organic compounds
H-pyrazol-3-yl]phenol
of 3,5-dimethoxy-2-[5-(naphthalen-1-yl)-4,5-dihydro-1aDepartment of Applied Chemistry, Dongduk Women's University, Seoul 136-714, Republic of Korea
*Correspondence e-mail: dskoh@dongduk.ac.kr
In the title compound, C21H20N2O3, the planes of the benzene ring and the naphthalene ring system are inclined to one another by 70.95°, and by 4.99 (6) and 75.93 (5)°, respectively, to the mean plane of the pyrazoline ring. The latter has an with the methine (CH) C atom as the flap. There is an intramolecular O—H⋯N hydrogen bond that forms an S(6) ring motif. In the crystal, molecules are linked by C—H⋯O hydrogen bonds, forming chains along [100]. The chains are linked via C—H⋯N hydrogen bonds, forming sheets parallel to the ab plane. The sheets are linked by a series of N—H⋯π and C—H⋯π interactions forming a three-dimensional structure.
Keywords: crystal structure; pyrazoline; naphthalene; N—H⋯π and C—H⋯π interaction; hydrogen bonding.
CCDC reference: 1421849
1. Related literature
For the synthesis and biological properties of pyrazoline derivatives, see: Bano et al. (2015); Viveka et al. (2015); Neudorfer et al. (2014); Hwang et al. (2013); Yong et al. (2013); Congiu et al. (2010). For N—H⋯π interactions in the of 3-(thiophen-2-yl)-5-p-tolyl-4,5-dihydro-1H-pyrazole-1-carbothioamide, see: Naveen et al. (2015). For related structures, see: Zhu et al. (2013); Patel et al. (2013).
2. Experimental
2.1. Crystal data
|
2.3. Refinement
|
Data collection: APEX2 (Bruker, 2012); cell SAINT (Bruker, 2012); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON.
Supporting information
CCDC reference: 1421849
10.1107/S2056989015016369/su5198sup1.cif
contains datablocks I, Global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S2056989015016369/su5198Isup2.hkl
Supporting information file. DOI: 10.1107/S2056989015016369/su5198Isup3.cml
Recent medicinal chemistry researches have been focused on the pyrazoline pharmarcophore. Pyrazolines show a broad spectrum of biological activities including antimicrobial (Bano et al., 2015), anti-inflammatory (Viveka et al., 2015), Alzheimer drugs (Neudorfer et al., 2014) and antitumor properties (Congiu et al., 2010). The title pyrazoline compound was synthesized, in continuation of our research program (Hwang et al., 2013), and we report herein on its crystal structure.
The molecular structure of the title compound is shown in Fig. 1. The central pyrazoline ring has an
with atom C3 as the flap. The naphthalene and the benzene ring are inclined to the mean plane of the pyrazoline ring by 75.93 (5) and 4.99 (6) °, respectively, and by 70.95 (5) ° to one another. The methoxy group at the ortho position of the benzene is almost coplanar with the ring [C20—O1—C15—C16 = 0.8 (2) °], whereas the methoxy group at the para position of benzene is slightly twisted from the ring plane [C21—O2—C17—16 = -5.7 (2) °]. The hydroxyl group at the ortho position of the benzene ring makes an intramolecular O—H···N hydrogen bond to form an S(6)ring motif (Fig. 1 and Table 1).In the crystal, molecules are linked by C—H···O hydrogen bonds forming chains along [100]. The chains are linked via C—H···N hydrogen bonds forming sheets parallel to the ab plane (Table 1 and Fig. 2). The sheets are linked by a series of N—H···π (Fig. 3) and C—H···π interactions (Table 1) forming a three-dimensional structure.
The starting material chalcone was prepared by the previously reported method (Yong et al. 2013)and the pyrazoline was obtained by
reaction of the chalcone with NH2NH2, as illustrated in Fig. 4. To a solution of 6-methoxy-2-hydroxyacetophenone (10 mmol, 1.66g) in 50 ml of ethanol was added 2,3-dimethoxy-1-naphthaldehyde (10 mmol, 1.56g) and the temperature was adjusted to around 276-277K in an ice-bath. To the reaction mixture was added 8 ml of 50% (w/v) aqueous KOH solution and the reaction mixture was stirred at room temperature for 20 h. At the end of the reaction, ice water was added to the mixture and it was then acidified with 6N HCl (pH = 3-4). The resulting precipitate was filtered and washed with water and ethanol. The crude solid was purified by recrystallization from ethanol to give the pure chalcone starting material. Excess hydrazine monohydrate (1 ml of 64-65% solution, 13 mmol) was added to a solution of the chalcone compound (5 mmol, 1.52g) in 30 ml anhydrous ethanol, and the solution was refluxed at 360 K for 5 h. The reaction mixture was cooled to room temperature to yield a solid that was then filtered. The crude solids were purified by recrystallization from ethanol to afford the pure pyrazoline title compound as yellow needle-like crystals (yield: 93%; m.p.: 403-403K).Crystal data, data collection and structure
details are summarized in Table 2. The NH and OH H atoms were located in a difference Fourier map and freely refined. The C-bound H atoms were placed in calculated positions and included in the in a riding-model approximation: C–H = 0.95–1.00 Å with Uiso(H) = 1.5Ueq(C) for methyl H atoms and 1.2Ueq(C) for other H atoms.Data collection: APEX2 (Bruker, 2012); cell
SAINT (Bruker, 2012); data reduction: SAINT (Bruker, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).Fig. 1. The molecular structure of the title compound, with atom labelling. Displacement ellipsoids are drawn at the 30% probability level. | |
Fig. 2. A view along the c axis of the crystal packing of the title compound. The hydrogen bonds are shown as dashed lines (see Table 1). | |
Fig. 3. A view of the inversion dimers formed by a pair of N-H···π interactions (dashed lines; see Table 1), in the crystal structure of the title compound. | |
Fig. 4. Synthetic scheme for the preparation of the title pyrazoline compound. |
C21H20N2O3 | Z = 2 |
Mr = 348.39 | F(000) = 368 |
Triclinic, P1 | Dx = 1.358 Mg m−3 |
Hall symbol: -P 1 | Cu Kα radiation, λ = 1.54178 Å |
a = 7.6248 (5) Å | Cell parameters from 48 reflections |
b = 8.6044 (6) Å | θ = 6.7–26.4° |
c = 13.1757 (9) Å | µ = 0.74 mm−1 |
α = 92.832 (4)° | T = 147 K |
β = 90.777 (3)° | Needle, yellow |
γ = 99.099 (3)° | 0.18 × 0.11 × 0.09 mm |
V = 852.30 (10) Å3 |
Bruker Kappa APEX DUO CCD diffractometer | 2906 independent reflections |
Radiation source: Bruker ImuS | 2736 reflections with I > 2σ(I) |
Multi-layer optics monochromator | Rint = 0.029 |
φ and ω scans | θmax = 66.4°, θmin = 3.4° |
Absorption correction: multi-scan (SADABS; Bruker, 2012) | h = −9→8 |
Tmin = 0.698, Tmax = 0.753 | k = −10→10 |
21626 measured reflections | l = −15→15 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.036 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.096 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.04 | w = 1/[σ2(Fo2) + (0.0556P)2 + 0.2046P] where P = (Fo2 + 2Fc2)/3 |
2906 reflections | (Δ/σ)max = 0.002 |
245 parameters | Δρmax = 0.16 e Å−3 |
0 restraints | Δρmin = −0.22 e Å−3 |
C21H20N2O3 | γ = 99.099 (3)° |
Mr = 348.39 | V = 852.30 (10) Å3 |
Triclinic, P1 | Z = 2 |
a = 7.6248 (5) Å | Cu Kα radiation |
b = 8.6044 (6) Å | µ = 0.74 mm−1 |
c = 13.1757 (9) Å | T = 147 K |
α = 92.832 (4)° | 0.18 × 0.11 × 0.09 mm |
β = 90.777 (3)° |
Bruker Kappa APEX DUO CCD diffractometer | 2906 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2012) | 2736 reflections with I > 2σ(I) |
Tmin = 0.698, Tmax = 0.753 | Rint = 0.029 |
21626 measured reflections |
R[F2 > 2σ(F2)] = 0.036 | 0 restraints |
wR(F2) = 0.096 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.04 | Δρmax = 0.16 e Å−3 |
2906 reflections | Δρmin = −0.22 e Å−3 |
245 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.76267 (11) | 0.65287 (11) | 0.56445 (6) | 0.0345 (2) | |
O2 | 0.23406 (12) | 0.84718 (12) | 0.45432 (7) | 0.0395 (2) | |
O3 | 0.33246 (11) | 0.79173 (10) | 0.79830 (6) | 0.0274 (2) | |
N1 | 0.61828 (13) | 0.70426 (11) | 0.86156 (7) | 0.0238 (2) | |
N2 | 0.75961 (13) | 0.69468 (12) | 0.92877 (7) | 0.0257 (2) | |
C1 | 0.66848 (15) | 0.68552 (12) | 0.76873 (8) | 0.0219 (2) | |
C2 | 0.85512 (15) | 0.64594 (13) | 0.76522 (8) | 0.0239 (3) | |
H2A | 0.9417 | 0.7366 | 0.7448 | 0.029* | |
H2B | 0.8615 | 0.5538 | 0.7182 | 0.029* | |
C3 | 0.88660 (15) | 0.60817 (13) | 0.87658 (8) | 0.0233 (3) | |
H3A | 1.0104 | 0.6549 | 0.8989 | 0.028* | |
C4 | 0.85672 (15) | 0.43149 (13) | 0.89158 (8) | 0.0223 (3) | |
C5 | 0.70235 (15) | 0.35538 (14) | 0.93005 (9) | 0.0260 (3) | |
H5A | 0.6109 | 0.4141 | 0.9480 | 0.031* | |
C6 | 0.67599 (16) | 0.19168 (14) | 0.94364 (9) | 0.0294 (3) | |
H6A | 0.5673 | 0.1419 | 0.9701 | 0.035* | |
C7 | 0.80537 (17) | 0.10457 (14) | 0.91907 (9) | 0.0281 (3) | |
H7A | 0.7871 | −0.0052 | 0.9296 | 0.034* | |
C8 | 0.96708 (16) | 0.17698 (13) | 0.87785 (8) | 0.0244 (3) | |
C9 | 1.10302 (17) | 0.08870 (14) | 0.85020 (9) | 0.0290 (3) | |
H9A | 1.0856 | −0.0214 | 0.8596 | 0.035* | |
C10 | 1.25809 (17) | 0.15898 (15) | 0.81043 (9) | 0.0313 (3) | |
H10A | 1.3475 | 0.0980 | 0.7924 | 0.038* | |
C11 | 1.28539 (16) | 0.32194 (15) | 0.79617 (9) | 0.0295 (3) | |
H11A | 1.3938 | 0.3706 | 0.7687 | 0.035* | |
C12 | 1.15695 (15) | 0.41116 (14) | 0.82154 (8) | 0.0252 (3) | |
H12A | 1.1773 | 0.5209 | 0.8110 | 0.030* | |
C13 | 0.99403 (15) | 0.34213 (13) | 0.86326 (8) | 0.0222 (3) | |
C14 | 0.55542 (15) | 0.71703 (13) | 0.68409 (8) | 0.0229 (3) | |
C15 | 0.60542 (15) | 0.70520 (14) | 0.58125 (9) | 0.0257 (3) | |
C16 | 0.50164 (16) | 0.74640 (15) | 0.50250 (9) | 0.0290 (3) | |
H16A | 0.5377 | 0.7370 | 0.4340 | 0.035* | |
C17 | 0.34405 (16) | 0.80168 (15) | 0.52538 (9) | 0.0291 (3) | |
C18 | 0.28868 (15) | 0.81417 (14) | 0.62462 (9) | 0.0284 (3) | |
H18A | 0.1801 | 0.8508 | 0.6391 | 0.034* | |
C19 | 0.39277 (15) | 0.77291 (13) | 0.70265 (9) | 0.0240 (3) | |
C20 | 0.82165 (18) | 0.64268 (18) | 0.46210 (9) | 0.0379 (3) | |
H20A | 0.9381 | 0.6080 | 0.4614 | 0.057* | |
H20B | 0.8312 | 0.7464 | 0.4332 | 0.057* | |
H20C | 0.7361 | 0.5666 | 0.4216 | 0.057* | |
C21 | 0.29040 (19) | 0.85176 (19) | 0.35185 (10) | 0.0419 (3) | |
H21A | 0.2038 | 0.8948 | 0.3103 | 0.063* | |
H21B | 0.2996 | 0.7448 | 0.3256 | 0.063* | |
H21C | 0.4066 | 0.9188 | 0.3490 | 0.063* | |
H3O | 0.420 (2) | 0.7700 (19) | 0.8426 (14) | 0.050 (5)* | |
H2N | 0.719 (2) | 0.6571 (18) | 0.9879 (13) | 0.039 (4)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0324 (5) | 0.0539 (6) | 0.0208 (4) | 0.0170 (4) | 0.0019 (3) | 0.0033 (4) |
O2 | 0.0316 (5) | 0.0590 (6) | 0.0291 (5) | 0.0082 (4) | −0.0082 (4) | 0.0141 (4) |
O3 | 0.0307 (5) | 0.0307 (5) | 0.0232 (4) | 0.0109 (3) | 0.0021 (3) | 0.0039 (3) |
N1 | 0.0302 (5) | 0.0208 (5) | 0.0212 (5) | 0.0071 (4) | −0.0036 (4) | 0.0012 (4) |
N2 | 0.0334 (5) | 0.0256 (5) | 0.0198 (5) | 0.0108 (4) | −0.0046 (4) | 0.0010 (4) |
C1 | 0.0275 (6) | 0.0162 (5) | 0.0217 (6) | 0.0026 (4) | −0.0011 (4) | 0.0017 (4) |
C2 | 0.0274 (6) | 0.0228 (6) | 0.0222 (6) | 0.0060 (4) | −0.0021 (4) | 0.0036 (4) |
C3 | 0.0275 (6) | 0.0213 (6) | 0.0217 (6) | 0.0062 (4) | −0.0040 (4) | 0.0010 (4) |
C4 | 0.0278 (6) | 0.0227 (6) | 0.0165 (5) | 0.0051 (4) | −0.0062 (4) | 0.0008 (4) |
C5 | 0.0286 (6) | 0.0270 (6) | 0.0229 (6) | 0.0060 (5) | −0.0027 (4) | 0.0009 (4) |
C6 | 0.0317 (6) | 0.0287 (6) | 0.0260 (6) | −0.0014 (5) | −0.0011 (5) | 0.0029 (5) |
C7 | 0.0401 (7) | 0.0193 (6) | 0.0235 (6) | 0.0007 (5) | −0.0065 (5) | 0.0019 (4) |
C8 | 0.0335 (6) | 0.0221 (6) | 0.0178 (5) | 0.0057 (5) | −0.0082 (4) | −0.0008 (4) |
C9 | 0.0417 (7) | 0.0225 (6) | 0.0240 (6) | 0.0108 (5) | −0.0091 (5) | −0.0028 (5) |
C10 | 0.0370 (7) | 0.0342 (7) | 0.0255 (6) | 0.0166 (5) | −0.0051 (5) | −0.0041 (5) |
C11 | 0.0299 (6) | 0.0355 (7) | 0.0236 (6) | 0.0076 (5) | −0.0019 (5) | 0.0001 (5) |
C12 | 0.0302 (6) | 0.0247 (6) | 0.0209 (5) | 0.0051 (5) | −0.0035 (4) | 0.0022 (4) |
C13 | 0.0288 (6) | 0.0215 (6) | 0.0164 (5) | 0.0052 (4) | −0.0065 (4) | 0.0003 (4) |
C14 | 0.0261 (6) | 0.0200 (6) | 0.0222 (6) | 0.0022 (4) | −0.0020 (4) | 0.0030 (4) |
C15 | 0.0255 (6) | 0.0271 (6) | 0.0244 (6) | 0.0035 (5) | −0.0014 (4) | 0.0020 (5) |
C16 | 0.0298 (6) | 0.0354 (7) | 0.0207 (6) | 0.0011 (5) | −0.0020 (5) | 0.0039 (5) |
C17 | 0.0264 (6) | 0.0323 (7) | 0.0274 (6) | −0.0008 (5) | −0.0069 (5) | 0.0082 (5) |
C18 | 0.0246 (6) | 0.0305 (7) | 0.0306 (6) | 0.0047 (5) | −0.0019 (5) | 0.0065 (5) |
C19 | 0.0269 (6) | 0.0205 (6) | 0.0240 (6) | 0.0017 (4) | 0.0005 (4) | 0.0037 (4) |
C20 | 0.0376 (7) | 0.0549 (9) | 0.0234 (6) | 0.0137 (6) | 0.0056 (5) | 0.0037 (6) |
C21 | 0.0459 (8) | 0.0534 (9) | 0.0260 (7) | 0.0051 (6) | −0.0112 (6) | 0.0086 (6) |
O1—C15 | 1.3629 (15) | C8—C9 | 1.4198 (17) |
O1—C20 | 1.4304 (14) | C8—C13 | 1.4263 (16) |
O2—C17 | 1.3609 (15) | C9—C10 | 1.3640 (19) |
O2—C21 | 1.4229 (16) | C9—H9A | 0.9500 |
O3—C19 | 1.3584 (14) | C10—C11 | 1.4070 (18) |
O3—H3O | 0.926 (18) | C10—H10A | 0.9500 |
N1—C1 | 1.2965 (15) | C11—C12 | 1.3717 (17) |
N1—N2 | 1.4005 (13) | C11—H11A | 0.9500 |
N2—C3 | 1.4697 (15) | C12—C13 | 1.4197 (17) |
N2—H2N | 0.898 (17) | C12—H12A | 0.9500 |
C1—C14 | 1.4622 (16) | C14—C15 | 1.4158 (16) |
C1—C2 | 1.5155 (16) | C14—C19 | 1.4192 (17) |
C2—C3 | 1.5423 (15) | C15—C16 | 1.3896 (17) |
C2—H2A | 0.9900 | C16—C17 | 1.3919 (18) |
C2—H2B | 0.9900 | C16—H16A | 0.9500 |
C3—C4 | 1.5243 (15) | C17—C18 | 1.3838 (18) |
C3—H3A | 1.0000 | C18—C19 | 1.3842 (17) |
C4—C5 | 1.3698 (17) | C18—H18A | 0.9500 |
C4—C13 | 1.4364 (16) | C20—H20A | 0.9800 |
C5—C6 | 1.4116 (17) | C20—H20B | 0.9800 |
C5—H5A | 0.9500 | C20—H20C | 0.9800 |
C6—C7 | 1.3632 (18) | C21—H21A | 0.9800 |
C6—H6A | 0.9500 | C21—H21B | 0.9800 |
C7—C8 | 1.4185 (18) | C21—H21C | 0.9800 |
C7—H7A | 0.9500 | ||
C15—O1—C20 | 118.10 (9) | C9—C10—H10A | 120.0 |
C17—O2—C21 | 118.23 (10) | C11—C10—H10A | 120.0 |
C19—O3—H3O | 107.0 (11) | C12—C11—C10 | 120.59 (11) |
C1—N1—N2 | 109.61 (9) | C12—C11—H11A | 119.7 |
N1—N2—C3 | 108.80 (8) | C10—C11—H11A | 119.7 |
N1—N2—H2N | 110.6 (10) | C11—C12—C13 | 121.07 (11) |
C3—N2—H2N | 116.0 (10) | C11—C12—H12A | 119.5 |
N1—C1—C14 | 120.11 (10) | C13—C12—H12A | 119.5 |
N1—C1—C2 | 111.37 (9) | C12—C13—C8 | 118.16 (10) |
C14—C1—C2 | 128.25 (10) | C12—C13—C4 | 122.84 (10) |
C1—C2—C3 | 101.50 (9) | C8—C13—C4 | 119.00 (10) |
C1—C2—H2A | 111.5 | C15—C14—C19 | 116.38 (10) |
C3—C2—H2A | 111.5 | C15—C14—C1 | 122.99 (10) |
C1—C2—H2B | 111.5 | C19—C14—C1 | 120.48 (10) |
C3—C2—H2B | 111.5 | O1—C15—C16 | 122.12 (11) |
H2A—C2—H2B | 109.3 | O1—C15—C14 | 115.85 (10) |
N2—C3—C4 | 114.59 (9) | C16—C15—C14 | 122.03 (11) |
N2—C3—C2 | 100.95 (9) | C15—C16—C17 | 119.04 (11) |
C4—C3—C2 | 112.32 (9) | C15—C16—H16A | 120.5 |
N2—C3—H3A | 109.6 | C17—C16—H16A | 120.5 |
C4—C3—H3A | 109.6 | O2—C17—C18 | 115.09 (11) |
C2—C3—H3A | 109.6 | O2—C17—C16 | 123.79 (11) |
C5—C4—C13 | 119.16 (10) | C18—C17—C16 | 121.12 (11) |
C5—C4—C3 | 122.00 (10) | C17—C18—C19 | 119.50 (11) |
C13—C4—C3 | 118.84 (10) | C17—C18—H18A | 120.3 |
C4—C5—C6 | 121.56 (11) | C19—C18—H18A | 120.3 |
C4—C5—H5A | 119.2 | O3—C19—C18 | 116.33 (10) |
C6—C5—H5A | 119.2 | O3—C19—C14 | 121.73 (10) |
C7—C6—C5 | 120.49 (11) | C18—C19—C14 | 121.93 (11) |
C7—C6—H6A | 119.8 | O1—C20—H20A | 109.5 |
C5—C6—H6A | 119.8 | O1—C20—H20B | 109.5 |
C6—C7—C8 | 120.33 (11) | H20A—C20—H20B | 109.5 |
C6—C7—H7A | 119.8 | O1—C20—H20C | 109.5 |
C8—C7—H7A | 119.8 | H20A—C20—H20C | 109.5 |
C7—C8—C9 | 121.52 (11) | H20B—C20—H20C | 109.5 |
C7—C8—C13 | 119.45 (11) | O2—C21—H21A | 109.5 |
C9—C8—C13 | 119.03 (11) | O2—C21—H21B | 109.5 |
C10—C9—C8 | 121.24 (11) | H21A—C21—H21B | 109.5 |
C10—C9—H9A | 119.4 | O2—C21—H21C | 109.5 |
C8—C9—H9A | 119.4 | H21A—C21—H21C | 109.5 |
C9—C10—C11 | 119.91 (11) | H21B—C21—H21C | 109.5 |
C1—N1—N2—C3 | −21.89 (12) | C9—C8—C13—C4 | −179.78 (9) |
N2—N1—C1—C14 | −169.55 (9) | C5—C4—C13—C12 | 179.10 (10) |
N2—N1—C1—C2 | 4.94 (12) | C3—C4—C13—C12 | −0.14 (15) |
N1—C1—C2—C3 | 12.50 (12) | C5—C4—C13—C8 | −1.20 (15) |
C14—C1—C2—C3 | −173.56 (10) | C3—C4—C13—C8 | 179.56 (9) |
N1—N2—C3—C4 | −92.86 (11) | N1—C1—C14—C15 | 177.33 (10) |
N1—N2—C3—C2 | 28.06 (11) | C2—C1—C14—C15 | 3.86 (18) |
C1—C2—C3—N2 | −23.31 (10) | N1—C1—C14—C19 | 1.95 (16) |
C1—C2—C3—C4 | 99.21 (10) | C2—C1—C14—C19 | −171.52 (10) |
N2—C3—C4—C5 | 14.33 (15) | C20—O1—C15—C16 | 0.79 (17) |
C2—C3—C4—C5 | −100.10 (12) | C20—O1—C15—C14 | −178.39 (11) |
N2—C3—C4—C13 | −166.45 (9) | C19—C14—C15—O1 | 179.38 (10) |
C2—C3—C4—C13 | 79.12 (12) | C1—C14—C15—O1 | 3.83 (17) |
C13—C4—C5—C6 | 0.78 (16) | C19—C14—C15—C16 | 0.20 (17) |
C3—C4—C5—C6 | 180.00 (10) | C1—C14—C15—C16 | −175.35 (10) |
C4—C5—C6—C7 | 0.37 (17) | O1—C15—C16—C17 | −178.84 (11) |
C5—C6—C7—C8 | −1.09 (17) | C14—C15—C16—C17 | 0.29 (18) |
C6—C7—C8—C9 | −179.07 (10) | C21—O2—C17—C18 | 174.16 (11) |
C6—C7—C8—C13 | 0.64 (16) | C21—O2—C17—C16 | −5.72 (18) |
C7—C8—C9—C10 | 179.88 (10) | C15—C16—C17—O2 | 179.07 (11) |
C13—C8—C9—C10 | 0.16 (16) | C15—C16—C17—C18 | −0.81 (18) |
C8—C9—C10—C11 | 0.00 (17) | O2—C17—C18—C19 | −179.07 (10) |
C9—C10—C11—C12 | −0.28 (17) | C16—C17—C18—C19 | 0.82 (18) |
C10—C11—C12—C13 | 0.38 (17) | C17—C18—C19—O3 | 178.46 (10) |
C11—C12—C13—C8 | −0.20 (16) | C17—C18—C19—C14 | −0.30 (18) |
C11—C12—C13—C4 | 179.50 (10) | C15—C14—C19—O3 | −178.89 (10) |
C7—C8—C13—C12 | −179.78 (9) | C1—C14—C19—O3 | −3.22 (16) |
C9—C8—C13—C12 | −0.07 (15) | C15—C14—C19—C18 | −0.20 (17) |
C7—C8—C13—C4 | 0.50 (15) | C1—C14—C19—C18 | 175.47 (10) |
Cg2, Cg3 and Cg4 are the centroids of rings C4–C8/C13, C8–C13 and C14–C19, respectively. |
D—H···A | D—H | H···A | D···A | D—H···A |
O3—H3O···N1 | 0.926 (18) | 1.718 (18) | 2.5578 (12) | 149.3 (16) |
C7—H7A···N2i | 0.95 | 2.56 | 3.4976 (16) | 171 |
C12—H12A···O3ii | 0.95 | 2.46 | 3.3663 (15) | 161 |
N2—H2N···Cg3iii | 0.898 (17) | 2.609 (17) | 3.1906 (11) | 123.2 (12) |
C3—H3A···Cg2iii | 1.00 | 2.84 | 3.5842 (12) | 131 |
C20—H20C···Cg4iv | 0.98 | 2.93 | 3.7892 (16) | 146 |
C21—H21C···Cg4v | 0.98 | 2.85 | 3.6296 (17) | 137 |
Symmetry codes: (i) x, y−1, z; (ii) x+1, y, z; (iii) −x+2, −y+1, −z+2; (iv) −x+1, −y+1, −z+1; (v) −x+1, −y+2, −z+1. |
Cg2, Cg3 and Cg4 are the centroids of rings C4–C8/C13, C8–C13 and C14–C19, respectively. |
D—H···A | D—H | H···A | D···A | D—H···A |
O3—H3O···N1 | 0.926 (18) | 1.718 (18) | 2.5578 (12) | 149.3 (16) |
C7—H7A···N2i | 0.95 | 2.56 | 3.4976 (16) | 171 |
C12—H12A···O3ii | 0.95 | 2.46 | 3.3663 (15) | 161 |
N2—H2N···Cg3iii | 0.898 (17) | 2.609 (17) | 3.1906 (11) | 123.2 (12) |
C3—H3A···Cg2iii | 1.00 | 2.84 | 3.5842 (12) | 131 |
C20—H20C···Cg4iv | 0.98 | 2.93 | 3.7892 (16) | 146 |
C21—H21C···Cg4v | 0.98 | 2.85 | 3.6296 (17) | 137 |
Symmetry codes: (i) x, y−1, z; (ii) x+1, y, z; (iii) −x+2, −y+1, −z+2; (iv) −x+1, −y+1, −z+1; (v) −x+1, −y+2, −z+1. |
Acknowledgements
The author acknowledges financial support from Dongduk Women's University.
References
Bano, S., Alam, M. S., Javed, K., Dudeja, M., Das, A. K. & Dhulap, A. (2015). Eur. J. Med. Chem. 95, 96–103. CrossRef CAS PubMed Google Scholar
Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc. Madison, Wisconsin, USA. Google Scholar
Congiu, C., Onnis, V., Vesci, L., Castorina, M. & Pisano, C. (2010). Bioorg. Med. Chem. 18, 6238–6248. Web of Science CrossRef CAS PubMed Google Scholar
Hwang, D., Yoon, H., Ahn, S., Kim, D.-W., Bae, D.-H., Koh, D. & Lim, Y. (2013). Magn. Reson. Chem. 51, 593–599. Web of Science CrossRef CAS PubMed Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Naveen, S., Pavithra, G., Abdoh, M., Ajay Kumar, K., Warad, I. & Lokanath, N. K. (2015). Acta Cryst. E71, 763–765. CSD CrossRef IUCr Journals Google Scholar
Neudorfer, C., Shanab, K., Jurik, A., Schreiber, V., Neudorfer, C., Vraka, C., Schirmer, E., Holzer, W., Ecker, G., Mitterhauser, M., Wadsak, W. & Spreitzer, H. (2014). Bioorg. Med. Chem. Lett. 24, 4490–4495. CrossRef CAS PubMed Google Scholar
Patel, U. H., Gandhi, S. A., Barot, V. M. & Varma, N. V. S. (2013). Acta Cryst. E69, o840. CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Viveka, S., Dinesha, Shama, P., Nagaraja, G. K., Ballav, S. & Kerkar, S. (2015). Eur. J. Med. Chem. 101, 442–451. CrossRef CAS PubMed Google Scholar
Yong, Y., Ahn, S., Hwang, D., Yoon, H., Jo, G., Kim, Y. H., Kim, S. H., Koh, D. & Lim, Y. (2013). Magn. Reson. Chem. 51, 364–370. Web of Science CrossRef CAS PubMed Google Scholar
Zhu, Y.-Z., Wang, H., Sun, P.-P. & Tian, Y.-P. (2013). Acta Cryst. E69, o1316. CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.