organic compounds
of 3-ethynylbenzoic acid
aCEMES–CNRS BP 94347, 29 Rue J. Marvig, 31055 Toulouse, France
*Correspondence e-mail: andre.gourdon@cemes.fr
In the title compound, C9H6O2, the carboxylic acid group is almost in the plane of the benzene ring, making a dihedral angle of 2.49 (18)°. In the crystal, molecules are linked by pairs of O—H⋯O hydrogen bonds, forming classical acid–acid inversion dimers, with an R22(8) ring motif. The dimers are linked by pairs of C—H⋯O hydrogen bonds forming chains, enclosing R22(16) ring motifs, propagating along the c-axis direction.
Keywords: crystal structure; 3-ethynylbenzoic acid; hydrogen bonding.
CCDC reference: 1422308
1. Related literature
For the potential applications of terminal et al. (2004). For the synthesis of the title compound, see: Bischoff et al. (2008). For the NMR spectrum of the title compound, see: Bleisch et al. (2014). For other syntheses of the title compound, see: Jones et al. (2008); Pawle et al. (2011). For the of the 4-ethynyl benzoic acid methyl ester, see: Dai et al. (2004).
in crystal engineering, see: Dai2. Experimental
2.1. Crystal data
|
2.3. Refinement
|
|
Data collection: APEX2 (Bruker, 2012); cell SAINT (Bruker, 2012); data reduction: SAINT; program(s) used to solve structure: SIR2011 (Burla et al., 2012); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: WinGX (Farrugia, 2012) and PLATON (Spek, 2009).
Supporting information
CCDC reference: 1422308
10.1107/S2056989015016515/su5200sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S2056989015016515/su5200Isup2.hkl
Supporting information file. DOI: 10.1107/S2056989015016515/su5200Isup3.cml
In recent years, the interest in compounds with an alkyne C≡CH bond has increased due to their versatility in coupling reactions such as Glaser-Hay or Sonogashira. At the same time the crystallography of terminal has become an intense field of study for the potential applications in crystal engineering (Dai et al., 2004). Additionally, the presence of a carboxylate group on these compounds makes them potential candidates for the formation of metal organic frameworks viz. MOFs. With these applications in mind, we have synthesized the title compound and report herein on its crystal structure.The synthesis of 4-ethynylbenzoic acid has been reported previously (Jones et al., 2008; Pawle et al., 2011), but not its Only the of the ester, 4-ethynylmethylbenzoate, has been described previously (Dai et al., 2004).
3-ethynylbenzoic acid is commercially available. In this work it was obtained by saponification and acidification of the corresponding ester in methanol/water with lithium hydroxide, following the reported procedure (Bischoff et al., 2008). Vapor diffusion of dichlomethane/hexane afforded light yellow crystals. The NMR spectrum is in agreement with the literature values (Bleisch et al., 2014): 1H-NMR (300 MHz, DMSO) 1H 13.22 (1H, s, O—H), 7.94-7.97 (2H, m, H6; H2), 7.73-7.71 (1H, m, H3), 7.53 (1H, t, J = 7.5 Hz, H7), 4.30 (1H, s, CHh). 13C-NMR (75 MHz, DMSO) 13C 166.4 (Ci), 135.8 (Cd), 132.2 (Ca), 131.3 (Ch), 129.7 (Cb), 129.2 (Cc), 122.1 (Ce), 82.5 (Cf), 81.69 (Cg).
Data collection: APEX2 (Bruker, 2012); cell
SAINT (Bruker, 2012); data reduction: SAINT (Bruker, 2012); program(s) used to solve structure: SIR2011 (Burla et al., 2012); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: WinGX (Farrugia, 2012) and PLATON (Spek, 2009).C9H6O2 | Z = 2 |
Mr = 146.14 | F(000) = 152 |
Triclinic, P1 | Dx = 1.341 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 3.8630 (7) Å | Cell parameters from 1127 reflections |
b = 8.3000 (9) Å | θ = 2.6–26.1° |
c = 11.7490 (1) Å | µ = 0.10 mm−1 |
α = 101.44° | T = 293 K |
β = 93.8° | Parallelepiped, colourless |
γ = 99.83° | 0.9 × 0.4 × 0.1 mm |
V = 361.84 (8) Å3 |
Bruker Kappa APEXII CCD diffractometer | 1317 independent reflections |
Radiation source: sealed tube | 1086 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.012 |
phi and ω scans | θmax = 26.2°, θmin = 3.4° |
Absorption correction: multi-scan (SADABS; Bruker, 2012) | h = −3→4 |
Tmin = 0.664, Tmax = 0.745 | k = −10→10 |
2719 measured reflections | l = −14→14 |
Refinement on F2 | 0 constraints |
Least-squares matrix: full | Hydrogen site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.037 | All H-atom parameters refined |
wR(F2) = 0.117 | w = 1/[σ2(Fo2) + (0.0649P)2 + 0.035P] where P = (Fo2 + 2Fc2)/3 |
S = 1.08 | (Δ/σ)max < 0.001 |
1317 reflections | Δρmax = 0.13 e Å−3 |
124 parameters | Δρmin = −0.13 e Å−3 |
0 restraints |
C9H6O2 | γ = 99.83° |
Mr = 146.14 | V = 361.84 (8) Å3 |
Triclinic, P1 | Z = 2 |
a = 3.8630 (7) Å | Mo Kα radiation |
b = 8.3000 (9) Å | µ = 0.10 mm−1 |
c = 11.7490 (1) Å | T = 293 K |
α = 101.44° | 0.9 × 0.4 × 0.1 mm |
β = 93.8° |
Bruker Kappa APEXII CCD diffractometer | 1317 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2012) | 1086 reflections with I > 2σ(I) |
Tmin = 0.664, Tmax = 0.745 | Rint = 0.012 |
2719 measured reflections |
R[F2 > 2σ(F2)] = 0.037 | 0 restraints |
wR(F2) = 0.117 | All H-atom parameters refined |
S = 1.08 | Δρmax = 0.13 e Å−3 |
1317 reflections | Δρmin = −0.13 e Å−3 |
124 parameters |
Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles |
x | y | z | Uiso*/Ueq | ||
O1 | 0.3420 (4) | 0.18714 (15) | 1.00233 (9) | 0.0714 (5) | |
O2 | 0.4634 (3) | −0.00243 (13) | 0.85678 (9) | 0.0648 (4) | |
C1 | 0.2847 (3) | 0.24041 (16) | 0.81364 (11) | 0.0432 (4) | |
C2 | 0.3024 (3) | 0.18897 (16) | 0.69499 (12) | 0.0428 (4) | |
C3 | 0.2316 (3) | 0.29147 (16) | 0.61941 (12) | 0.0434 (4) | |
C4 | 0.1418 (4) | 0.44533 (18) | 0.66466 (14) | 0.0509 (5) | |
C5 | 0.1251 (4) | 0.49579 (18) | 0.78270 (14) | 0.0558 (5) | |
C6 | 0.1965 (4) | 0.39454 (18) | 0.85767 (13) | 0.0509 (5) | |
C7 | 0.3696 (4) | 0.13271 (17) | 0.89319 (12) | 0.0477 (4) | |
C8 | 0.2570 (4) | 0.23974 (16) | 0.49657 (12) | 0.0489 (5) | |
C9 | 0.2828 (5) | 0.1985 (2) | 0.39633 (14) | 0.0629 (6) | |
H1 | 0.421 (7) | 0.110 (3) | 1.054 (2) | 0.133 (9)* | |
H2 | 0.362 (4) | 0.086 (2) | 0.6622 (13) | 0.050 (4)* | |
H4 | 0.088 (4) | 0.519 (2) | 0.6115 (14) | 0.063 (4)* | |
H5 | 0.058 (4) | 0.601 (2) | 0.8124 (14) | 0.069 (5)* | |
H6 | 0.188 (4) | 0.429 (2) | 0.9398 (16) | 0.065 (5)* | |
H9 | 0.302 (5) | 0.164 (2) | 0.3144 (19) | 0.087 (6)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.1157 (10) | 0.0684 (7) | 0.0382 (6) | 0.0396 (7) | 0.0105 (6) | 0.0108 (5) |
O2 | 0.1041 (9) | 0.0569 (7) | 0.0434 (6) | 0.0361 (6) | 0.0138 (5) | 0.0146 (5) |
C1 | 0.0424 (7) | 0.0445 (7) | 0.0430 (7) | 0.0091 (5) | 0.0044 (5) | 0.0095 (5) |
C2 | 0.0462 (8) | 0.0391 (7) | 0.0442 (7) | 0.0111 (5) | 0.0051 (5) | 0.0090 (5) |
C3 | 0.0393 (7) | 0.0462 (7) | 0.0459 (7) | 0.0082 (5) | 0.0036 (5) | 0.0129 (5) |
C4 | 0.0517 (8) | 0.0463 (8) | 0.0580 (9) | 0.0138 (6) | 0.0011 (6) | 0.0165 (6) |
C5 | 0.0599 (9) | 0.0448 (8) | 0.0634 (10) | 0.0201 (6) | 0.0027 (7) | 0.0060 (7) |
C6 | 0.0524 (8) | 0.0512 (8) | 0.0484 (8) | 0.0155 (6) | 0.0052 (6) | 0.0041 (6) |
C7 | 0.0566 (8) | 0.0479 (7) | 0.0399 (7) | 0.0139 (6) | 0.0064 (6) | 0.0084 (6) |
C8 | 0.0526 (8) | 0.0485 (8) | 0.0510 (9) | 0.0148 (6) | 0.0052 (6) | 0.0189 (6) |
C9 | 0.0827 (12) | 0.0647 (10) | 0.0483 (9) | 0.0250 (8) | 0.0116 (8) | 0.0176 (7) |
O1—C7 | 1.2902 (18) | C4—C5 | 1.376 (2) |
O2—C7 | 1.2415 (18) | C5—C6 | 1.378 (2) |
O1—H1 | 1.03 (2) | C8—C9 | 1.175 (2) |
C1—C2 | 1.3845 (19) | C2—H2 | 0.938 (16) |
C1—C6 | 1.389 (2) | C4—H4 | 0.992 (16) |
C1—C7 | 1.4735 (19) | C5—H5 | 0.959 (17) |
C2—C3 | 1.3907 (19) | C6—H6 | 0.955 (18) |
C3—C4 | 1.393 (2) | C9—H9 | 0.96 (2) |
C3—C8 | 1.437 (2) | ||
C7—O1—H1 | 112.4 (13) | O2—C7—C1 | 121.61 (12) |
C2—C1—C7 | 119.56 (12) | O1—C7—C1 | 116.24 (13) |
C6—C1—C7 | 120.24 (12) | C3—C8—C9 | 179.04 (17) |
C2—C1—C6 | 120.17 (12) | C1—C2—H2 | 122.5 (9) |
C1—C2—C3 | 120.08 (12) | C3—C2—H2 | 117.4 (9) |
C2—C3—C8 | 120.12 (12) | C3—C4—H4 | 119.9 (9) |
C4—C3—C8 | 120.72 (13) | C5—C4—H4 | 119.6 (9) |
C2—C3—C4 | 119.15 (13) | C4—C5—H5 | 119.5 (10) |
C3—C4—C5 | 120.48 (14) | C6—C5—H5 | 120.1 (10) |
C4—C5—C6 | 120.39 (14) | C1—C6—H6 | 119.3 (10) |
C1—C6—C5 | 119.73 (14) | C5—C6—H6 | 121.0 (10) |
O1—C7—O2 | 122.16 (13) | C8—C9—H9 | 179.5 (19) |
C6—C1—C2—C3 | −0.05 (19) | C6—C1—C7—O2 | −176.98 (14) |
C7—C1—C2—C3 | −178.37 (12) | C1—C2—C3—C4 | −0.26 (19) |
C2—C1—C6—C5 | 0.3 (2) | C1—C2—C3—C8 | 178.71 (12) |
C7—C1—C6—C5 | 178.59 (14) | C2—C3—C4—C5 | 0.3 (2) |
C2—C1—C7—O1 | −178.90 (13) | C8—C3—C4—C5 | −178.63 (14) |
C2—C1—C7—O2 | 1.3 (2) | C3—C4—C5—C6 | −0.1 (2) |
C6—C1—C7—O1 | 2.8 (2) | C4—C5—C6—C1 | −0.2 (2) |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1···O2i | 1.03 (2) | 1.59 (2) | 2.625 (2) | 175 (2) |
C9—H9···O2ii | 0.96 (2) | 2.50 (2) | 3.386 (2) | 153 (2) |
Symmetry codes: (i) −x+1, −y, −z+2; (ii) −x+1, −y, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1···O2i | 1.03 (2) | 1.59 (2) | 2.625 (2) | 175 (2) |
C9—H9···O2ii | 0.96 (2) | 2.50 (2) | 3.386 (2) | 153 (2) |
Symmetry codes: (i) −x+1, −y, −z+2; (ii) −x+1, −y, −z+1. |
Acknowledgements
Support from the ANR–DFG project ICMADS is gratefully acknowledged.
References
Bischoff, A., Subramanya, H., Sundaresan, K., Sammeta, S. & Vaka (2008). Espacenet Patent WO2008157844 (A1). Google Scholar
Bleisch, T. J., Doti, R. A., Pfeifer, L. A. & Norman, B. H. (2014). Espacenet Patent WO2014168824 (A1). Google Scholar
Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc, Madison, Wisconsin, USA. Google Scholar
Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Mallamo, M., Mazzone, A., Polidori, G. & Spagna, R. (2012). J. Appl. Cryst. 45, 357–361. Web of Science CrossRef CAS IUCr Journals Google Scholar
Dai, C., Yuan, Z., Collings, J. C., Fasina, T. M., Thomas, R. Ll., Roscoe, K. P., Stimson, L. M., Batsanov, A. S., Howard, J. A. K. & Marder, T. B. (2004). CrystEngComm, 6, 184–188. CSD CrossRef CAS Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Jones, L. F., Cochrane, M. E., Koivisto, B. D., Leigh, D. A., Perlepes, S. P., Wernsdorfer, W. & Brechin, E. K. (2008). Inorg. Chim. Acta, 361, 3420–3426. CSD CrossRef CAS Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Pawle, R. H., Eastman, V. & Thomas, S. W. (2011). J. Mater. Chem. 21, 14041–14047. CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.