organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 10| October 2015| Pages o708-o709

Crystal structure of 3,5-dimeth­­oxy-2-[5-(naphthalen-1-yl)-4,5-di­hydro-1H-pyrazol-3-yl]phenol

CROSSMARK_Color_square_no_text.svg

aDepartment of Applied Chemistry, Dongduk Women's University, Seoul 136-714, Republic of Korea
*Correspondence e-mail: dskoh@dongduk.ac.kr

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 25 August 2015; accepted 2 September 2015; online 12 September 2015)

In the title compound, C21H20N2O3, the planes of the benzene ring and the naphthalene ring system are inclined to one another by 70.95°, and by 4.99 (6) and 75.93 (5)°, respectively, to the mean plane of the pyrazoline ring. The latter has an envelope conformation with the methine (CH) C atom as the flap. There is an intra­molecular O—H⋯N hydrogen bond that forms an S(6) ring motif. In the crystal, mol­ecules are linked by C—H⋯O hydrogen bonds, forming chains along [100]. The chains are linked via C—H⋯N hydrogen bonds, forming sheets parallel to the ab plane. The sheets are linked by a series of N—H⋯π and C—H⋯π inter­actions forming a three-dimensional structure.

1. Related literature

For the synthesis and biological properties of pyrazoline derivatives, see: Bano et al. (2015[Bano, S., Alam, M. S., Javed, K., Dudeja, M., Das, A. K. & Dhulap, A. (2015). Eur. J. Med. Chem. 95, 96-103.]); Viveka et al. (2015[Viveka, S., Dinesha, Shama, P., Nagaraja, G. K., Ballav, S. & Kerkar, S. (2015). Eur. J. Med. Chem. 101, 442-451.]); Neudorfer et al. (2014[Neudorfer, C., Shanab, K., Jurik, A., Schreiber, V., Neudorfer, C., Vraka, C., Schirmer, E., Holzer, W., Ecker, G., Mitterhauser, M., Wadsak, W. & Spreitzer, H. (2014). Bioorg. Med. Chem. Lett. 24, 4490-4495.]); Hwang et al. (2013[Hwang, D., Yoon, H., Ahn, S., Kim, D.-W., Bae, D.-H., Koh, D. & Lim, Y. (2013). Magn. Reson. Chem. 51, 593-599.]); Yong et al. (2013[Yong, Y., Ahn, S., Hwang, D., Yoon, H., Jo, G., Kim, Y. H., Kim, S. H., Koh, D. & Lim, Y. (2013). Magn. Reson. Chem. 51, 364-370.]); Congiu et al. (2010[Congiu, C., Onnis, V., Vesci, L., Castorina, M. & Pisano, C. (2010). Bioorg. Med. Chem. 18, 6238-6248.]). For N—H⋯π inter­actions in the crystal structure of 3-(thio­phen-2-yl)-5-p-tolyl-4,5-di­hydro-1H-pyrazole-1-carbo­thio­amide, see: Naveen et al. (2015[Naveen, S., Pavithra, G., Abdoh, M., Ajay Kumar, K., Warad, I. & Lokanath, N. K. (2015). Acta Cryst. E71, 763-765.]). For related structures, see: Zhu et al. (2013[Zhu, Y.-Z., Wang, H., Sun, P.-P. & Tian, Y.-P. (2013). Acta Cryst. E69, o1316.]); Patel et al. (2013[Patel, U. H., Gandhi, S. A., Barot, V. M. & Varma, N. V. S. (2013). Acta Cryst. E69, o840.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C21H20N2O3

  • Mr = 348.39

  • Triclinic, [P \overline 1]

  • a = 7.6248 (5) Å

  • b = 8.6044 (6) Å

  • c = 13.1757 (9) Å

  • α = 92.832 (4)°

  • β = 90.777 (3)°

  • γ = 99.099 (3)°

  • V = 852.30 (10) Å3

  • Z = 2

  • Cu Kα radiation

  • μ = 0.74 mm−1

  • T = 147 K

  • 0.18 × 0.11 × 0.09 mm

2.2. Data collection

  • Bruker Kappa APEX DUO CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2012[Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.]) Tmin = 0.698, Tmax = 0.753

  • 21626 measured reflections

  • 2906 independent reflections

  • 2736 reflections with I > 2σ(I)

  • Rint = 0.029

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.096

  • S = 1.04

  • 2906 reflections

  • 245 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg2, Cg3 and Cg4 are the centroids of rings C4–C8/C13, C8–C13 and C14–C19, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3O⋯N1 0.926 (18) 1.718 (18) 2.5578 (12) 149.3 (16)
C7—H7A⋯N2i 0.95 2.56 3.4976 (16) 171
C12—H12A⋯O3ii 0.95 2.46 3.3663 (15) 161
N2—H2NCg3iii 0.898 (17) 2.609 (17) 3.1906 (11) 123.2 (12)
C3—H3ACg2iii 1.00 2.84 3.5842 (12) 131
C20—H20CCg4iv 0.98 2.93 3.7892 (16) 146
C21—H21CCg4v 0.98 2.85 3.6296 (17) 137
Symmetry codes: (i) x, y-1, z; (ii) x+1, y, z; (iii) -x+2, -y+1, -z+2; (iv) -x+1, -y+1, -z+1; (v) -x+1, -y+2, -z+1.

Data collection: APEX2 (Bruker, 2012[Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2012[Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and PLATON.

Supporting information


Comment top

Recent medicinal chemistry researches have been focused on the pyrazoline pharmarcophore. Pyrazolines show a broad spectrum of biological activities including anti­microbial (Bano et al., 2015), anti-inflammatory (Viveka et al., 2015), Alzheimer drugs (Neudorfer et al., 2014) and anti­tumor properties (Congiu et al., 2010). The title pyrazoline compound was synthesized, in continuation of our research program (Hwang et al., 2013), and we report herein on its crystal structure.

The molecular structure of the title compound is shown in Fig. 1. The central pyrazoline ring has an envelope conformation with atom C3 as the flap. The naphthalene and the benzene ring are inclined to the mean plane of the pyrazoline ring by 75.93 (5) and 4.99 (6) °, respectively, and by 70.95 (5) ° to one another. The meth­oxy group at the ortho position of the benzene is almost coplanar with the ring [C20—O1—C15—C16 = 0.8 (2) °], whereas the meth­oxy group at the para position of benzene is slightly twisted from the ring plane [C21—O2—C17—16 = -5.7 (2) °]. The hydroxyl group at the ortho position of the benzene ring makes an intra­molecular O—H···N hydrogen bond to form an S(6)ring motif (Fig. 1 and Table 1).

In the crystal, molecules are linked by C—H···O hydrogen bonds forming chains along [100]. The chains are linked via C—H···N hydrogen bonds forming sheets parallel to the ab plane (Table 1 and Fig. 2). The sheets are linked by a series of N—H···π (Fig. 3) and C—H···π inter­actions (Table 1) forming a three-dimensional structure.

Synthesis and crystallization top

The starting material chalcone was prepared by the previously reported method (Yong et al. 2013)and the pyrazoline was obtained by cyclization reaction of the chalcone with NH2NH2, as illustrated in Fig. 4. To a solution of 6-meth­oxy-2-hy­droxy­aceto­phenone (10 mmol, 1.66g) in 50 ml of ethanol was added 2,3-di­meth­oxy-1-naphthaldehyde (10 mmol, 1.56g) and the temperature was adjusted to around 276-277K in an ice-bath. To the reaction mixture was added 8 ml of 50% (w/v) aqueous KOH solution and the reaction mixture was stirred at room temperature for 20 h. At the end of the reaction, ice water was added to the mixture and it was then acidified with 6N HCl (pH = 3-4). The resulting precipitate was filtered and washed with water and ethanol. The crude solid was purified by recrystallization from ethanol to give the pure chalcone starting material. Excess hydrazine monohydrate (1 ml of 64-65% solution, 13 mmol) was added to a solution of the chalcone compound (5 mmol, 1.52g) in 30 ml anhydrous ethanol, and the solution was refluxed at 360 K for 5 h. The reaction mixture was cooled to room temperature to yield a solid that was then filtered. The crude solids were purified by recrystallization from ethanol to afford the pure pyrazoline title compound as yellow needle-like crystals (yield: 93%; m.p.: 403-403K).

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 2. The NH and OH H atoms were located in a difference Fourier map and freely refined. The C-bound H atoms were placed in calculated positions and included in the refinement in a riding-model approximation: C–H = 0.95–1.00 Å with Uiso(H) = 1.5Ueq(C) for methyl H atoms and 1.2Ueq(C) for other H atoms.

Related literature top

For the synthesis and biological properties of pyrazoline derivatives, see: Bano et al. (2015); Viveka et al. (2015); Neudorfer et al. (2014); Hwang et al. (2013); Yong et al. (2013); Congiu et al. (2010). For N—H···π interactions in the crystal structure of 3-(thiophen-2-yl)-5-p-tolyl-4,5-dihydro-1H-pyrazole-1-carbothioamide, see: Naveen et al. (2015). For related structures, see: Zhu et al. (2013); Patel et al. (2013).

Computing details top

Data collection: APEX2 (Bruker, 2012); cell refinement: SAINT (Bruker, 2012); data reduction: SAINT (Bruker, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with atom labelling. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. A view along the c axis of the crystal packing of the title compound. The hydrogen bonds are shown as dashed lines (see Table 1).
[Figure 3] Fig. 3. A view of the inversion dimers formed by a pair of N-H···π interactions (dashed lines; see Table 1), in the crystal structure of the title compound.
[Figure 4] Fig. 4. Synthetic scheme for the preparation of the title pyrazoline compound.
3,5-Dimethoxy-2-[5-(naphthalen-1-yl)-4,5-dihydro-1H-pyrazol-3-yl]phenol top
Crystal data top
C21H20N2O3Z = 2
Mr = 348.39F(000) = 368
Triclinic, P1Dx = 1.358 Mg m3
Hall symbol: -P 1Cu Kα radiation, λ = 1.54178 Å
a = 7.6248 (5) ÅCell parameters from 48 reflections
b = 8.6044 (6) Åθ = 6.7–26.4°
c = 13.1757 (9) ŵ = 0.74 mm1
α = 92.832 (4)°T = 147 K
β = 90.777 (3)°Needle, yellow
γ = 99.099 (3)°0.18 × 0.11 × 0.09 mm
V = 852.30 (10) Å3
Data collection top
Bruker Kappa APEX DUO CCD
diffractometer
2906 independent reflections
Radiation source: Bruker ImuS2736 reflections with I > 2σ(I)
Multi-layer optics monochromatorRint = 0.029
φ and ω scansθmax = 66.4°, θmin = 3.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2012)
h = 98
Tmin = 0.698, Tmax = 0.753k = 1010
21626 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.096H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0556P)2 + 0.2046P]
where P = (Fo2 + 2Fc2)/3
2906 reflections(Δ/σ)max = 0.002
245 parametersΔρmax = 0.16 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
C21H20N2O3γ = 99.099 (3)°
Mr = 348.39V = 852.30 (10) Å3
Triclinic, P1Z = 2
a = 7.6248 (5) ÅCu Kα radiation
b = 8.6044 (6) ŵ = 0.74 mm1
c = 13.1757 (9) ÅT = 147 K
α = 92.832 (4)°0.18 × 0.11 × 0.09 mm
β = 90.777 (3)°
Data collection top
Bruker Kappa APEX DUO CCD
diffractometer
2906 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2012)
2736 reflections with I > 2σ(I)
Tmin = 0.698, Tmax = 0.753Rint = 0.029
21626 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.096H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.16 e Å3
2906 reflectionsΔρmin = 0.22 e Å3
245 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.76267 (11)0.65287 (11)0.56445 (6)0.0345 (2)
O20.23406 (12)0.84718 (12)0.45432 (7)0.0395 (2)
O30.33246 (11)0.79173 (10)0.79830 (6)0.0274 (2)
N10.61828 (13)0.70426 (11)0.86156 (7)0.0238 (2)
N20.75961 (13)0.69468 (12)0.92877 (7)0.0257 (2)
C10.66848 (15)0.68552 (12)0.76873 (8)0.0219 (2)
C20.85512 (15)0.64594 (13)0.76522 (8)0.0239 (3)
H2A0.94170.73660.74480.029*
H2B0.86150.55380.71820.029*
C30.88660 (15)0.60817 (13)0.87658 (8)0.0233 (3)
H3A1.01040.65490.89890.028*
C40.85672 (15)0.43149 (13)0.89158 (8)0.0223 (3)
C50.70235 (15)0.35538 (14)0.93005 (9)0.0260 (3)
H5A0.61090.41410.94800.031*
C60.67599 (16)0.19168 (14)0.94364 (9)0.0294 (3)
H6A0.56730.14190.97010.035*
C70.80537 (17)0.10457 (14)0.91907 (9)0.0281 (3)
H7A0.78710.00520.92960.034*
C80.96708 (16)0.17698 (13)0.87785 (8)0.0244 (3)
C91.10302 (17)0.08870 (14)0.85020 (9)0.0290 (3)
H9A1.08560.02140.85960.035*
C101.25809 (17)0.15898 (15)0.81043 (9)0.0313 (3)
H10A1.34750.09800.79240.038*
C111.28539 (16)0.32194 (15)0.79617 (9)0.0295 (3)
H11A1.39380.37060.76870.035*
C121.15695 (15)0.41116 (14)0.82154 (8)0.0252 (3)
H12A1.17730.52090.81100.030*
C130.99403 (15)0.34213 (13)0.86326 (8)0.0222 (3)
C140.55542 (15)0.71703 (13)0.68409 (8)0.0229 (3)
C150.60542 (15)0.70520 (14)0.58125 (9)0.0257 (3)
C160.50164 (16)0.74640 (15)0.50250 (9)0.0290 (3)
H16A0.53770.73700.43400.035*
C170.34405 (16)0.80168 (15)0.52538 (9)0.0291 (3)
C180.28868 (15)0.81417 (14)0.62462 (9)0.0284 (3)
H18A0.18010.85080.63910.034*
C190.39277 (15)0.77291 (13)0.70265 (9)0.0240 (3)
C200.82165 (18)0.64268 (18)0.46210 (9)0.0379 (3)
H20A0.93810.60800.46140.057*
H20B0.83120.74640.43320.057*
H20C0.73610.56660.42160.057*
C210.29040 (19)0.85176 (19)0.35185 (10)0.0419 (3)
H21A0.20380.89480.31030.063*
H21B0.29960.74480.32560.063*
H21C0.40660.91880.34900.063*
H3O0.420 (2)0.7700 (19)0.8426 (14)0.050 (5)*
H2N0.719 (2)0.6571 (18)0.9879 (13)0.039 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0324 (5)0.0539 (6)0.0208 (4)0.0170 (4)0.0019 (3)0.0033 (4)
O20.0316 (5)0.0590 (6)0.0291 (5)0.0082 (4)0.0082 (4)0.0141 (4)
O30.0307 (5)0.0307 (5)0.0232 (4)0.0109 (3)0.0021 (3)0.0039 (3)
N10.0302 (5)0.0208 (5)0.0212 (5)0.0071 (4)0.0036 (4)0.0012 (4)
N20.0334 (5)0.0256 (5)0.0198 (5)0.0108 (4)0.0046 (4)0.0010 (4)
C10.0275 (6)0.0162 (5)0.0217 (6)0.0026 (4)0.0011 (4)0.0017 (4)
C20.0274 (6)0.0228 (6)0.0222 (6)0.0060 (4)0.0021 (4)0.0036 (4)
C30.0275 (6)0.0213 (6)0.0217 (6)0.0062 (4)0.0040 (4)0.0010 (4)
C40.0278 (6)0.0227 (6)0.0165 (5)0.0051 (4)0.0062 (4)0.0008 (4)
C50.0286 (6)0.0270 (6)0.0229 (6)0.0060 (5)0.0027 (4)0.0009 (4)
C60.0317 (6)0.0287 (6)0.0260 (6)0.0014 (5)0.0011 (5)0.0029 (5)
C70.0401 (7)0.0193 (6)0.0235 (6)0.0007 (5)0.0065 (5)0.0019 (4)
C80.0335 (6)0.0221 (6)0.0178 (5)0.0057 (5)0.0082 (4)0.0008 (4)
C90.0417 (7)0.0225 (6)0.0240 (6)0.0108 (5)0.0091 (5)0.0028 (5)
C100.0370 (7)0.0342 (7)0.0255 (6)0.0166 (5)0.0051 (5)0.0041 (5)
C110.0299 (6)0.0355 (7)0.0236 (6)0.0076 (5)0.0019 (5)0.0001 (5)
C120.0302 (6)0.0247 (6)0.0209 (5)0.0051 (5)0.0035 (4)0.0022 (4)
C130.0288 (6)0.0215 (6)0.0164 (5)0.0052 (4)0.0065 (4)0.0003 (4)
C140.0261 (6)0.0200 (6)0.0222 (6)0.0022 (4)0.0020 (4)0.0030 (4)
C150.0255 (6)0.0271 (6)0.0244 (6)0.0035 (5)0.0014 (4)0.0020 (5)
C160.0298 (6)0.0354 (7)0.0207 (6)0.0011 (5)0.0020 (5)0.0039 (5)
C170.0264 (6)0.0323 (7)0.0274 (6)0.0008 (5)0.0069 (5)0.0082 (5)
C180.0246 (6)0.0305 (7)0.0306 (6)0.0047 (5)0.0019 (5)0.0065 (5)
C190.0269 (6)0.0205 (6)0.0240 (6)0.0017 (4)0.0005 (4)0.0037 (4)
C200.0376 (7)0.0549 (9)0.0234 (6)0.0137 (6)0.0056 (5)0.0037 (6)
C210.0459 (8)0.0534 (9)0.0260 (7)0.0051 (6)0.0112 (6)0.0086 (6)
Geometric parameters (Å, º) top
O1—C151.3629 (15)C8—C91.4198 (17)
O1—C201.4304 (14)C8—C131.4263 (16)
O2—C171.3609 (15)C9—C101.3640 (19)
O2—C211.4229 (16)C9—H9A0.9500
O3—C191.3584 (14)C10—C111.4070 (18)
O3—H3O0.926 (18)C10—H10A0.9500
N1—C11.2965 (15)C11—C121.3717 (17)
N1—N21.4005 (13)C11—H11A0.9500
N2—C31.4697 (15)C12—C131.4197 (17)
N2—H2N0.898 (17)C12—H12A0.9500
C1—C141.4622 (16)C14—C151.4158 (16)
C1—C21.5155 (16)C14—C191.4192 (17)
C2—C31.5423 (15)C15—C161.3896 (17)
C2—H2A0.9900C16—C171.3919 (18)
C2—H2B0.9900C16—H16A0.9500
C3—C41.5243 (15)C17—C181.3838 (18)
C3—H3A1.0000C18—C191.3842 (17)
C4—C51.3698 (17)C18—H18A0.9500
C4—C131.4364 (16)C20—H20A0.9800
C5—C61.4116 (17)C20—H20B0.9800
C5—H5A0.9500C20—H20C0.9800
C6—C71.3632 (18)C21—H21A0.9800
C6—H6A0.9500C21—H21B0.9800
C7—C81.4185 (18)C21—H21C0.9800
C7—H7A0.9500
C15—O1—C20118.10 (9)C9—C10—H10A120.0
C17—O2—C21118.23 (10)C11—C10—H10A120.0
C19—O3—H3O107.0 (11)C12—C11—C10120.59 (11)
C1—N1—N2109.61 (9)C12—C11—H11A119.7
N1—N2—C3108.80 (8)C10—C11—H11A119.7
N1—N2—H2N110.6 (10)C11—C12—C13121.07 (11)
C3—N2—H2N116.0 (10)C11—C12—H12A119.5
N1—C1—C14120.11 (10)C13—C12—H12A119.5
N1—C1—C2111.37 (9)C12—C13—C8118.16 (10)
C14—C1—C2128.25 (10)C12—C13—C4122.84 (10)
C1—C2—C3101.50 (9)C8—C13—C4119.00 (10)
C1—C2—H2A111.5C15—C14—C19116.38 (10)
C3—C2—H2A111.5C15—C14—C1122.99 (10)
C1—C2—H2B111.5C19—C14—C1120.48 (10)
C3—C2—H2B111.5O1—C15—C16122.12 (11)
H2A—C2—H2B109.3O1—C15—C14115.85 (10)
N2—C3—C4114.59 (9)C16—C15—C14122.03 (11)
N2—C3—C2100.95 (9)C15—C16—C17119.04 (11)
C4—C3—C2112.32 (9)C15—C16—H16A120.5
N2—C3—H3A109.6C17—C16—H16A120.5
C4—C3—H3A109.6O2—C17—C18115.09 (11)
C2—C3—H3A109.6O2—C17—C16123.79 (11)
C5—C4—C13119.16 (10)C18—C17—C16121.12 (11)
C5—C4—C3122.00 (10)C17—C18—C19119.50 (11)
C13—C4—C3118.84 (10)C17—C18—H18A120.3
C4—C5—C6121.56 (11)C19—C18—H18A120.3
C4—C5—H5A119.2O3—C19—C18116.33 (10)
C6—C5—H5A119.2O3—C19—C14121.73 (10)
C7—C6—C5120.49 (11)C18—C19—C14121.93 (11)
C7—C6—H6A119.8O1—C20—H20A109.5
C5—C6—H6A119.8O1—C20—H20B109.5
C6—C7—C8120.33 (11)H20A—C20—H20B109.5
C6—C7—H7A119.8O1—C20—H20C109.5
C8—C7—H7A119.8H20A—C20—H20C109.5
C7—C8—C9121.52 (11)H20B—C20—H20C109.5
C7—C8—C13119.45 (11)O2—C21—H21A109.5
C9—C8—C13119.03 (11)O2—C21—H21B109.5
C10—C9—C8121.24 (11)H21A—C21—H21B109.5
C10—C9—H9A119.4O2—C21—H21C109.5
C8—C9—H9A119.4H21A—C21—H21C109.5
C9—C10—C11119.91 (11)H21B—C21—H21C109.5
C1—N1—N2—C321.89 (12)C9—C8—C13—C4179.78 (9)
N2—N1—C1—C14169.55 (9)C5—C4—C13—C12179.10 (10)
N2—N1—C1—C24.94 (12)C3—C4—C13—C120.14 (15)
N1—C1—C2—C312.50 (12)C5—C4—C13—C81.20 (15)
C14—C1—C2—C3173.56 (10)C3—C4—C13—C8179.56 (9)
N1—N2—C3—C492.86 (11)N1—C1—C14—C15177.33 (10)
N1—N2—C3—C228.06 (11)C2—C1—C14—C153.86 (18)
C1—C2—C3—N223.31 (10)N1—C1—C14—C191.95 (16)
C1—C2—C3—C499.21 (10)C2—C1—C14—C19171.52 (10)
N2—C3—C4—C514.33 (15)C20—O1—C15—C160.79 (17)
C2—C3—C4—C5100.10 (12)C20—O1—C15—C14178.39 (11)
N2—C3—C4—C13166.45 (9)C19—C14—C15—O1179.38 (10)
C2—C3—C4—C1379.12 (12)C1—C14—C15—O13.83 (17)
C13—C4—C5—C60.78 (16)C19—C14—C15—C160.20 (17)
C3—C4—C5—C6180.00 (10)C1—C14—C15—C16175.35 (10)
C4—C5—C6—C70.37 (17)O1—C15—C16—C17178.84 (11)
C5—C6—C7—C81.09 (17)C14—C15—C16—C170.29 (18)
C6—C7—C8—C9179.07 (10)C21—O2—C17—C18174.16 (11)
C6—C7—C8—C130.64 (16)C21—O2—C17—C165.72 (18)
C7—C8—C9—C10179.88 (10)C15—C16—C17—O2179.07 (11)
C13—C8—C9—C100.16 (16)C15—C16—C17—C180.81 (18)
C8—C9—C10—C110.00 (17)O2—C17—C18—C19179.07 (10)
C9—C10—C11—C120.28 (17)C16—C17—C18—C190.82 (18)
C10—C11—C12—C130.38 (17)C17—C18—C19—O3178.46 (10)
C11—C12—C13—C80.20 (16)C17—C18—C19—C140.30 (18)
C11—C12—C13—C4179.50 (10)C15—C14—C19—O3178.89 (10)
C7—C8—C13—C12179.78 (9)C1—C14—C19—O33.22 (16)
C9—C8—C13—C120.07 (15)C15—C14—C19—C180.20 (17)
C7—C8—C13—C40.50 (15)C1—C14—C19—C18175.47 (10)
Hydrogen-bond geometry (Å, º) top
Cg2, Cg3 and Cg4 are the centroids of rings C4–C8/C13, C8–C13 and C14–C19, respectively.
D—H···AD—HH···AD···AD—H···A
O3—H3O···N10.926 (18)1.718 (18)2.5578 (12)149.3 (16)
C7—H7A···N2i0.952.563.4976 (16)171
C12—H12A···O3ii0.952.463.3663 (15)161
N2—H2N···Cg3iii0.898 (17)2.609 (17)3.1906 (11)123.2 (12)
C3—H3A···Cg2iii1.002.843.5842 (12)131
C20—H20C···Cg4iv0.982.933.7892 (16)146
C21—H21C···Cg4v0.982.853.6296 (17)137
Symmetry codes: (i) x, y1, z; (ii) x+1, y, z; (iii) x+2, y+1, z+2; (iv) x+1, y+1, z+1; (v) x+1, y+2, z+1.
Hydrogen-bond geometry (Å, º) top
Cg2, Cg3 and Cg4 are the centroids of rings C4–C8/C13, C8–C13 and C14–C19, respectively.
D—H···AD—HH···AD···AD—H···A
O3—H3O···N10.926 (18)1.718 (18)2.5578 (12)149.3 (16)
C7—H7A···N2i0.952.563.4976 (16)171
C12—H12A···O3ii0.952.463.3663 (15)161
N2—H2N···Cg3iii0.898 (17)2.609 (17)3.1906 (11)123.2 (12)
C3—H3A···Cg2iii1.002.843.5842 (12)131
C20—H20C···Cg4iv0.982.933.7892 (16)146
C21—H21C···Cg4v0.982.853.6296 (17)137
Symmetry codes: (i) x, y1, z; (ii) x+1, y, z; (iii) x+2, y+1, z+2; (iv) x+1, y+1, z+1; (v) x+1, y+2, z+1.
 

Acknowledgements

The author acknowledges financial support from Dongduk Women's University.

References

First citationBano, S., Alam, M. S., Javed, K., Dudeja, M., Das, A. K. & Dhulap, A. (2015). Eur. J. Med. Chem. 95, 96–103.  CrossRef CAS PubMed Google Scholar
First citationBruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.  Google Scholar
First citationCongiu, C., Onnis, V., Vesci, L., Castorina, M. & Pisano, C. (2010). Bioorg. Med. Chem. 18, 6238–6248.  Web of Science CrossRef CAS PubMed Google Scholar
First citationHwang, D., Yoon, H., Ahn, S., Kim, D.-W., Bae, D.-H., Koh, D. & Lim, Y. (2013). Magn. Reson. Chem. 51, 593–599.  Web of Science CrossRef CAS PubMed Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationNaveen, S., Pavithra, G., Abdoh, M., Ajay Kumar, K., Warad, I. & Lokanath, N. K. (2015). Acta Cryst. E71, 763–765.  CSD CrossRef IUCr Journals Google Scholar
First citationNeudorfer, C., Shanab, K., Jurik, A., Schreiber, V., Neudorfer, C., Vraka, C., Schirmer, E., Holzer, W., Ecker, G., Mitterhauser, M., Wadsak, W. & Spreitzer, H. (2014). Bioorg. Med. Chem. Lett. 24, 4490–4495.  CrossRef CAS PubMed Google Scholar
First citationPatel, U. H., Gandhi, S. A., Barot, V. M. & Varma, N. V. S. (2013). Acta Cryst. E69, o840.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationViveka, S., Dinesha, Shama, P., Nagaraja, G. K., Ballav, S. & Kerkar, S. (2015). Eur. J. Med. Chem. 101, 442–451.  CrossRef CAS PubMed Google Scholar
First citationYong, Y., Ahn, S., Hwang, D., Yoon, H., Jo, G., Kim, Y. H., Kim, S. H., Koh, D. & Lim, Y. (2013). Magn. Reson. Chem. 51, 364–370.  Web of Science CrossRef CAS PubMed Google Scholar
First citationZhu, Y.-Z., Wang, H., Sun, P.-P. & Tian, Y.-P. (2013). Acta Cryst. E69, o1316.  CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 10| October 2015| Pages o708-o709
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds