—C3 | −162.05 (18) | O1—C1—C10—C9 | −174.51 (19) |
O1—C1—C2—C7 | −166.10 (19) | C2—C1—C10—C9 | 2.2 (2) |
C10—C1—C2—C7 | 17.2 (3) | C8—C9—C10—C11 | 143.7 (2) |
C7—C2—C3—C4 | −0.7 (3) | C8—C9—C10—C1 | −37.3 (2) |
C1—C2—C3—C4 | 178.6 (2) | C1—C10—C11—C12 | −173.08 (18) |
C2—C3—C4—C5 | 0.3 (4) | C9—C10—C11—C12 | 5.9 (3) |
C3—C4—C5—C6 | 0.4 (4) | C10—C11—C12—C13 | −151.1 (2) |
C4—C5—C6—C7 | −0.7 (4) | C10—C11—C12—C17 | 33.0 (3) |
C5—C6—C7—C2 | 0.3 (3) | C17—C12—C13—C14 | −1.3 (3) |
C5—C6—C7—C8 | −179.9 (2) | C11—C12—C13—C14 | −177.4 (2) |
C3—C2—C7—C6 | 0.4 (3) | C12—C13—C14—C15 | 2.3 (4) |
C1—C2—C7—C6 | −178.84 (19) | C13—C14—C15—C16 | −1.1 (4) |
C3—C2—C7—C8 | −179.42 (18) | C13—C14—C15—Cl1 | 177.9 (2) |
C1—C2—C7—C8 | 1.3 (3) | C14—C15—C16—C17 | −0.9 (4) |
C6—C7—C8—C9 | 142.9 (2) | Cl1—C15—C16—C17 | 180.00 (17) |
C2—C7—C8—C9 | −37.3 (3) | C15—C16—C17—C12 | 1.9 (3) |
C7—C8—C9—C10 | 54.1 (2) | C13—C12—C17—C16 | −0.8 (3) |
O1—C1—C10—C11 | 4.6 (3) | C11—C12—C17—C16 | 175.17 (19) |
Cg1 is the centroid of the C2–C7 ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
C13—H13···Cg1i | 0.93 | 2.86 | 3.552 (2) | 132 |
Symmetry code: (i) −x, −y, −z. |
Cg1 is the centroid of the C2–C7 ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
C13—H13···Cg1i | 0.93 | 2.86 | 3.552 (2) | 132 |
Symmetry code: (i) −x, −y, −z. |
Acknowledgements
The authors acknowledge the provision of funds for the purchase of a diffractometer and encouragement by Dr Muhammad Akram Chaudhary, Vice Chancellor, University of Sargodha, Pakistan.
References
Asiri, A. M., Faidallah, H. M., Zayed, M. E. M., Ng, S. W. & Tiekink, E. R. T. (2012). Acta Cryst. E68, o2190. CSD CrossRef IUCr Journals Google Scholar
Bolognesi, M., Coda, A., Corsico, A. C. & Desimoni, G. (1975). Acta Cryst. A31, S119. Google Scholar
Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Dimmock, J. R., Zello, G. A., Oloo, E. O., Quail, J. W., Kraatz, H.-B., Perjési, P., Aradi, F., Takács-Novák, K., Allen, T. M., Santos, C. L., Balzarini, J., De Clercq, E. & Stables, J. P. (2002). J. Med. Chem. 45, 3103–3111. CSD CrossRef PubMed CAS Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Kerbal, A., Tshiamala, K., Vebrel, J. & Lauds, B. (1988). Bull. Soc. Chim. Belg. 97, 149–162. CrossRef CAS Google Scholar
Oloo, E. O., Quail, J. W., Perjési, P. & Dimmock, J. R. (2002). Acta Cryst. E58, o580–o581. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.