organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 10| October 2015| Pages o750-o751

Crystal structure of 3-ethynyl­benzoic acid

CROSSMARK_Color_square_no_text.svg

aCEMES–CNRS BP 94347, 29 Rue J. Marvig, 31055 Toulouse, France
*Correspondence e-mail: andre.gourdon@cemes.fr

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 26 August 2015; accepted 4 September 2015; online 12 September 2015)

In the title compound, C9H6O2, the carb­oxy­lic acid group is almost in the plane of the benzene ring, making a dihedral angle of 2.49 (18)°. In the crystal, mol­ecules are linked by pairs of O—H⋯O hydrogen bonds, forming classical acid–acid inversion dimers, with an R22(8) ring motif. The dimers are linked by pairs of C—H⋯O hydrogen bonds forming chains, enclosing R22(16) ring motifs, propagating along the c-axis direction.

1. Related literature

For the potential applications of terminal alkynes in crystal engineering, see: Dai et al. (2004[Dai, C., Yuan, Z., Collings, J. C., Fasina, T. M., Thomas, R. Ll., Roscoe, K. P., Stimson, L. M., Batsanov, A. S., Howard, J. A. K. & Marder, T. B. (2004). CrystEngComm, 6, 184-188.]). For the synthesis of the title compound, see: Bischoff et al. (2008[Bischoff, A., Subramanya, H., Sundaresan, K., Sammeta, S. & Vaka (2008). Espacenet Patent WO2008157844 (A1).]). For the NMR spectrum of the title compound, see: Bleisch et al. (2014[Bleisch, T. J., Doti, R. A., Pfeifer, L. A. & Norman, B. H. (2014). Espacenet Patent WO2014168824 (A1).]). For other syntheses of the title compound, see: Jones et al. (2008[Jones, L. F., Cochrane, M. E., Koivisto, B. D., Leigh, D. A., Perlepes, S. P., Wernsdorfer, W. & Brechin, E. K. (2008). Inorg. Chim. Acta, 361, 3420-3426.]); Pawle et al. (2011[Pawle, R. H., Eastman, V. & Thomas, S. W. (2011). J. Mater. Chem. 21, 14041-14047.]). For the crystal structure of the 4-ethynyl benzoic acid methyl ester, see: Dai et al. (2004[Dai, C., Yuan, Z., Collings, J. C., Fasina, T. M., Thomas, R. Ll., Roscoe, K. P., Stimson, L. M., Batsanov, A. S., Howard, J. A. K. & Marder, T. B. (2004). CrystEngComm, 6, 184-188.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C9H6O2

  • Mr = 146.14

  • Triclinic, [P \overline 1]

  • a = 3.8630 (7) Å

  • b = 8.3000 (9) Å

  • c = 11.7490 (1) Å

  • α = 101.44°

  • β = 93.8°

  • γ = 99.83°

  • V = 361.84 (8) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 293 K

  • 0.9 × 0.4 × 0.1 mm

2.2. Data collection

  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2012[Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc, Madison, Wisconsin, USA.]) Tmin = 0.664, Tmax = 0.745

  • 2719 measured reflections

  • 1317 independent reflections

  • 1086 reflections with I > 2σ(I)

  • Rint = 0.012

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.117

  • S = 1.08

  • 1317 reflections

  • 124 parameters

  • All H-atom parameters refined

  • Δρmax = 0.13 e Å−3

  • Δρmin = −0.13 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O2i 1.03 (2) 1.59 (2) 2.625 (2) 175 (2)
C9—H9⋯O2ii 0.96 (2) 2.50 (2) 3.386 (2) 153 (2)
Symmetry codes: (i) -x+1, -y, -z+2; (ii) -x+1, -y, -z+1.

Data collection: APEX2 (Bruker, 2012[Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc, Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2012[Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc, Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SIR2011 (Burla et al., 2012[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Mallamo, M., Mazzone, A., Polidori, G. & Spagna, R. (2012). J. Appl. Cryst. 45, 357-361.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Chemical context top

In recent years, the inter­est in compounds with an alkyne CCH bond has increased due to their versatility in coupling reactions such as Glaser-Hay or Sonogashira. At the same time the crystallography of terminal alkynes has become an intense field of study for the potential applications in crystal engineering (Dai et al., 2004). Additionally, the presence of a carboxyl­ate group on these compounds makes them potential candidates for the formation of metal organic frameworks viz. MOFs. With these applications in mind, we have synthesized the title compound and report herein on its crystal structure.The synthesis of 4-ethynyl­benzoic acid has been reported previously (Jones et al., 2008; Pawle et al., 2011), but not its crystal structure. Only the crystal structure of the ester, 4-ethynyl­methyl­benzoate, has been described previously (Dai et al., 2004).

Synthesis and crystallization top

3-ethynyl­benzoic acid is commercially available. In this work it was obtained by saponification and acidification of the corresponding ester in methanol/water with lithium hydroxide, following the reported procedure (Bischoff et al., 2008). Vapor diffusion of dichlo­methane/hexane afforded light yellow crystals. The NMR spectrum is in agreement with the literature values (Bleisch et al., 2014): 1H-NMR (300 MHz, DMSO) 1H 13.22 (1H, s, O—H), 7.94-7.97 (2H, m, H6; H2), 7.73-7.71 (1H, m, H3), 7.53 (1H, t, J = 7.5 Hz, H7), 4.30 (1H, s, CHh). 13C-NMR (75 MHz, DMSO) 13C 166.4 (Ci), 135.8 (Cd), 132.2 (Ca), 131.3 (Ch), 129.7 (Cb), 129.2 (Cc), 122.1 (Ce), 82.5 (Cf), 81.69 (Cg).

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 2. All of the H atoms were located in difference Fourier maps and freely refined.

Related literature top

For the potential applications of terminal alkynes in crystal engineering, see: Dai et al. (2004). For the synthesis of the title compound, see: Bischoff et al. (2008). For the NMR spectrum of the title compound, see: Bleisch et al. (2014). For other syntheses of the title compound, see: Jones et al. (2008); Pawle et al. (2011). For the crystal structure of the ester, methyl 4-ethynylbenzoate [updated name OK?], see: Dai et al. (2004).

Computing details top

Data collection: APEX2 (Bruker, 2012); cell refinement: SAINT (Bruker, 2012); data reduction: SAINT (Bruker, 2012); program(s) used to solve structure: SIR2011 (Burla et al., 2012); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: WinGX (Farrugia, 2012) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with atom labelling. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. A view along the a axis of the crystal packing of the title compound. The hydrogen bonds are shown as dashed lines (see Table 1).
3-Ethynylbenzoic acid top
Crystal data top
C9H6O2Z = 2
Mr = 146.14F(000) = 152
Triclinic, P1Dx = 1.341 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 3.8630 (7) ÅCell parameters from 1127 reflections
b = 8.3000 (9) Åθ = 2.6–26.1°
c = 11.7490 (1) ŵ = 0.10 mm1
α = 101.44°T = 293 K
β = 93.8°Parallelepiped, colourless
γ = 99.83°0.9 × 0.4 × 0.1 mm
V = 361.84 (8) Å3
Data collection top
Bruker Kappa APEXII CCD
diffractometer
1317 independent reflections
Radiation source: sealed tube1086 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.012
phi and ω scansθmax = 26.2°, θmin = 3.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2012)
h = 34
Tmin = 0.664, Tmax = 0.745k = 1010
2719 measured reflectionsl = 1414
Refinement top
Refinement on F20 constraints
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037All H-atom parameters refined
wR(F2) = 0.117 w = 1/[σ2(Fo2) + (0.0649P)2 + 0.035P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max < 0.001
1317 reflectionsΔρmax = 0.13 e Å3
124 parametersΔρmin = 0.13 e Å3
0 restraints
Crystal data top
C9H6O2γ = 99.83°
Mr = 146.14V = 361.84 (8) Å3
Triclinic, P1Z = 2
a = 3.8630 (7) ÅMo Kα radiation
b = 8.3000 (9) ŵ = 0.10 mm1
c = 11.7490 (1) ÅT = 293 K
α = 101.44°0.9 × 0.4 × 0.1 mm
β = 93.8°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
1317 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2012)
1086 reflections with I > 2σ(I)
Tmin = 0.664, Tmax = 0.745Rint = 0.012
2719 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.117All H-atom parameters refined
S = 1.08Δρmax = 0.13 e Å3
1317 reflectionsΔρmin = 0.13 e Å3
124 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.3420 (4)0.18714 (15)1.00233 (9)0.0714 (5)
O20.4634 (3)0.00243 (13)0.85678 (9)0.0648 (4)
C10.2847 (3)0.24041 (16)0.81364 (11)0.0432 (4)
C20.3024 (3)0.18897 (16)0.69499 (12)0.0428 (4)
C30.2316 (3)0.29147 (16)0.61941 (12)0.0434 (4)
C40.1418 (4)0.44533 (18)0.66466 (14)0.0509 (5)
C50.1251 (4)0.49579 (18)0.78270 (14)0.0558 (5)
C60.1965 (4)0.39454 (18)0.85767 (13)0.0509 (5)
C70.3696 (4)0.13271 (17)0.89319 (12)0.0477 (4)
C80.2570 (4)0.23974 (16)0.49657 (12)0.0489 (5)
C90.2828 (5)0.1985 (2)0.39633 (14)0.0629 (6)
H10.421 (7)0.110 (3)1.054 (2)0.133 (9)*
H20.362 (4)0.086 (2)0.6622 (13)0.050 (4)*
H40.088 (4)0.519 (2)0.6115 (14)0.063 (4)*
H50.058 (4)0.601 (2)0.8124 (14)0.069 (5)*
H60.188 (4)0.429 (2)0.9398 (16)0.065 (5)*
H90.302 (5)0.164 (2)0.3144 (19)0.087 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.1157 (10)0.0684 (7)0.0382 (6)0.0396 (7)0.0105 (6)0.0108 (5)
O20.1041 (9)0.0569 (7)0.0434 (6)0.0361 (6)0.0138 (5)0.0146 (5)
C10.0424 (7)0.0445 (7)0.0430 (7)0.0091 (5)0.0044 (5)0.0095 (5)
C20.0462 (8)0.0391 (7)0.0442 (7)0.0111 (5)0.0051 (5)0.0090 (5)
C30.0393 (7)0.0462 (7)0.0459 (7)0.0082 (5)0.0036 (5)0.0129 (5)
C40.0517 (8)0.0463 (8)0.0580 (9)0.0138 (6)0.0011 (6)0.0165 (6)
C50.0599 (9)0.0448 (8)0.0634 (10)0.0201 (6)0.0027 (7)0.0060 (7)
C60.0524 (8)0.0512 (8)0.0484 (8)0.0155 (6)0.0052 (6)0.0041 (6)
C70.0566 (8)0.0479 (7)0.0399 (7)0.0139 (6)0.0064 (6)0.0084 (6)
C80.0526 (8)0.0485 (8)0.0510 (9)0.0148 (6)0.0052 (6)0.0189 (6)
C90.0827 (12)0.0647 (10)0.0483 (9)0.0250 (8)0.0116 (8)0.0176 (7)
Geometric parameters (Å, º) top
O1—C71.2902 (18)C4—C51.376 (2)
O2—C71.2415 (18)C5—C61.378 (2)
O1—H11.03 (2)C8—C91.175 (2)
C1—C21.3845 (19)C2—H20.938 (16)
C1—C61.389 (2)C4—H40.992 (16)
C1—C71.4735 (19)C5—H50.959 (17)
C2—C31.3907 (19)C6—H60.955 (18)
C3—C41.393 (2)C9—H90.96 (2)
C3—C81.437 (2)
C7—O1—H1112.4 (13)O2—C7—C1121.61 (12)
C2—C1—C7119.56 (12)O1—C7—C1116.24 (13)
C6—C1—C7120.24 (12)C3—C8—C9179.04 (17)
C2—C1—C6120.17 (12)C1—C2—H2122.5 (9)
C1—C2—C3120.08 (12)C3—C2—H2117.4 (9)
C2—C3—C8120.12 (12)C3—C4—H4119.9 (9)
C4—C3—C8120.72 (13)C5—C4—H4119.6 (9)
C2—C3—C4119.15 (13)C4—C5—H5119.5 (10)
C3—C4—C5120.48 (14)C6—C5—H5120.1 (10)
C4—C5—C6120.39 (14)C1—C6—H6119.3 (10)
C1—C6—C5119.73 (14)C5—C6—H6121.0 (10)
O1—C7—O2122.16 (13)C8—C9—H9179.5 (19)
C6—C1—C2—C30.05 (19)C6—C1—C7—O2176.98 (14)
C7—C1—C2—C3178.37 (12)C1—C2—C3—C40.26 (19)
C2—C1—C6—C50.3 (2)C1—C2—C3—C8178.71 (12)
C7—C1—C6—C5178.59 (14)C2—C3—C4—C50.3 (2)
C2—C1—C7—O1178.90 (13)C8—C3—C4—C5178.63 (14)
C2—C1—C7—O21.3 (2)C3—C4—C5—C60.1 (2)
C6—C1—C7—O12.8 (2)C4—C5—C6—C10.2 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O2i1.03 (2)1.59 (2)2.625 (2)175 (2)
C9—H9···O2ii0.96 (2)2.50 (2)3.386 (2)153 (2)
Symmetry codes: (i) x+1, y, z+2; (ii) x+1, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O2i1.03 (2)1.59 (2)2.625 (2)175 (2)
C9—H9···O2ii0.96 (2)2.50 (2)3.386 (2)153 (2)
Symmetry codes: (i) x+1, y, z+2; (ii) x+1, y, z+1.
 

Acknowledgements

Support from the ANR–DFG project ICMADS is gratefully acknowledged.

References

First citationBischoff, A., Subramanya, H., Sundaresan, K., Sammeta, S. & Vaka (2008). Espacenet Patent WO2008157844 (A1).  Google Scholar
First citationBleisch, T. J., Doti, R. A., Pfeifer, L. A. & Norman, B. H. (2014). Espacenet Patent WO2014168824 (A1).  Google Scholar
First citationBruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc, Madison, Wisconsin, USA.  Google Scholar
First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Mallamo, M., Mazzone, A., Polidori, G. & Spagna, R. (2012). J. Appl. Cryst. 45, 357–361.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDai, C., Yuan, Z., Collings, J. C., Fasina, T. M., Thomas, R. Ll., Roscoe, K. P., Stimson, L. M., Batsanov, A. S., Howard, J. A. K. & Marder, T. B. (2004). CrystEngComm, 6, 184–188.  CSD CrossRef CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationJones, L. F., Cochrane, M. E., Koivisto, B. D., Leigh, D. A., Perlepes, S. P., Wernsdorfer, W. & Brechin, E. K. (2008). Inorg. Chim. Acta, 361, 3420–3426.  CSD CrossRef CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationPawle, R. H., Eastman, V. & Thomas, S. W. (2011). J. Mater. Chem. 21, 14041–14047.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 10| October 2015| Pages o750-o751
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds