organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 10| October 2015| Pages o752-o753

Crystal structure of 1,4,5,6,7,8,9,10,11,12,13-undeca­hydro­cyclo­dodeca[c]pyrazol-3-ol

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, 296 Shineman Center, SUNY Oswego, Oswego, NY 13126, USA, and bEnvironmental Science and Sustainability Department, 307 South Hall, 181 Main St., University of Maine at Presque Isle, Presque Isle, Maine 04769, USA
*Correspondence e-mail: casey.raymond@oswego.edu

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 3 September 2015; accepted 7 September 2015; online 12 September 2015)

The title compound, C13H22N2O, crystallized as a pyrazolol tautomer. The 12-membered macrocycle has a distorted chair conformation. In the crystal, mol­ecules are linked via pairs of O—H⋯N hydrogen bonds, forming inversion dimers. The dimers are linked via N—H⋯π and C—H⋯π inter­actions, forming slabs parallel to the bc plane.

1. Related literature

The crystal structure of the title compound clarifies the connectivity of a class of pyrazolone-derived materials, specifically revealing a pyrazolol tautomer instead of the expected pyrazolone. For the synthesis of the title compound, see: Silveira et al. (1977[Silveira, A. Jr, Mehra, Y. R. & Atwell, W. A. (1977). J. Org. Chem. 42, 3892-3895.]). For the structure of a similar tautomer, see: Silveira et al. (1980[Silveira, A. Jr, Angelastro, M., Israel, R., Totino, F. & Williamsen, P. (1980). J. Org. Chem. 45, 3522-3523.]). For a review of the chemistry of pyrazolo­nes, pyrazolidones and their derivatives, see: Wiley & Wiley (1964[Wiley, R. H. & Wiley, P. (1964). Pyrazolones, Pyrazolidones, and Deriviatives. In The Chemistry of Heterocyclic Compounds, edited by A. Weissberger, pp 5-9. New York: Interscience Publishers.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C13H22N2O

  • Mr = 222.32

  • Monoclinic, C 2/c

  • a = 30.008 (2) Å

  • b = 7.4764 (5) Å

  • c = 11.6516 (8) Å

  • β = 105.4374 (12)°

  • V = 2519.7 (3) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 100 K

  • 0.59 × 0.33 × 0.11 mm

2.2. Data collection

  • Bruker APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.871, Tmax = 0.992

  • 14420 measured reflections

  • 3845 independent reflections

  • 3383 reflections with I > 2σ(I)

  • Rint = 0.041

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.051

  • wR(F2) = 0.119

  • S = 1.03

  • 3845 reflections

  • 146 parameters

  • H-atom parameters constrained

  • Δρmax = 0.41 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg is the centroid of the pyrazol ring N1/N2/C1–C3.

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1i 0.84 1.87 2.7072 (12) 177
N2—H2⋯Cgii 0.88 2.58 3.4429 (11) 166
C6—H6BCgiii 0.99 2.71 3.5734 (13) 147
Symmetry codes: (i) [-x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1]; (ii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) [x, -y+1, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]); molecular graphics: Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

The crystal structure of the title compound, Fig. 1, clarifies the connectivity of a class of pyrazolone-derived materials, specifically revealing a pyrzazolol tautomer instead of the expected pyrazolone. The bond lengths and angles support this pyrazolol tautomer in the solid state. The crystal structure reveals a different isomer than originally proposed by by (Silveira et al., 1977). However, it is similar to a tautomer proposed in a subsequent investigation (Silveira et al., 1980).

Specifically, we have determined that the compound of inter­est contains an alcohol group instead of the postulated ketone. The alcoholic group is also consistent with a positive reaction with iron(III) solutions, yielding a dark purple color (Wiley & Wiley, 1964).

In the crystal, molecules are linked via a pair of O—H···N hydrogen bonds forming inversion dimers (Fig. 2 and Table 1). The dimers are linked via N—H···π and C—H···π inter­actions forming slabs parallel to the bc plane (Table 1).

Synthesis and crystallization top

The title compound was prepared as described by (Silveira et al., 1977). Colorless crystals were obtained by recrystallization by slow cooling of a saturated, warm ethanol solution.

Refinement details top

The NH and OH H atoms were located in a difference Fourier map. All of the H atoms were placed in calculated positions and refined as riding: O—H = 0.84 Å, N—H = 0.88 Å, C—H = 0.99 Å with Uiso(H) = 1.5Ueq(O) for the OH H atom and 1.2Ueq(N,C) for other H atoms.

Related literature top

The crystal structure of the title compound clarifies the connectivity of a class of pyrazolone-derived materials, specifically revealing a pyrazolol tautomer instead of the expected pyrazolone. For the synthesis of the title compound, see: Silveira et al. (1977). For the structure of a similar tautomer, see: Silveira et al. (1980). For a review of the chemistry of pyrazolones, pyrazolidones and their derivatives, see: Wiley & Wiley (1964).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the molecular structure of the title compound, with atom labeling. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. A view along the b axis of the crystal packing of the title compound. Hydrogen bonds are shown as dashed lines (see Table 1), and C-bound H atoms have been omitted for clarity.
1,4,5,6,7,8,9,10,11,12,13-Undecahydrocyclododeca[c]pyrazol-3-ol top
Crystal data top
C13H22N2OF(000) = 976
Mr = 222.32Dx = 1.172 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 30.008 (2) ÅCell parameters from 9304 reflections
b = 7.4764 (5) Åθ = 2.8–30.5°
c = 11.6516 (8) ŵ = 0.08 mm1
β = 105.4374 (12)°T = 100 K
V = 2519.7 (3) Å3Plate, colorless
Z = 80.59 × 0.33 × 0.11 mm
Data collection top
Bruker APEX CCD
diffractometer
3383 reflections with I > 2σ(I)
ω and phi scansRint = 0.041
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
θmax = 30.5°, θmin = 2.8°
Tmin = 0.871, Tmax = 0.992h = 4242
14420 measured reflectionsk = 1010
3845 independent reflectionsl = 1616
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.051H-atom parameters constrained
wR(F2) = 0.119 w = 1/[σ2(Fo2) + (0.0437P)2 + 2.2017P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
3845 reflectionsΔρmax = 0.41 e Å3
146 parametersΔρmin = 0.20 e Å3
Crystal data top
C13H22N2OV = 2519.7 (3) Å3
Mr = 222.32Z = 8
Monoclinic, C2/cMo Kα radiation
a = 30.008 (2) ŵ = 0.08 mm1
b = 7.4764 (5) ÅT = 100 K
c = 11.6516 (8) Å0.59 × 0.33 × 0.11 mm
β = 105.4374 (12)°
Data collection top
Bruker APEX CCD
diffractometer
3845 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
3383 reflections with I > 2σ(I)
Tmin = 0.871, Tmax = 0.992Rint = 0.041
14420 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0510 restraints
wR(F2) = 0.119H-atom parameters constrained
S = 1.03Δρmax = 0.41 e Å3
3845 reflectionsΔρmin = 0.20 e Å3
146 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.29213 (3)0.05291 (11)0.56411 (7)0.02556 (18)
H10.27430.09080.50050.038*
N10.26539 (3)0.31282 (13)0.63710 (8)0.0237 (2)
N20.27474 (3)0.38692 (13)0.74851 (8)0.0249 (2)
H20.26280.48870.76410.030*
C10.29108 (4)0.16479 (14)0.65347 (9)0.0214 (2)
C20.31597 (4)0.13945 (14)0.77385 (9)0.0208 (2)
C30.30426 (4)0.28695 (15)0.83204 (9)0.0221 (2)
C40.32060 (4)0.34607 (15)0.95885 (9)0.0240 (2)
H4A0.34120.25331.00560.029*
H4B0.29370.35910.99220.029*
C50.34679 (4)0.52462 (15)0.97093 (10)0.0258 (2)
H5A0.32410.62240.94440.031*
H5B0.36740.52300.91710.031*
C60.37587 (4)0.56546 (16)1.09762 (10)0.0284 (2)
H6A0.38890.68741.09910.034*
H6B0.35540.56471.15170.034*
C70.41558 (4)0.43390 (17)1.14525 (10)0.0296 (2)
H7A0.40260.31171.14190.036*
H7B0.43020.46231.22990.036*
C80.45307 (4)0.43498 (18)1.07776 (12)0.0336 (3)
H8A0.43920.47700.99540.040*
H8B0.47740.52151.11650.040*
C90.47548 (4)0.2527 (2)1.07272 (12)0.0363 (3)
H9A0.48820.20881.15510.044*
H9B0.50170.26821.03700.044*
C100.44297 (4)0.10995 (17)1.00175 (10)0.0291 (2)
H10A0.45920.00651.01340.035*
H10B0.41590.09921.03460.035*
C110.42583 (4)0.14687 (16)0.86845 (10)0.0263 (2)
H11A0.45290.16280.83590.032*
H11B0.40820.26030.85630.032*
C120.39528 (4)0.00152 (16)0.79927 (10)0.0266 (2)
H12A0.41140.11720.82030.032*
H12B0.39130.01850.71310.032*
C130.34726 (4)0.01540 (15)0.82185 (10)0.0248 (2)
H13A0.33230.12700.78500.030*
H13B0.35110.02410.90870.030*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0306 (4)0.0225 (4)0.0221 (4)0.0039 (3)0.0044 (3)0.0037 (3)
N10.0235 (4)0.0246 (5)0.0222 (4)0.0022 (3)0.0048 (3)0.0047 (3)
N20.0259 (4)0.0248 (5)0.0227 (4)0.0054 (4)0.0044 (3)0.0055 (4)
C10.0209 (4)0.0205 (5)0.0238 (5)0.0019 (4)0.0076 (4)0.0018 (4)
C20.0222 (4)0.0189 (5)0.0219 (5)0.0015 (4)0.0069 (4)0.0006 (4)
C30.0210 (4)0.0230 (5)0.0225 (5)0.0004 (4)0.0059 (4)0.0001 (4)
C40.0286 (5)0.0230 (5)0.0207 (5)0.0016 (4)0.0069 (4)0.0010 (4)
C50.0313 (5)0.0210 (5)0.0227 (5)0.0025 (4)0.0028 (4)0.0006 (4)
C60.0342 (6)0.0238 (5)0.0242 (5)0.0046 (4)0.0023 (4)0.0052 (4)
C70.0342 (6)0.0298 (6)0.0220 (5)0.0067 (5)0.0026 (4)0.0025 (4)
C80.0302 (6)0.0344 (7)0.0338 (6)0.0005 (5)0.0045 (5)0.0064 (5)
C90.0291 (6)0.0442 (8)0.0317 (6)0.0084 (5)0.0013 (5)0.0069 (5)
C100.0312 (6)0.0311 (6)0.0236 (5)0.0100 (5)0.0050 (4)0.0001 (4)
C110.0258 (5)0.0301 (6)0.0238 (5)0.0033 (4)0.0080 (4)0.0005 (4)
C120.0311 (5)0.0260 (5)0.0229 (5)0.0076 (4)0.0076 (4)0.0010 (4)
C130.0312 (5)0.0176 (5)0.0254 (5)0.0011 (4)0.0072 (4)0.0015 (4)
Geometric parameters (Å, º) top
O1—C11.3424 (13)C7—H7A0.9900
O1—H10.8400C7—H7B0.9900
N1—C11.3331 (14)C8—C91.5280 (19)
N1—N21.3700 (12)C8—H8A0.9900
N2—C31.3533 (14)C8—H8B0.9900
N2—H20.8800C9—C101.5312 (18)
C1—C21.4153 (14)C9—H9A0.9900
C2—C31.3879 (15)C9—H9B0.9900
C2—C131.5018 (15)C10—C111.5257 (16)
C3—C41.4944 (15)C10—H10A0.9900
C4—C51.5364 (16)C10—H10B0.9900
C4—H4A0.9900C11—C121.5257 (17)
C4—H4B0.9900C11—H11A0.9900
C5—C61.5322 (16)C11—H11B0.9900
C5—H5A0.9900C12—C131.5355 (16)
C5—H5B0.9900C12—H12A0.9900
C6—C71.5309 (16)C12—H12B0.9900
C6—H6A0.9900C13—H13A0.9900
C6—H6B0.9900C13—H13B0.9900
C7—C81.5345 (18)
C1—O1—H1109.5H7A—C7—H7B107.6
C1—N1—N2103.62 (9)C9—C8—C7113.91 (12)
C3—N2—N1112.81 (9)C9—C8—H8A108.8
C3—N2—H2123.6C7—C8—H8A108.8
N1—N2—H2123.6C9—C8—H8B108.8
N1—C1—O1122.57 (10)C7—C8—H8B108.8
N1—C1—C2112.67 (9)H8A—C8—H8B107.7
O1—C1—C2124.76 (10)C8—C9—C10114.75 (10)
C3—C2—C1104.02 (9)C8—C9—H9A108.6
C3—C2—C13130.18 (10)C10—C9—H9A108.6
C1—C2—C13125.80 (10)C8—C9—H9B108.6
N2—C3—C2106.85 (9)C10—C9—H9B108.6
N2—C3—C4121.83 (10)H9A—C9—H9B107.6
C2—C3—C4131.22 (10)C11—C10—C9114.67 (11)
C3—C4—C5111.89 (9)C11—C10—H10A108.6
C3—C4—H4A109.2C9—C10—H10A108.6
C5—C4—H4A109.2C11—C10—H10B108.6
C3—C4—H4B109.2C9—C10—H10B108.6
C5—C4—H4B109.2H10A—C10—H10B107.6
H4A—C4—H4B107.9C10—C11—C12113.49 (10)
C4—C5—C6114.06 (10)C10—C11—H11A108.9
C4—C5—H5A108.7C12—C11—H11A108.9
C6—C5—H5A108.7C10—C11—H11B108.9
C4—C5—H5B108.7C12—C11—H11B108.9
C6—C5—H5B108.7H11A—C11—H11B107.7
H5A—C5—H5B107.6C11—C12—C13114.71 (9)
C7—C6—C5114.20 (9)C11—C12—H12A108.6
C7—C6—H6A108.7C13—C12—H12A108.6
C5—C6—H6A108.7C11—C12—H12B108.6
C7—C6—H6B108.7C13—C12—H12B108.6
C5—C6—H6B108.7H12A—C12—H12B107.6
H6A—C6—H6B107.6C2—C13—C12113.98 (9)
C6—C7—C8114.64 (10)C2—C13—H13A108.8
C6—C7—H7A108.6C12—C13—H13A108.8
C8—C7—H7A108.6C2—C13—H13B108.8
C6—C7—H7B108.6C12—C13—H13B108.8
C8—C7—H7B108.6H13A—C13—H13B107.7
C1—N1—N2—C31.49 (12)N2—C3—C4—C560.38 (14)
N2—N1—C1—O1179.34 (10)C2—C3—C4—C5115.43 (13)
N2—N1—C1—C21.48 (12)C3—C4—C5—C6163.47 (10)
N1—C1—C2—C30.97 (12)C4—C5—C6—C764.21 (14)
O1—C1—C2—C3179.87 (10)C5—C6—C7—C864.54 (14)
N1—C1—C2—C13178.86 (10)C6—C7—C8—C9147.20 (11)
O1—C1—C2—C130.30 (17)C7—C8—C9—C1065.43 (15)
N1—N2—C3—C20.93 (13)C8—C9—C10—C1166.47 (15)
N1—N2—C3—C4177.64 (10)C9—C10—C11—C12177.39 (10)
C1—C2—C3—N20.01 (11)C10—C11—C12—C1370.67 (12)
C13—C2—C3—N2179.81 (10)C3—C2—C13—C12101.48 (13)
C1—C2—C3—C4176.27 (11)C1—C2—C13—C1278.73 (13)
C13—C2—C3—C43.91 (19)C11—C12—C13—C268.41 (13)
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the pyrazol ring N1/N2/C1–C3.
D—H···AD—HH···AD···AD—H···A
O1—H1···N1i0.841.872.7072 (12)177
N2—H2···Cgii0.882.583.4429 (11)166
C6—H6B···Cgiii0.992.713.5734 (13)147
Symmetry codes: (i) x+1/2, y+1/2, z+1; (ii) x+1/2, y+1/2, z+3/2; (iii) x, y+1, z+1/2.
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the pyrazol ring N1/N2/C1–C3.
D—H···AD—HH···AD···AD—H···A
O1—H1···N1i0.841.872.7072 (12)177
N2—H2···Cgii0.882.583.4429 (11)166
C6—H6B···Cgiii0.992.713.5734 (13)147
Symmetry codes: (i) x+1/2, y+1/2, z+1; (ii) x+1/2, y+1/2, z+3/2; (iii) x, y+1, z+1/2.
 

Acknowledgements

The authors thank M. Zeller and Youngstown State University for the X-ray data collection.

References

First citationBruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSilveira, A. Jr, Angelastro, M., Israel, R., Totino, F. & Williamsen, P. (1980). J. Org. Chem. 45, 3522–3523.  CrossRef CAS Google Scholar
First citationSilveira, A. Jr, Mehra, Y. R. & Atwell, W. A. (1977). J. Org. Chem. 42, 3892–3895.  CrossRef CAS Google Scholar
First citationWiley, R. H. & Wiley, P. (1964). Pyrazolones, Pyrazolidones, and Deriviatives. In The Chemistry of Heterocyclic Compounds, edited by A. Weissberger, pp 5–9. New York: Interscience Publishers.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 10| October 2015| Pages o752-o753
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds