research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 10| October 2015| Pages 1196-1198

Crystal structure of 3-methyl­pyridinium picrate: a triclinic polymorph

CROSSMARK_Color_square_no_text.svg

aPG and Research Department of Chemistry, Seethalakshmi Ramaswami College, Tiruchirappalli 620 002, Tamil Nadu, India
*Correspondence e-mail: kalaivbalaj@yahoo.co.in

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 3 September 2015; accepted 11 September 2015; online 17 September 2015)

The title mol­ecular salt, C6H8N+·C6H2N3O7 (systematic name: 3-methyl­pyridinium 2,4,6-tri­nitro­phenolate), crystallizes in the triclinic space group P-1. The crystal structure of the monoclinic polymorph (space group P21/n) has been reported [Stilinovic & Kaitner (2011[Stilinović, V. & Kaitner, B. (2011). Cryst. Growth Des. 11, 4110-4119.]). Cryst. Growth Des. 11, 4110–4119]. In the crystal, the anion and cation are linked via bifurcated N—H⋯(O,O) hydrogen bonds, enclosing an R12(6) graph-set motif. These units are linked via C—H⋯O hydrogen bonds, forming a three-dimensional framework. Within the framework there are ππ inter­actions present, involving inversion-related picrate anions and inversion-related pyridinium cations, with inter-centroid distances of 3.7389 (14) and 3.560 (2) Å, respectively.

1. Chemical context

Stilinovic & Kaitner (2011[Stilinović, V. & Kaitner, B. (2011). Cryst. Growth Des. 11, 4110-4119.]) have synthesized a series of 20 crystalline picrates of pyridine derivatives and through single crystal X-ray diffraction studies revealed the presence of a common synthon. They reported the crystal structure of the monoclinic polymorph of the title mol­ecular salt: space group P21/n.

[Scheme 1]

The observation that the presence of more than one heterocyclic component in a mol­ecule enhances the biological response and thermal stability encouraged us to synthesize several new carbon-bonded anionic sigma complexes from chloro­nitro-aromatic compounds and pyrimidine derivatives in the presence of pyridine bases (Babykala et al., 2014[Babykala, R., Rajamani, K., Muthulakshmi, S. & Kalaivani, D. (2014). J. Chem. Crystallogr. 44, 243-254.]; Buvaneswari & Kalaivani, 2013[Buvaneswari, M. & Kalaivani, D. (2013). J. Chem. Crystallogr. 43, 561-567.]; Mangaiyarkarasi & Kalaivani, 2013[Mangaiyarkarasi, G. & Kalaivani, D. (2013). Crystallogr. Rep. 58, 1096-1102.]; Manickkam & Kalaivani, 2011[Manickkam, V. & Kalaivani, D. (2011). Acta Cryst. E67, o3475.], 2014[Manickkam, V. & Kalaivani, D. (2014). Acta Cryst. E70, 256-258.]; Sridevi & Kalaivani, 2012[Sridevi, G. & Kalaivani, D. (2012). Acta Cryst. E68, o1044.]). Surprisingly, when we made an attempt to synthesize a similar type of complex from the electron-deficient chloro­nitro­aromatic compound (picryl chloride), an imidazole derivative (hydantoin) and 3-methyl­pyridine, the title salt crystallized from the medium (ethanol) instead of the expected carbon-bonded anionic sigma complex.

2. Structural commentary

The mol­ecular structure of the title mol­ecular salt is shown in Fig. 1[link]. The anion and cation are linked via bifurcated N—H⋯(O,O) hydrogen bonds, enclosing an [R_{1}^{2}](6) graph-set motif (Fig. 1[link] and Table 1[link]). In the picrate anion, the two nitro groups flanking the C—O bond are oriented differently. Nitro group O1/N1/O2, involved in N—H⋯O hydrogen bonds as noted above, is inclined to the benzene ring by 6.7 (3)°, while nitro group O5/N3/O6 is inclined to the benzene ring by 70.07 (3)°, probably to alleviate steric crowding. The third nitro group (O3/N2/O4), para with respect to the C—O bond, deviates only slightly from the benzene ring, making a dihedral angle of 6.6 (3)°.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H4A⋯O1 0.93 (4) 2.27 (4) 2.827 (4) 118 (4)
N4—H4A⋯O7 0.93 (4) 1.79 (5) 2.638 (4) 152 (4)
C5—H5⋯O2i 0.93 2.51 3.406 (4) 162
C10—H10⋯O3ii 0.93 2.55 3.220 (4) 129
C12—H12B⋯O3iii 0.96 2.56 3.414 (5) 149
Symmetry codes: (i) x-1, y, z; (ii) x, y-1, z-1; (iii) -x+2, -y+1, -z+1.
[Figure 1]
Figure 1
A view of the mol­ecular structure of the title mol­ecular salt, with atom labelling. Displacement ellipsoids are drawn at the 40% probability level. Hydrogen bonds are shown as dashed lines (see Table 1[link]).

3. Supra­molecular features

In the crystal, the anionic and cationic hydrogen-bonded units are linked via C—H⋯O hydrogen bonds, forming a three-dimensional structure (Figs. 2[link] and 3[link], and Table 1[link]). Within this framework there are slipped parallel ππ inter­actions present, involving inversion-related picrate anions [inter-centroid distance = 3.7389 (14) Å, inter-planar distance = 3.5829 (8) Å, slippage = 1.069 Å] and inversion-related pyridinium cations [inter-centroid distance = 3.560 (2) Å, inter-planar distance = 3.5548 (14) Å, slippage = 0.422 Å].

[Figure 2]
Figure 2
A view along the b axis of the crystal packing of the title mol­ecular salt. Hydrogen bonds are shown as dashed lines (see Table 1[link]), and H atoms not involved in these inter­actions have been omitted for clarity.
[Figure 3]
Figure 3
A view along the a axis of the crystal packing of the title mol­ecular salt. Hydrogen bonds are shown as dashed lines (see Table 1[link]), and H atoms not involved in these inter­actions have been omitted for clarity.

4. Anti­convulsant activity

The anti­convulsant activity of synthesized 3-methyl­pyridinium picrate has been measured by employing the maximal electro shock (MES) method (Bhattacharya & Chakrabarti, 1998[Bhattacharya, S. K. & Chakrabarti, A. (1998). Ind. J. Exp. Biol. 36, 118-121.]; Misra et al., 1973[Misra, A. K., Dandiya, P. C. & Kulkarni, S. K. (1973). Ind. J. Pharmacol. 5, 449-450.]). Different stages of convulsion such as tonic flexion, tonic extensor, clonus convulsion, stupor and recovery/death have been examined. Though all phases are reduced, noticeable decrease is observed in the clonus phase and hence the title mol­ecule may be a potent agent for controlling myoclonic type epilepsy in the future.

5. Database survey

A search of the Cambridge Structural Database (Version 5.36, last update May 2015; Groom & Allen, 2014[Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662-671.]) yielded 40 hits for meta- or para-substituted pyridinium picrate salts. In the picrate anions, the average dihedral angle of the nitro group para to the C—O bond with respect to the benzene ring is ca 6°, while for the two nitro groups on either side of the C—O bond the dihedral angles are both ca 26–28°. In the title compound, the latter two dihedral angles are quite different being 6.7 (3) and 70.07 (3)°. In the monoclinic polymorph (UBEFEO; Stilinovic & Kaitner, 2011[Stilinović, V. & Kaitner, B. (2011). Cryst. Growth Des. 11, 4110-4119.]), these three dihedal angle are ca 3.60, 6.92 and 13.83°, respectively, and the cation and anion are also linked via bifurcated N—H⋯(O,O) hydrogen bonds.

6. Synthesis and crystallization

Picryl chloride [2.56 g (0.01 mol)] was dissolved in 30 ml of rectified spirit and mixed with hydantoin [1.00 g (0.01 mol)] in 30 ml of rectified spirit. After mixing these solutions, 3 ml of 3-methyl­pyridine (0.03 mol) was added and the temperature of the mixture was raised to 313 K. At this temperature, the mixture was stirred for 5 to 6 h. The solution was then cooled to room temperature, filtered and the filtrate kept at 298 K. After a period of 4 weeks, dark shiny maroon-red–coloured crystals formed from the solution. The crystals were filtered, powdered and dried. The dry solid was washed with 50 ml of dry ether (5 ml for each aliquot) and recrystallized from rectified spirit (yield: 60%; m.p. 483 K).

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The NH H atom was located in a difference Fourier map and freely refined. The C-bound H atoms were included in calculated positions and refined as riding: C—H = 0.93–0.96 Å with Uiso(H) = 1.2Ueq(C).

Table 2
Experimental details

Crystal data
Chemical formula C6H8N+·C6H2N3O7
Mr 322.24
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 293
a, b, c (Å) 8.1224 (5), 8.7016 (5), 11.3161 (6)
α, β, γ (°) 98.239 (3), 100.318 (3), 117.635 (3)
V3) 673.17 (7)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.13
Crystal size (mm) 0.35 × 0.30 × 0.25
 
Data collection
Diffractometer Bruker Kappa APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.952, 0.969
No. of measured, independent and observed [I > 2σ(I)] reflections 13299, 2374, 1717
Rint 0.029
(sin θ/λ)max−1) 0.595
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.131, 1.07
No. of reflections 2374
No. of parameters 212
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.24, −0.25
Computer programs: APEX2, SAINT and XPREP (Bruker, 2004[Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SIR92 (Altomare et al., 1993[Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Chemical context top

Stilinovic & Kaitner (2011) have synthesized a series of 20 crystalline picrates of pyridine derivatives and through single crystal X-ray diffraction studies revealed the presence of a common synthon. They reported the crystal structure of the monoclinic polymorph of the title molecular salt: space group P21/n.

The observation that the presence of more than one heterocyclic component in a molecule enhances the biological response and thermal stability encouraged us to synthesize several new carbon-bonded anionic sigma complexes from chloro­nitro-aromatic compounds and pyrimidine derivatives in the presence of pyridine bases (Babykala et al., 2014; Buvaneswari & Kalaivani, 2013; Mangaiyarkarasi & Kalaivani, 2013; Manickkam & Kalaivani, 2011, 2014; Sridevi & Kalaivani, 2012). Surprisingly, when we made an attempt to synthesize a similar type of complex from the electron-deficient chloro­nitro­aromatic compound (picryl chloride), an imidazole derivative (hydantoin) and 3-methyl­pyridine, the title salt crystallized from the medium (ethanol) instead of the expected carbon-bonded anionic sigma complex.

Structural commentary top

The molecular structure of the title molecular salt is shown in Fig. 1. The anion and cation are linked via bifurcated N—H···(O,O) hydrogen bonds, enclosing an R21(6) graph-set motif (Fig. 1 and Table 1). In the picrate anion, the two nitro groups flanking the C—O- bond are oriented differently. Nitro group O1/N1/O2, involved in N—H···O hydrogen bonds as noted above, is inclined to the benzene ring by 6.7 (3)°, while nitro group O5/N3/O6 is inclined to the benzene ring by 70.07 (3)°, probably to alleviate steric crowding. The third nitro group (O3/N2/O4), para with respect to the C—O- bond, deviates only slightly from the benzene ring, making a dihedral angle of 6.6 (3)°.

Supra­molecular features top

In the crystal, the anionic and cationic hydrogen-bonded units are linked via C—H···O hydrogen bonds, forming a three-dimensional structure (Figs. 2 and 3, and Table 1). Within this framework there are slipped parallel ππ inter­actions present, involving inversion-related picrate anions [inter-centroid distance = 3.7389 (14) Å, inter-planar distance = 3.5829 (8) Å, slippage = 1.069 Å] and inversion-related pyridinium cations [inter-centroid distance = 3.560 (2) Å, inter-planar distance = 3.5548 (14) Å, slippage = 0.422 Å].

Anti­convulsant activity top

The anti­convulsant activity of synthesized 3-methyl­pyridinium picrate has been measured by employing the maximal electro shock (MES) method (Bhattacharya & Chakrabarti, 1998; Misra et al., 1973). Different stages of convulsion such as tonic flexion, tonic extensor, clonus convulsion, stupor and recovery/death have been examined. Though all phases are reduced, noticeable decrease is observed in the clonus phase and hence the title molecule may be a potent agent for controlling myoclonic type epilepsy in the future.

Database survey top

A search of the Cambridge Structural Database (Version 5.36, last update May 2015; Groom & Allen, 2014) yielded 40 hits for meta- or para-substituted pyridinium picrate salts. In the picrate anions, the average dihedral angle of the nitro group para to the C—O- bond with respect to the benzene ring is ca 6°, while for the two nitro groups on either side of the C—O- bond the dihedral angles are both ca 26–28°. In the title compound, the latter two dihedral angles are quite different being 6.7 (3) and 70.07 (3)°. In the monoclinic polymorph (UBEFEO; Stilinovic & Kaitner, 2011), these three dihedal angle are ca 3.60, 6.92 and 13.83°, respectively, and the cation and anion are also linked via bifurcated N—H···(O,O) hydrogen bonds.

Synthesis and crystallization top

Picryl chloride [2.56 g (0.01 mol)] was dissolved in 30 ml of rectified spirit and mixed with hydantoin [1.00 g (0.01 mol)] in 30 ml of rectified spirit. After mixing these solutions, 3 ml of 3-methyl­pyridine (0.03 mol) was added and the temperature of the mixture was raised to 313 K. At this temperature, the mixture was stirred for 5 to 6 h. The solution was then cooled to room temperature, filtered and the filtrate kept at 298 K. After a period of 4 weeks, dark shiny maroon-red–coloured crystals formed from the solution. The crystals were filtered, powdered and dried. The dry solid was washed with 50 ml of dry ether (5 ml for each aliquot) and recrystallized from rectified spirit (yield: 60 %; m.p.: 483 K).

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 2. The NH H atom was located in a difference Fourier map and freely refined. The C-bound H atoms were included in calculated positions and refined as riding: C—H = 0.93–0.96 Å with Uiso(H) = 1.2Ueq(C).

Related literature top

For related literature, see: Bhattacharya & Chakrabarti (1998); Buvaneswari & Kalaivani (2013); Manickkam & Kalaivani (2011, 2014); Sridevi & Kalaivani (2012); Stilinovic & Kaitner (2011).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. A view of the molecular structure of the title molecular salt, with atom labelling. Displacement ellipsoids are drawn at the 40% probability level. Hydrogen bonds are shown as dashed lines (see Table 1).
[Figure 2] Fig. 2. A view along the b axis of the crystal packing of the title molecular salt. Hydrogen bonds are shown as dashed lines (see Table 1), and H atoms not involved in these interactions have been omitted for clarity.
[Figure 3] Fig. 3. A view along the a axis of the crystal packing of the title molecular salt. Hydrogen bonds are shown as dashed lines (see Table 1), and H atoms not involved in these interactions have been omitted for clarity.
3-Methylpyridinium 2,4,6-trinitrophenolate top
Crystal data top
C6H8N+·C6H2N3O7Z = 2
Mr = 322.24F(000) = 332
Triclinic, P1Dx = 1.590 Mg m3
a = 8.1224 (5) ÅMo Kα radiation, λ = 0.71073 Å
b = 8.7016 (5) ÅCell parameters from 5179 reflections
c = 11.3161 (6) Åθ = 2.7–26.9°
α = 98.239 (3)°µ = 0.13 mm1
β = 100.318 (3)°T = 293 K
γ = 117.635 (3)°Block, red
V = 673.17 (7) Å30.35 × 0.30 × 0.25 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2374 independent reflections
Radiation source: fine-focus sealed tube1717 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
ω and φ scanθmax = 25.0°, θmin = 2.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 99
Tmin = 0.952, Tmax = 0.969k = 1010
13299 measured reflectionsl = 1313
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.045H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.131 w = 1/[σ2(Fo2) + (0.0452P)2 + 0.5934P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max < 0.001
2374 reflectionsΔρmax = 0.24 e Å3
212 parametersΔρmin = 0.25 e Å3
Crystal data top
C6H8N+·C6H2N3O7γ = 117.635 (3)°
Mr = 322.24V = 673.17 (7) Å3
Triclinic, P1Z = 2
a = 8.1224 (5) ÅMo Kα radiation
b = 8.7016 (5) ŵ = 0.13 mm1
c = 11.3161 (6) ÅT = 293 K
α = 98.239 (3)°0.35 × 0.30 × 0.25 mm
β = 100.318 (3)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2374 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
1717 reflections with I > 2σ(I)
Tmin = 0.952, Tmax = 0.969Rint = 0.029
13299 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.131H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 0.24 e Å3
2374 reflectionsΔρmin = 0.25 e Å3
212 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.6227 (3)0.5359 (3)0.3281 (2)0.0338 (5)
C20.8010 (3)0.6555 (3)0.4224 (2)0.0342 (5)
C30.8216 (3)0.7875 (3)0.5161 (2)0.0371 (6)
H30.94050.86160.57550.044*
C40.6675 (3)0.8101 (3)0.5224 (2)0.0356 (6)
C50.4892 (3)0.7045 (3)0.4328 (2)0.0352 (6)
H50.38540.72220.43560.042*
C60.4730 (3)0.5752 (3)0.3417 (2)0.0320 (5)
C70.7112 (4)0.0619 (4)0.1648 (3)0.0537 (7)
H70.68060.02720.23550.064*
C80.7330 (4)0.0490 (4)0.0772 (2)0.0441 (6)
C90.7774 (4)0.0108 (4)0.0253 (2)0.0460 (7)
H90.79110.06100.08750.055*
C100.8018 (4)0.1739 (4)0.0378 (3)0.0516 (7)
H100.83350.21320.10710.062*
C110.7792 (4)0.2771 (4)0.0525 (3)0.0530 (7)
H110.79600.38850.04600.064*
C120.7062 (5)0.2262 (4)0.0915 (3)0.0683 (9)
H12A0.72740.28350.02140.102*
H12B0.79720.20840.16650.102*
H12C0.57690.30070.09570.102*
N10.9729 (3)0.6445 (3)0.4219 (2)0.0495 (6)
N20.6903 (3)0.9444 (3)0.6245 (2)0.0461 (6)
N30.2906 (3)0.4686 (3)0.24334 (19)0.0398 (5)
N40.7332 (3)0.2180 (4)0.1493 (2)0.0549 (7)
O10.9718 (3)0.5443 (3)0.3360 (3)0.0885 (9)
O21.1190 (3)0.7419 (4)0.5074 (2)0.0792 (8)
O30.8528 (3)1.0446 (3)0.69676 (19)0.0630 (6)
O40.5489 (3)0.9540 (3)0.6359 (2)0.0670 (6)
O50.2505 (3)0.5433 (3)0.1711 (2)0.0799 (7)
O60.1909 (3)0.3122 (3)0.2365 (2)0.0673 (6)
O70.5902 (3)0.4101 (3)0.24116 (17)0.0518 (5)
H4A0.712 (6)0.291 (5)0.205 (4)0.093 (12)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0374 (13)0.0393 (13)0.0313 (12)0.0242 (11)0.0115 (10)0.0080 (10)
C20.0287 (12)0.0393 (13)0.0389 (13)0.0200 (10)0.0124 (10)0.0079 (10)
C30.0301 (13)0.0386 (13)0.0358 (13)0.0136 (10)0.0085 (10)0.0050 (10)
C40.0384 (14)0.0339 (12)0.0345 (12)0.0186 (11)0.0138 (11)0.0031 (10)
C50.0361 (13)0.0396 (13)0.0381 (13)0.0246 (11)0.0141 (11)0.0084 (11)
C60.0310 (12)0.0372 (12)0.0302 (12)0.0203 (10)0.0074 (10)0.0063 (10)
C70.0408 (16)0.072 (2)0.0438 (15)0.0268 (14)0.0152 (12)0.0057 (14)
C80.0328 (13)0.0488 (15)0.0427 (15)0.0188 (12)0.0067 (11)0.0002 (12)
C90.0453 (15)0.0493 (15)0.0403 (14)0.0272 (13)0.0078 (12)0.0050 (12)
C100.0584 (18)0.0547 (17)0.0434 (15)0.0330 (14)0.0112 (13)0.0048 (13)
C110.0496 (17)0.0504 (16)0.0557 (18)0.0304 (14)0.0038 (14)0.0005 (14)
C120.067 (2)0.062 (2)0.076 (2)0.0307 (17)0.0222 (18)0.0207 (17)
N10.0350 (13)0.0548 (14)0.0596 (15)0.0254 (11)0.0136 (11)0.0064 (12)
N20.0503 (14)0.0424 (12)0.0428 (12)0.0233 (11)0.0148 (11)0.0009 (10)
N30.0386 (12)0.0480 (13)0.0360 (11)0.0269 (11)0.0076 (9)0.0048 (10)
N40.0416 (13)0.0639 (16)0.0530 (15)0.0316 (12)0.0076 (11)0.0137 (13)
O10.0459 (13)0.0855 (16)0.114 (2)0.0365 (12)0.0156 (13)0.0352 (15)
O20.0415 (12)0.116 (2)0.0693 (15)0.0458 (13)0.0011 (11)0.0092 (14)
O30.0572 (13)0.0555 (12)0.0524 (12)0.0195 (10)0.0083 (10)0.0134 (10)
O40.0646 (14)0.0736 (14)0.0663 (14)0.0430 (12)0.0233 (11)0.0078 (11)
O50.0700 (16)0.0835 (16)0.0718 (15)0.0343 (13)0.0089 (12)0.0310 (13)
O60.0546 (13)0.0478 (13)0.0684 (14)0.0122 (10)0.0058 (10)0.0049 (10)
O70.0504 (11)0.0585 (12)0.0472 (11)0.0367 (10)0.0068 (9)0.0093 (9)
Geometric parameters (Å, º) top
C1—O71.251 (3)C9—C101.371 (4)
C1—C21.432 (3)C9—H90.9300
C1—C61.434 (3)C10—C111.357 (4)
C2—C31.372 (3)C10—H100.9300
C2—N11.444 (3)C11—N41.318 (4)
C3—C41.366 (3)C11—H110.9300
C3—H30.9300C12—H12A0.9600
C4—C51.394 (3)C12—H12B0.9600
C4—N21.439 (3)C12—H12C0.9600
C5—C61.351 (3)N1—O11.205 (3)
C5—H50.9300N1—O21.218 (3)
C6—N31.461 (3)N2—O41.217 (3)
C7—N41.326 (4)N2—O31.230 (3)
C7—C81.375 (4)N3—O61.199 (3)
C7—H70.9300N3—O51.205 (3)
C8—C91.377 (4)N4—H4A0.93 (4)
C8—C121.491 (4)
O7—C1—C2127.4 (2)C8—C9—H9119.3
O7—C1—C6120.7 (2)C11—C10—C9119.0 (3)
C2—C1—C6111.90 (19)C11—C10—H10120.5
C3—C2—C1123.2 (2)C9—C10—H10120.5
C3—C2—N1116.0 (2)N4—C11—C10119.4 (3)
C1—C2—N1120.8 (2)N4—C11—H11120.3
C4—C3—C2120.0 (2)C10—C11—H11120.3
C4—C3—H3120.0C8—C12—H12A109.5
C2—C3—H3120.0C8—C12—H12B109.5
C3—C4—C5121.2 (2)H12A—C12—H12B109.5
C3—C4—N2119.0 (2)C8—C12—H12C109.5
C5—C4—N2119.7 (2)H12A—C12—H12C109.5
C6—C5—C4117.4 (2)H12B—C12—H12C109.5
C6—C5—H5121.3O1—N1—O2121.1 (2)
C4—C5—H5121.3O1—N1—C2120.0 (2)
C5—C6—C1126.1 (2)O2—N1—C2118.8 (2)
C5—C6—N3118.5 (2)O4—N2—O3122.8 (2)
C1—C6—N3115.36 (19)O4—N2—C4119.0 (2)
N4—C7—C8120.7 (3)O3—N2—C4118.2 (2)
N4—C7—H7119.6O6—N3—O5123.3 (2)
C8—C7—H7119.6O6—N3—C6119.3 (2)
C7—C8—C9116.5 (3)O5—N3—C6117.4 (2)
C7—C8—C12121.8 (3)C11—N4—C7123.0 (2)
C9—C8—C12121.8 (2)C11—N4—H4A115 (2)
C10—C9—C8121.5 (2)C7—N4—H4A122 (2)
C10—C9—H9119.3
O7—C1—C2—C3178.4 (2)C7—C8—C9—C101.2 (4)
C6—C1—C2—C31.9 (3)C12—C8—C9—C10180.0 (3)
O7—C1—C2—N12.7 (4)C8—C9—C10—C110.8 (4)
C6—C1—C2—N1177.0 (2)C9—C10—C11—N40.4 (4)
C1—C2—C3—C40.2 (4)C3—C2—N1—O1172.7 (3)
N1—C2—C3—C4178.7 (2)C1—C2—N1—O16.3 (4)
C2—C3—C4—C51.9 (4)C3—C2—N1—O25.0 (4)
C2—C3—C4—N2177.4 (2)C1—C2—N1—O2176.0 (3)
C3—C4—C5—C62.0 (4)C3—C4—N2—O4173.7 (2)
N2—C4—C5—C6177.3 (2)C5—C4—N2—O45.6 (4)
C4—C5—C6—C10.0 (4)C3—C4—N2—O36.1 (4)
C4—C5—C6—N3177.0 (2)C5—C4—N2—O3174.6 (2)
O7—C1—C6—C5178.5 (2)C5—C6—N3—O6112.1 (3)
C2—C1—C6—C51.8 (3)C1—C6—N3—O670.5 (3)
O7—C1—C6—N34.4 (3)C5—C6—N3—O569.4 (3)
C2—C1—C6—N3175.3 (2)C1—C6—N3—O5108.0 (3)
N4—C7—C8—C90.3 (4)C10—C11—N4—C71.4 (4)
N4—C7—C8—C12179.1 (3)C8—C7—N4—C111.0 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4A···O10.93 (4)2.27 (4)2.827 (4)118 (4)
N4—H4A···O70.93 (4)1.79 (5)2.638 (4)152 (4)
C5—H5···O2i0.932.513.406 (4)162
C10—H10···O3ii0.932.553.220 (4)129
C12—H12B···O3iii0.962.563.414 (5)149
Symmetry codes: (i) x1, y, z; (ii) x, y1, z1; (iii) x+2, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4A···O10.93 (4)2.27 (4)2.827 (4)118 (4)
N4—H4A···O70.93 (4)1.79 (5)2.638 (4)152 (4)
C5—H5···O2i0.932.513.406 (4)162
C10—H10···O3ii0.932.553.220 (4)129
C12—H12B···O3iii0.962.563.414 (5)149
Symmetry codes: (i) x1, y, z; (ii) x, y1, z1; (iii) x+2, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC6H8N+·C6H2N3O7
Mr322.24
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)8.1224 (5), 8.7016 (5), 11.3161 (6)
α, β, γ (°)98.239 (3), 100.318 (3), 117.635 (3)
V3)673.17 (7)
Z2
Radiation typeMo Kα
µ (mm1)0.13
Crystal size (mm)0.35 × 0.30 × 0.25
Data collection
DiffractometerBruker Kappa APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2004)
Tmin, Tmax0.952, 0.969
No. of measured, independent and
observed [I > 2σ(I)] reflections
13299, 2374, 1717
Rint0.029
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.131, 1.07
No. of reflections2374
No. of parameters212
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.24, 0.25

Computer programs: APEX2 (Bruker, 2004), APEX2 and SAINT (Bruker, 2004), SAINT and XPREP (Bruker, 2004), SIR92 (Altomare et al., 1993), ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008), SHELXL2014 (Sheldrick, 2015) and PLATON (Spek, 2009).

 

Acknowledgements

The authors are thankful to the DST–SERB, New Delhi, for financial support and the SAIF, IIT Madras, Chennai, for the single crystal XRD data collection.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBabykala, R., Rajamani, K., Muthulakshmi, S. & Kalaivani, D. (2014). J. Chem. Crystallogr. 44, 243–254.  Web of Science CSD CrossRef CAS Google Scholar
First citationBhattacharya, S. K. & Chakrabarti, A. (1998). Ind. J. Exp. Biol. 36, 118–121.  CAS Google Scholar
First citationBruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBuvaneswari, M. & Kalaivani, D. (2013). J. Chem. Crystallogr. 43, 561–567.  Web of Science CSD CrossRef CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671.  Web of Science CSD CrossRef CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMangaiyarkarasi, G. & Kalaivani, D. (2013). Crystallogr. Rep. 58, 1096–1102.  CSD CrossRef CAS Google Scholar
First citationManickkam, V. & Kalaivani, D. (2011). Acta Cryst. E67, o3475.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationManickkam, V. & Kalaivani, D. (2014). Acta Cryst. E70, 256–258.  CSD CrossRef IUCr Journals Google Scholar
First citationMisra, A. K., Dandiya, P. C. & Kulkarni, S. K. (1973). Ind. J. Pharmacol. 5, 449–450.  Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSridevi, G. & Kalaivani, D. (2012). Acta Cryst. E68, o1044.  CSD CrossRef IUCr Journals Google Scholar
First citationStilinović, V. & Kaitner, B. (2011). Cryst. Growth Des. 11, 4110–4119.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 10| October 2015| Pages 1196-1198
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds