organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 10| October 2015| Pages o741-o742

Crystal structure of (E)-2-(4-chloro­benzyl­­idene)-3,4-di­hydro­naphthalen-1(2H)-one: a second monoclinic polymorph

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Mirpur University of Science and Technology (MUST), Mirpur, Azad Jammu and Kashmir, Pakistan, and bDepartment of Physics, University of Sargodha, Sargodha, Punjab, Pakistan
*Correspondence e-mail: dmntahir_uos@yahoo.com

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 21 August 2015; accepted 28 August 2015; online 12 September 2015)

The title compound, C17H13ClO, is the second monoclinic polymorph to crystallize in the space group P21/c. The first polymorph crystallized with two independent mol­ecules in the asymmetric unit [Bolognesi et al. (1975[Bolognesi, M., Coda, A., Corsico, A. C. & Desimoni, G. (1975). Acta Cryst. A31, S119.]). Acta Cryst. A31, S119; Z′ = 2; no atomic coordinates available], whereas the title compound has Z′ = 1. In the title polymorph, the dihedral angle between the plane of the benzene ring of the tetra­lone moiety and that of the 4-chloro­benzyl ring is 52.21 (11)°. The cyclo­hex-2-en-1-one ring of the tetra­lone moiety has a screw-boat conformation. In the crystal, mol­ecules are liked by pairs of C—H⋯π inter­actions forming inversion dimers. There are no other significant inter­molecular inter­actions present.

1. Related literature

For a brief description of the first monoclinic polymorph of the title compound, see: Bolognesi et al. (1975[Bolognesi, M., Coda, A., Corsico, A. C. & Desimoni, G. (1975). Acta Cryst. A31, S119.]). For the crystal structures of related compounds, see: Asiri et al. (2012[Asiri, A. M., Faidallah, H. M., Zayed, M. E. M., Ng, S. W. & Tiekink, E. R. T. (2012). Acta Cryst. E68, o2190.]); Dimmock et al. (2002[Dimmock, J. R., Zello, G. A., Oloo, E. O., Quail, J. W., Kraatz, H.-B., Perjési, P., Aradi, F., Takács-Novák, K., Allen, T. M., Santos, C. L., Balzarini, J., De Clercq, E. & Stables, J. P. (2002). J. Med. Chem. 45, 3103-3111.]); Oloo et al. (2002[Oloo, E. O., Quail, J. W., Perjési, P. & Dimmock, J. R. (2002). Acta Cryst. E58, o580-o581.]). For the synthesis, see: Kerbal et al. (1988[Kerbal, A., Tshiamala, K., Vebrel, J. & Lauds, B. (1988). Bull. Soc. Chim. Belg. 97, 149-162.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C17H13ClO

  • Mr = 268.72

  • Monoclinic, P 21 /c

  • a = 13.3791 (8) Å

  • b = 14.9352 (10) Å

  • c = 6.7849 (3) Å

  • β = 93.968 (3)°

  • V = 1352.51 (14) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.27 mm−1

  • T = 296 K

  • 0.38 × 0.30 × 0.26 mm

2.2. Data collection

  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.906, Tmax = 0.930

  • 11640 measured reflections

  • 2954 independent reflections

  • 1901 reflections with I > 2σ(I)

  • Rint = 0.029

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.051

  • wR(F2) = 0.170

  • S = 1.05

  • 2954 reflections

  • 172 parameters

  • H-atom parameters constrained

  • Δρmax = 0.37 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C2–C7 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C13—H13⋯Cg1i 0.93 2.86 3.552 (2) 132
Symmetry code: (i) -x, -y, -z.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON.

Supporting information


Comments top

The crystal structure of 2-(p-chloro­benzyl­idene)-tetral-1-one (Bolognesi et al., 1975) is the first monoclinic polymorph of the title compound, however no atomic coordinates were reported. The crystal structures of the related structures 2-(2,4-di­chloro­phenyl­methyl­ene)-1- tetra­lone (Oloo et al., 2002), 2-[(E)-4-meth­oxy­benzyl­idene]-1,2,3,4-tetra­hydro­naphthalen-1-one (Asiri et al., 2012), and 2-(3,4-di­chloro­phenyl­methyl­ene)-1-tetra­lone (Dimmock et al., 2002) have been published.

The molecular structure of the title polymorph is illustrated in Fig. 1. The benzene ring (C2–C7) of tetra­lone (systematic name: 3,4-di­hydro­naphthalen-1(2H)-one) and the mean plane of part of the 4-chloro­benzyl­idene (C11–C17/Cl1) moiety are inclined to one another by 52.03 (6)°. The cyclo­hex-2-en-1-one ring, (C1/C2/C7–C10), has puckering amplitude (Q) = 0.471 (2) Å, and θ = 65.6 (2)° and φ = 210.5 (3)°, and can be described as having a screw-boat conformation.

In the crystal, molecules are liked by pairs of C—H···π inter­actions forming inversion dimers (Table 1). There are no other significant inter­molecular inter­actions present.

Synthesis and crystallization top

The synthesis of the title compound was carried out following a published procedure (Kerbal et al., 1988), viz. by a condensation of equimolar amounts of 4-chloro­benzaldehyde and α-tetra­lone using sodium hydroxide in methanol (yield; 87%; m.p.: 426–428 K). The synthesized compound was crystallized in tetra­hydro­furan under slow evaporation yielding light-orange prismatic crystals.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 2. The H-atoms were positioned geometrically (C–H = 0.93–0.97 Å) and refined as riding with Uiso(H) = 1.2Ueq(C).

Related literature top

For a brief description of the first monoclinic polymorph of the title compound, see: Bolognesi et al. (1975). For the crystal structures of related compounds, see: Asiri et al. (2012); Dimmock et al. (2002); Oloo et al. (2002). For the synthesis, see: Kerbal et al. (1988).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 2012) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. View of the molecular structure of the title compound, with atom labelling. Displacement ellipsoids are drawn at the 50% probability level.
2-(4-Chlorobenzylidene)-3,4-dihydronaphthalen-1(2H)-one top
Crystal data top
C17H13ClOF(000) = 560
Mr = 268.72Dx = 1.320 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 13.3791 (8) ÅCell parameters from 1901 reflections
b = 14.9352 (10) Åθ = 2.7–27.0°
c = 6.7849 (3) ŵ = 0.27 mm1
β = 93.968 (3)°T = 296 K
V = 1352.51 (14) Å3Prism, light orange
Z = 40.38 × 0.30 × 0.26 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2954 independent reflections
Radiation source: fine-focus sealed tube1901 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
Detector resolution: 7.70 pixels mm-1θmax = 27.0°, θmin = 2.7°
ω scansh = 1717
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
k = 1918
Tmin = 0.906, Tmax = 0.930l = 88
11640 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.170H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0931P)2 + 0.1261P]
where P = (Fo2 + 2Fc2)/3
2954 reflections(Δ/σ)max < 0.001
172 parametersΔρmax = 0.37 e Å3
0 restraintsΔρmin = 0.18 e Å3
Crystal data top
C17H13ClOV = 1352.51 (14) Å3
Mr = 268.72Z = 4
Monoclinic, P21/cMo Kα radiation
a = 13.3791 (8) ŵ = 0.27 mm1
b = 14.9352 (10) ÅT = 296 K
c = 6.7849 (3) Å0.38 × 0.30 × 0.26 mm
β = 93.968 (3)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2954 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
1901 reflections with I > 2σ(I)
Tmin = 0.906, Tmax = 0.930Rint = 0.029
11640 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0510 restraints
wR(F2) = 0.170H-atom parameters constrained
S = 1.05Δρmax = 0.37 e Å3
2954 reflectionsΔρmin = 0.18 e Å3
172 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.45111 (6)0.12595 (6)0.64763 (13)0.1115 (4)
O10.01032 (15)0.14379 (12)0.1910 (2)0.0905 (6)
C10.04921 (18)0.13078 (12)0.0242 (3)0.0592 (5)
C20.15886 (18)0.13063 (12)0.0132 (3)0.0594 (5)
C30.2190 (2)0.16509 (15)0.1286 (4)0.0758 (7)
H30.18930.18670.24710.091*
C40.3206 (2)0.16757 (17)0.0960 (5)0.0903 (8)
H40.35970.19100.19180.108*
C50.3657 (2)0.13533 (18)0.0791 (5)0.0947 (9)
H50.43500.13730.10210.114*
C60.3064 (2)0.09969 (16)0.2216 (4)0.0767 (7)
H60.33690.07740.33890.092*
C70.20322 (18)0.09703 (13)0.1913 (3)0.0597 (5)
C80.13788 (16)0.05948 (14)0.3412 (3)0.0638 (6)
H8A0.17390.06050.47030.077*
H8B0.12200.00240.30860.077*
C90.04115 (17)0.11253 (13)0.3489 (3)0.0588 (5)
H9A0.00180.08350.43900.071*
H9B0.05640.17210.39920.071*
C100.01328 (17)0.11966 (12)0.1487 (3)0.0550 (5)
C110.11281 (18)0.11818 (12)0.1126 (3)0.0599 (6)
H110.13500.11750.02030.072*
C120.19169 (17)0.11744 (12)0.2505 (3)0.0572 (5)
C130.28306 (18)0.07683 (15)0.1952 (3)0.0736 (6)
H130.29130.04870.07290.088*
C140.36166 (18)0.07709 (18)0.3162 (4)0.0859 (8)
H140.42120.04770.27820.103*
C150.3506 (2)0.12143 (16)0.4938 (4)0.0779 (7)
C160.26219 (17)0.16368 (14)0.5526 (3)0.0689 (6)
H160.25590.19420.67230.083*
C170.18321 (17)0.16064 (13)0.4338 (3)0.0614 (5)
H170.12290.18780.47600.074*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0757 (5)0.1284 (7)0.1334 (8)0.0051 (4)0.0296 (5)0.0236 (5)
O10.1112 (14)0.1190 (15)0.0393 (8)0.0036 (11)0.0092 (8)0.0101 (8)
C10.0875 (16)0.0509 (11)0.0383 (10)0.0005 (10)0.0030 (9)0.0017 (8)
C20.0872 (15)0.0442 (10)0.0469 (10)0.0026 (9)0.0066 (10)0.0004 (8)
C30.103 (2)0.0587 (13)0.0674 (14)0.0112 (12)0.0194 (13)0.0091 (10)
C40.103 (2)0.0666 (15)0.105 (2)0.0074 (14)0.0359 (16)0.0120 (14)
C50.0834 (19)0.0756 (17)0.126 (3)0.0051 (14)0.0139 (18)0.0056 (16)
C60.0839 (18)0.0650 (14)0.0801 (16)0.0072 (12)0.0013 (13)0.0022 (12)
C70.0798 (15)0.0456 (10)0.0529 (11)0.0036 (9)0.0008 (10)0.0052 (8)
C80.0849 (15)0.0601 (12)0.0446 (10)0.0039 (10)0.0093 (9)0.0068 (9)
C90.0785 (14)0.0581 (11)0.0387 (9)0.0024 (10)0.0037 (9)0.0037 (8)
C100.0790 (15)0.0441 (10)0.0404 (10)0.0013 (9)0.0070 (9)0.0016 (7)
C110.0843 (16)0.0474 (11)0.0453 (10)0.0016 (9)0.0137 (10)0.0023 (8)
C120.0691 (13)0.0440 (10)0.0563 (11)0.0052 (8)0.0109 (9)0.0017 (8)
C130.0747 (15)0.0690 (14)0.0740 (14)0.0063 (12)0.0172 (12)0.0173 (11)
C140.0631 (15)0.0827 (17)0.109 (2)0.0007 (12)0.0133 (14)0.0218 (15)
C150.0698 (16)0.0701 (15)0.0940 (18)0.0099 (11)0.0064 (13)0.0040 (13)
C160.0787 (16)0.0575 (12)0.0696 (13)0.0069 (11)0.0009 (11)0.0084 (10)
C170.0744 (14)0.0477 (11)0.0607 (12)0.0011 (9)0.0068 (10)0.0051 (9)
Geometric parameters (Å, º) top
Cl1—C151.759 (3)C8—H8B0.9700
O1—C11.227 (2)C9—C101.500 (3)
C1—C21.471 (3)C9—H9A0.9700
C1—C101.496 (3)C9—H9B0.9700
C2—C31.394 (3)C10—C111.337 (3)
C2—C71.402 (3)C11—C121.458 (3)
C3—C41.363 (4)C11—H110.9300
C3—H30.9300C12—C131.393 (3)
C4—C51.382 (4)C12—C171.399 (3)
C4—H40.9300C13—C141.378 (3)
C5—C61.398 (4)C13—H130.9300
C5—H50.9300C14—C151.374 (4)
C6—C71.383 (3)C14—H140.9300
C6—H60.9300C15—C161.376 (3)
C7—C81.495 (3)C16—C171.373 (3)
C8—C91.521 (3)C16—H160.9300
C8—H8A0.9700C17—H170.9300
O1—C1—C2120.87 (19)C8—C9—H9A109.3
O1—C1—C10121.1 (2)C10—C9—H9B109.3
C2—C1—C10117.97 (16)C8—C9—H9B109.3
C3—C2—C7119.8 (2)H9A—C9—H9B108.0
C3—C2—C1119.8 (2)C11—C10—C1117.49 (17)
C7—C2—C1120.46 (18)C11—C10—C9125.41 (19)
C4—C3—C2121.0 (2)C1—C10—C9117.09 (19)
C4—C3—H3119.5C10—C11—C12129.69 (18)
C2—C3—H3119.5C10—C11—H11115.2
C3—C4—C5120.1 (3)C12—C11—H11115.2
C3—C4—H4120.0C13—C12—C17117.1 (2)
C5—C4—H4120.0C13—C12—C11119.44 (18)
C4—C5—C6119.5 (3)C17—C12—C11123.31 (19)
C4—C5—H5120.2C14—C13—C12122.0 (2)
C6—C5—H5120.2C14—C13—H13119.0
C7—C6—C5121.1 (2)C12—C13—H13119.0
C7—C6—H6119.4C15—C14—C13119.0 (2)
C5—C6—H6119.4C15—C14—H14120.5
C6—C7—C2118.5 (2)C13—C14—H14120.5
C6—C7—C8122.29 (19)C14—C15—C16120.9 (2)
C2—C7—C8119.2 (2)C14—C15—Cl1119.9 (2)
C7—C8—C9111.51 (16)C16—C15—Cl1119.2 (2)
C7—C8—H8A109.3C17—C16—C15119.8 (2)
C9—C8—H8A109.3C17—C16—H16120.1
C7—C8—H8B109.3C15—C16—H16120.1
C9—C8—H8B109.3C16—C17—C12121.2 (2)
H8A—C8—H8B108.0C16—C17—H17119.4
C10—C9—C8111.52 (17)C12—C17—H17119.4
C10—C9—H9A109.3
O1—C1—C2—C314.6 (3)C2—C1—C10—C11178.76 (17)
C10—C1—C2—C3162.05 (18)O1—C1—C10—C9174.51 (19)
O1—C1—C2—C7166.10 (19)C2—C1—C10—C92.2 (2)
C10—C1—C2—C717.2 (3)C8—C9—C10—C11143.7 (2)
C7—C2—C3—C40.7 (3)C8—C9—C10—C137.3 (2)
C1—C2—C3—C4178.6 (2)C1—C10—C11—C12173.08 (18)
C2—C3—C4—C50.3 (4)C9—C10—C11—C125.9 (3)
C3—C4—C5—C60.4 (4)C10—C11—C12—C13151.1 (2)
C4—C5—C6—C70.7 (4)C10—C11—C12—C1733.0 (3)
C5—C6—C7—C20.3 (3)C17—C12—C13—C141.3 (3)
C5—C6—C7—C8179.9 (2)C11—C12—C13—C14177.4 (2)
C3—C2—C7—C60.4 (3)C12—C13—C14—C152.3 (4)
C1—C2—C7—C6178.84 (19)C13—C14—C15—C161.1 (4)
C3—C2—C7—C8179.42 (18)C13—C14—C15—Cl1177.9 (2)
C1—C2—C7—C81.3 (3)C14—C15—C16—C170.9 (4)
C6—C7—C8—C9142.9 (2)Cl1—C15—C16—C17180.00 (17)
C2—C7—C8—C937.3 (3)C15—C16—C17—C121.9 (3)
C7—C8—C9—C1054.1 (2)C13—C12—C17—C160.8 (3)
O1—C1—C10—C114.6 (3)C11—C12—C17—C16175.17 (19)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C2–C7 ring.
D—H···AD—HH···AD···AD—H···A
C13—H13···Cg1i0.932.863.552 (2)132
Symmetry code: (i) x, y, z.
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C2–C7 ring.
D—H···AD—HH···AD···AD—H···A
C13—H13···Cg1i0.932.863.552 (2)132
Symmetry code: (i) x, y, z.
 

Acknowledgements

The authors acknowledge the provision of funds for the purchase of a diffractometer and encouragement by Dr Muhammad Akram Chaudhary, Vice Chancellor, University of Sargodha, Pakistan.

References

First citationAsiri, A. M., Faidallah, H. M., Zayed, M. E. M., Ng, S. W. & Tiekink, E. R. T. (2012). Acta Cryst. E68, o2190.  CSD CrossRef IUCr Journals Google Scholar
First citationBolognesi, M., Coda, A., Corsico, A. C. & Desimoni, G. (1975). Acta Cryst. A31, S119.  Google Scholar
First citationBruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDimmock, J. R., Zello, G. A., Oloo, E. O., Quail, J. W., Kraatz, H.-B., Perjési, P., Aradi, F., Takács-Novák, K., Allen, T. M., Santos, C. L., Balzarini, J., De Clercq, E. & Stables, J. P. (2002). J. Med. Chem. 45, 3103–3111.  CSD CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationKerbal, A., Tshiamala, K., Vebrel, J. & Lauds, B. (1988). Bull. Soc. Chim. Belg. 97, 149–162.  CrossRef CAS Google Scholar
First citationOloo, E. O., Quail, J. W., Perjési, P. & Dimmock, J. R. (2002). Acta Cryst. E58, o580–o581.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 10| October 2015| Pages o741-o742
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds