research communications
of 4′-{[4-(2,2′:6′,2′′-terpyridyl-4′-yl)phenyl]ethynyl}biphenyl-4-yl (2,2,5,5-tetramethyl-1-oxyl-3-pyrrolin-3-yl)formate benzene 2.5-solvate
aUniversity of Bonn, Institute of Physical and Theoretical Chemistry, Wegelerstr. 12, 53115 Bonn, Germany, and bUniversity of Bonn, Institute of Inorganic Chemistry, Gerhard-Domagk-Strasse 1, 53121 Bonn, Germany
*Correspondence e-mail: schiemann@pc.uni-bonn.de
The title compound, C44H35N4O3·2.5C6H6 (1), consists of a terpyridine and a N-oxylpyrroline-3-formate group separated by an aromatic spacer, viz. 4-(phenylethynyl)-1,1′-biphenyl. It crystallized in the triclinic P-1 with two and a half benzene solvate molecules (one benzene molecule is located about an inversion center), while the dichloromethane solvate (2) of the same molecule [Ackermann et al. (2015). Chem. Commun. 51, 5257–5260] crystallized in the tetragonal P42/n, with considerable disorder in the molecule. In (1), the terpyridine (terpy) group assumes an all-trans conformation typical for terpyridines. It is essentially planar with the two outer pyridine rings (B and C) inclined to the central pyridine ring (A) by 8.70 (15) and 14.55 (14)°, respectively. The planes of the aromatic spacer (D, E and F) are nearly coplanar with dihedral angles D/E, D/F and E/F being 3.42 (15), 5.80 (15) and 4.00 (16)°, respectively. It is twisted with respect to the terpy group with, for example, dihedral angle A/D being 24.48 (14)°. The mean plane of the N-oxylpyrroline is almost normal to the biphenyl ring F, making a dihedral angle of 86.57 (16)°, and it is inclined to pyridine ring A by 72.61 (15)°. The intramolecular separation between the O atom of the nitroxyl group and the N atom of the central pyridine ring of the terpyridine group is 25.044 (3) Å. In the crystal, molecules are linked by pairs of C—H⋯O hydrogen bonds, forming inversion dimers. The dimers stack along the c axis forming columns. Within and between the columns, the spaces are occupied by benzene molecules. The shortest oxygen–oxygen separation between nitroxyl groups is 4.004 (4) Å. The details of the title compound are compared with those of the dichloromethane solvate (2) and with the structure of a related molecule, 4′-{4-[(2,2,5,5-tetramethyl-N-oxyl-3-pyrrolin-3-yl)ethynyl]phenyl}-2,2′:6′,2′′-terpyridine (3), which has an ethynylphenyl spacer [Meyer et al. (2015). Acta Cryst. E71, 870–874].
Keywords: crystal structure; terpyridine; nitroxyl; nitroxide; phenylethynylbiphenyl; ethynylphenyl; C—H⋯π interactions; π–π interactions; hydrogen bonds.
CCDC reference: 1426093
1. Chemical context
The title compound (1) was synthesized as a ligand for 3d metal ions in the framework of a pulsed EPR study on metal–nitroxyl model systems. It contains a nitroxyl group and a terpyridine (terpy) group which is capable of taking up metal ions. The title compound resembles compound (3) (4′-{4-[(2,2,5,5-tetramethyl-N-oxyl-3-pyrrolin-3-yl)ethynyl]phenyl}-2,2′:6′,2′′-terpyridine), which has an ethynylphenyl spacer (Meyer et al., 2015a), compared to the phenylethynylbiphenyl spacer in the title compound (1). Nitroxyls are of interest in various branches of chemistry including magnetochemistry (Rajca et al., 2006; Fritscher et al., 2002), synthetic chemistry (Hoover & Stahl, 2011; Fey et al., 2001) and structural biology (Reginsson & Schiemann, 2011). Terpyridines show pH-dependent luminescence properties which have been analyzed in terms of a pH-dependent cis–trans isomerization (Nakamoto, 1960; Fink & Ohnesorge, 1970). Structural investigations in the solid state reveal an exclusive preference for the trans conformation (Fallahpour et al., 1999; Eryazici et al., 2006; Bessel et al., 1992; Grave et al., 2003). Terpyridines have been shown to be versatile ligands for various metal ions (Hogg & Wilkins, 1962; Constable et al., 1999; Narr et al., 2002; Meyer et al., 2015b; Folgado et al., 1990).
2. Structural commentary
The molecular structure of the title compound, (1), is shown in Fig. 1. The of the dichloromethane solvate (2) of the title compound has been reported (Ackermann et al., 2015). However, these authors used a different protocol for the crystallization of (1) and the conformation of (2) differs markedly from the one presented herein, as shown in the structural overlay of the two compounds (Fig. 2). The structural overlay of compounds (1) and (3) also illustrate the differences in their conformations (Fig. 3).
In (1) the terpy group assumes the usual all–trans conformation (Meyer et al., 2015a; Fallahpour et al., 1999; Eryazici et al., 2006; Bessel et al., 1992; Grave et al., 2003). It is essentially planar with the two outer rings B (N3/C35–C39) and C (N4/C40–C44) being inclined to the central pyridine ring A (N2/C30–C34) by 8.70 (15) and 14.55 (14)°, respectively. The conformation of the nitroxyl group in (1) is similar to that found in (3), with a planar pyrroline (N1/C1–C4) ring assuming an angle of 72.61 (15)° to the central pyridine ring A [see also Margraf et al. (2009) and Schuetz et al. (2010)]. In (3) this dihedral angle is 88.44 (7)°, while in (2) the same dihedral angle is 21.6 (2)°.
The N-oxylpyrroline-3-formate subunit is linked by a rigid spacer, consisting of a 4,4′-biphenylene, an ethynylene and a p-phenylene group, to the terpy subunit. The intramolecular separation of the nitroxyl and the terpy group is 25.044 (3) Å (measured between O1 and N2). The three phenyl groups within the spacer are nearly coplanar, with dihedral angles between the rings of 4.00 (16)°, for rings D (C10–C15) and E (C16–C21), and 3.42 (15)° for rings E and F (C24–C29). Compared to the structure of (3), the spacer is closer to coplanarity to the central pyridine ring: dihedral angle A/D is 24.48 (14)°, compared to 51.36 (7)° in (3). The ethynylene group is slightly bent as in (3), with angle C19–C22–C23 = 174.6 (3) and C22–C23–C24 = 177.8 (3)°. There are short C—H⋯N contacts in the molecule of 2.48 Å (H31⋯N3) and 2.49 Å (H34⋯N4). The same short contacts are also observed in (3). Such contacts have been classified as hydrogen bonds by Murguly et al. (1999).
3. Supramolecular features
In the crystal of (1), Fig. 4, molecules form layers which are nearly coplanar with the (01) plane. Neighbouring layers differ in the orientation of the molecules and each layer is separated by layers of solvent molecules. This arrangement possibly leads to favorable dispersive interactions although only one short C—H⋯π contact is observed between the solvent molecules and molecules of (1) (Table 1). Short π–π contacts are observed between the C rings of neighbouring molecules and between the B and C rings (Fig. 5). The centroid-to-centroid distances are 3.678 (2) and 3.8915 (18) Å, respectively, and can be classified as slipped face-to-face π-interactions (Janiak, 2000).
Within the planes, there are weak C—H⋯O hydrogen bonds between the nitroxyl-O atom and the para-hydrogen atom of pyridine ring B (Table 1). Furthermore, two weak hydrogen bonds per molecule are formed between pairs of layers (Table 1). One of these hydrogen bonds involves the nitroxyl O atom and a hydrogen atom of a methyl group of a molecule from a neighboring layer. The other hydrogen bond is formed between the carbonylic O atom of the carboxylate group and a meta-hydrogen atom of one of the outer pyridine rings of a molecule from a neighboring layer. As the layers are hydrogen bonded pair-wise, the structure can also be described as consisting of double-layers.
It is noteworthy that the arrangement of the molecules of the title compound strongly depends upon the solvents of crystallization. In compound (1), the molecules are arranged in layers and the benzene molecules fill out the channels between the layers formed by the aromatic spacers of the molecule. Close intermolecule contacts exist only between the functional groups. In the structure of (2) (Ackermann et al., 2015), the solvent of crystallization is dichloromethane instead of benzene and molecules are arranged having fourfold rotational The solvent molecules fill out channels between the molecules of (2), as in (1). However, the CH2Cl2 solvent molecules in (2) are in close proximity to the terpyridine groups instead of to the aromatic spacer. Weak hydrogen bonds are formed predominantly involving the O atoms as acceptors and the pyrroline and the pyridine rings as donors, as observed in (2) and (3). The shortest oxygen–oxygen separation between neighboring nitroxyl groups is 4.004 (4) Å. This O⋯O distance is an important factor determining the strength of through space exchange interactions of nitroxyls (Rajca et al. 2006).
4. Database survey
The Cambridge Structural Database (CSD, Version 5.36; Groom & Allen, 2014) has not been updated since our presentation of the structure of (2). The CSD query revealed, that non-coordinated terpyridines are arranged in an all-trans conformation, unless they are either protonated, lithiated or cannot assume an all-trans conformation for reasons of steric hindrance.
5. Synthesis and crystallization
The synthesis of the title compound (1), is illustrated in Fig. 6. 480 mg (1.45 mmol) of 4′-(4-ethynylphenyl)-2,2′:6′,2′′-terpyridine (Grosshenny & Ziessel, 1993), 780 mg (1.69 mmol) of 4′-iodo-p-biphen-4-yl-N-oxyl-2,2,5,5-tetramethylpyrroline-3-formate (Bode et al., 2008) and 85 mg (0.12 mmol) of tetrakis(triphenylphosphane)palladium(0) were dissolved in a mixture of 20 ml of triethylamine (TEA) and 9 ml of dimethylformamide (DMF) giving rise to an orange solution. The solution was heated to 323 K and stirred for 8 h after which the solvents were removed under reduced pressure. The resulting dark-orange powder was dissolved in dichloromethane (DCM) and subjected to using aluminum oxide (5% water, height 30 cm, diameter 2.3 cm). First, a mixture of DCM and hexane in a 1:2 ratio was used as until all remaining educt, reagents and side products were eluted (approximately 200–300 ml). The column was then eluted using pure DCM to obtain a yellow solution. Removing the solvent yielded the product as a pale-yellow solid (yield: 90%). Crystals suitable for X-ray crystallography were obtained by layering a solution of (1) in benzene with n-hexane.
6. Refinement
Crystal data, data collection and structure . The H atoms were included in calculated positions and treated as riding atoms: C-H = 0.95-0.98 Å with Uiso(H) = 1.5Ueq(C) for methyl H atoms and 1.2Ueq(C) for other H atoms. 16 reflections with bad agreement were omitted from the final cycles.
details are summarized in Table 2
|
Supporting information
CCDC reference: 1426093
10.1107/S2056989015017697/su5206sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S2056989015017697/su5206Isup2.hkl
The title compound (1) was synthesized as a ligand for 3d metal ions in the framework of a pulsed EPR study on metal–nitroxyl model systems. It contains a nitroxyl group and a terpyridine (terpy) group which is capable of taking up metal ions. The title compound resembles compound (3) (4'-{4-[(2,2,5,5-tetramethyl-N-oxyl-3-pyrrolin-3-yl)ethynyl]phenyl}-2,2':6',2''-terpyridine), which has an ethynylphenyl spacer (Meyer et al., 2015a), compared to the phenylethynylbiphenyl spacer in the title compound (1). Nitroxyls are of interest in various branches of chemistry including magnetochemistry (Rajca et al., 2006; Fritscher et al., 2002), synthetic chemistry (Hoover & Stahl, 2011; Fey et al., 2001) and structural biology (Reginsson & Schiemann, 2011). Terpyridines show pH-dependent luminescence properties which have been analyzed in terms of a pH-dependent cis–trans isomerization (Nakamoto, 1960; Fink & Ohnesorge, 1970). Structural investigations in the solid state reveal an exclusive preference for the
conformation (Fallahpour et al., 1999; Eryazici et al., 2006; Bessel et al., 1992; Grave et al., 2003). Terpyridines have been shown to be versatile ligands for various metal ions (Hogg & Wilkins, 1962; Constable et al., 1999; Narr et al., 2002; Meyer et al., 2015b; Folgado et al., 1990).The molecular structure of the title compound, (1), is shown in Fig. 1. The
of the dichloromethane solvate (2) of the title compound has been reported (Ackermann et al., 2015). However, these authors used a different protocol for the crystallization of (1) and the conformation of (2) differs markedly from the one presented herein, as shown in the structural overlay of the two compounds (Fig. 2). The structural overlay of compounds (1) and (3) also illustrate the differences in their conformations (Fig. 3).In (1) the terpy group assumes the usual all–trans conformation (Meyer et al., 2015a; Fallahpour et al., 1999; Eryazici et al., 2006; Bessel et al., 1992; Grave et al., 2003). It is essentially planar with the two outer rings B (N3/C35–C39) and C (N4/C40–C44) being inclined to the central pyridine ring A (N2/C30–C34) by 8.70 (15) and 14.55 (14)°, respectively. The conformation of the nitroxyl group in (1) is similar to that found in (3), with a planar pyrroline (N1/C1–C4) ring assuming an angle of 72.61 (15)° to the central pyridine ring A [see also Margraf et al. (2009) and Schuetz et al. (2010)]. In (3) this dihedral angle is 88.44 (7)°, while in (2) the same dihedral angle is 21.6 (2)°.
The N-oxylpyrroline-3-formate subunit is linked by a rigid spacer, consisting of a 4,4'biphenylene, an ethynylene and a p-phenylene group, to the terpy subunit. The intramolecular separation of the nitroxyl and the terpy group is 25.044 (3) Å (measured between O1 and N2). The three phenyl groups within the spacer are nearly coplanar, with dihedral angles between the rings of 4.00 (16)°, for rings D (C10–C15) and E (C16–C21), and 3.42 (15)° for rings E and F (C24–C29). Compared to the structure of (3), the spacer is closer to coplanarity to the central pyridine ring: dihedral angle A/D is 24.48 (14)°, compared to 51.36 (7)° in (3). The ethynylene group is slightly bent as in (3), with angle C19–C22–C23 = 174.6 (3) and C22–C23–C24 = 177.8 (3)°. There are short C—H···N contacts in the molecule of 2.48 Å (H31···N3) and 2.49 Å (H34···N4). The same short contacts are also observed in (3). Such contacts have been classified as hydrogen bonds by Murguly et al. (1999).
In the crystal of (1), Fig. 4, molecules form layers which are nearly coplanar with the (011) plane. Neighbouring layers differ in the orientation of the molecules and each layer is separated by layers of solvent molecules. This arrangement possibly leads to favorable dispersive interactions although only one short C—H···π contact is observed between the solvent molecules and molecules of (1) (Table 1). Short π–π contacts are observed between the C rings of neighbouring molecules and between the B and C rings (Fig. 5). The centroid-to-centroid distances are 3.678 (2) and 3.8915 (18) Å, respectively, and can be classified as slipped face-to-face π-interactions (Janiak, 2000).
Within the planes, there are weak C—H···O hydrogen bonds between the nitroxyl-O atom and the para-hydrogen atom of pyridine ring B (Table 1). Furthermore, two weak hydrogen bonds per molecule are formed between pairs of layers (Table 1). One of these hydrogen bonds involves the nitroxyl O atom and a hydrogen atom of a methyl group of a molecule from a neighboring layer. The other hydrogen bond is formed between the carbonylic O atom of the carboxylate group and a meta-hydrogen atom of one of the outer pyridine rings of a molecule from a neighboring layer. As the layers are hydrogen bonded pair-wise, the structure can also be described as consisting of double-layers.
It is noteworthy that the arrangement of the molecules of the title compound strongly depends upon the solvents of crystallization. In compound (1), the molecules are arranged in layers and the benzene molecules fill out the channels between the layers formed by the aromatic spacers of the molecule. Close intermolecule contacts exist only between the functional groups. In the structure of (2) (Ackermann et al., 2015), the solvent of crystallization is dichloromethane instead of benzene and molecules are arranged having fourfold rotational
The solvent molecules fill out channels between the molecules of (2), as in (1). However, the CH2Cl2 solvent molecules in (2) are in close proximity to the terpyridine groups instead of to the aromatic spacer. Weak hydrogen bonds are formed predominantly involving the O atoms as acceptors and the pyrroline and the pyridine rings as donors, as observed in (2) and (3). The shortest oxygen–oxygen separation between neighboring nitroxyl groups is 4.004 (4) Å. This O···O distance is an important factor determining the strength of through space exchange interactions of nitroxyls (Rajca et al. 2006).The Cambridge Structural Database (CSD, Version 5.36; Groom & Allen, 2014) has not been updated since our presentation of the structure of (2). The CSD query revealed, that non-coordinated terpyridines are arranged in an all-trans conformation, unless they are either protonated, lithiated or cannot assume an all-trans conformation for reasons of steric hindrance.
The synthesis of the title compound (1), is illustrated in Fig. 6. 480 mg (1.45 mmol) of 4'-(4-ethynylphenyl)-2,2':6',2''-terpyridine (Grosshenny & Ziessel, 1993), 780 mg (1.69 mmol) of 4'-iodo-p-biphen-4-yl-N- oxyl-2,2,5,5-tetramethylpyrroline-3-formate (Bode et al., 2008) and 85 mg (0.12 mmol) of tetrakis(triphenylphosphane)palladium(0) were dissolved in a mixture of 20 ml of triethylamine (TEA) and 9 ml of dimethylformamide (DMF) giving rise to an orange solution. The solution was heated to 323 K and stirred for 8 h after which the solvents were removed under reduced pressure. The resulting dark-orange powder was dissolved in dichloromethane (DCM) and subjected to
using aluminum oxide (5% water, height 30 cm, diameter 2.3 cm). First, a mixture of DCM and hexane in a 1:2 ratio was used as until all remaining educt, reagents and side products were eluted (approximately 200–300 ml). The column was then eluted using pure DCM to obtain a yellow solution. Removing the solvent yielded the product as a pale-yellow solid (yield: 90%). Crystals suitable for X-ray crystallography were obtained by layering a solution of (1) in benzene with n-hexane.Crystal data, data collection and structure
details are summarized in Table 2. The H atoms were included in calculated positions and treated as riding atoms: C—H = 0.95-0.98 Å with Uiso(H) = 1.5Ueq(C) for methyl H atoms and 1.2Ueq(C) for other H atoms. 16 reflections with bad agreement were omitted from the final cycles.Data collection: HKL DENZO and SCALEPACK (Otwinowski & Minor 1997); cell
HKL SCALEPACK (Otwinowski & Minor 1997); data reduction: HKL DENZO and SCALEPACK (Otwinowski & Minor 1997); program(s) used to solve structure: SHELXS97 (Sheldrick,2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015); molecular graphics: Olex2 (Dolomanov et al., 2009) and Mercury (Macrae et al., 2008); software used to prepare material for publication: Olex2 (Dolomanov et al., 2009).Fig. 1. The molecular structure of the title compound (1), with atom labelling. Displacement ellipsoids are drawn at 50% probability level. The benzene molecules and the H atoms have been omitted for clarity. | |
Fig. 2. The structural overlay of compounds (1) and (2) [title compound (1) blue, compound (2 – the dichloromethane solvate (Ackermann et al., 2015) – red]. | |
Fig. 3. The structural overlay of compounds (1) and (3) [title compound (1) blue, compound (3) – (Meyer et al., 2015a) – green]. | |
Fig. 4. Crystal packing of the title compound viewed along the a axis. Weak C—H···O hydrogen bonds are shown as dashed lines (see Table 1). H atoms not involved in C—H···O bonds have been omitted for clarity. | |
Fig. 5. π-stacking interactions between pyridine rings of neighboring molecules. H atoms have been omitted for clarity. | |
Fig. 6. The synthesis of the title compound (1). |
C44H35N4O3·2.5C6H6 | Z = 2 |
Mr = 863.03 | F(000) = 912 |
Triclinic, P1 | Dx = 1.230 Mg m−3 |
a = 5.7578 (1) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 18.0559 (4) Å | Cell parameters from 12020 reflections |
c = 23.3716 (6) Å | θ = 1.0–29.1° |
α = 105.5870 (13)° | µ = 0.08 mm−1 |
β = 93.7408 (13)° | T = 123 K |
γ = 92.6002 (14)° | Plate, yellow |
V = 2330.41 (9) Å3 | 0.28 × 0.20 × 0.08 mm |
Nonius KappaCCD diffractometer | 6356 reflections with I > 2σ(I) |
fine slicing φ and ω scans | Rint = 0.109 |
Absorption correction: multi-scan (SORTAV; Blessing, 1995) | θmax = 28.0°, θmin = 1.8° |
Tmin = 0.808, Tmax = 1.000 | h = −7→7 |
74528 measured reflections | k = −23→23 |
11227 independent reflections | l = −30→30 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.071 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.217 | H-atom parameters constrained |
S = 1.07 | w = 1/[σ2(Fo2) + (0.0715P)2 + 2.806P] where P = (Fo2 + 2Fc2)/3 |
11227 reflections | (Δ/σ)max < 0.001 |
587 parameters | Δρmax = 0.33 e Å−3 |
1 restraint | Δρmin = −0.27 e Å−3 |
C44H35N4O3·2.5C6H6 | γ = 92.6002 (14)° |
Mr = 863.03 | V = 2330.41 (9) Å3 |
Triclinic, P1 | Z = 2 |
a = 5.7578 (1) Å | Mo Kα radiation |
b = 18.0559 (4) Å | µ = 0.08 mm−1 |
c = 23.3716 (6) Å | T = 123 K |
α = 105.5870 (13)° | 0.28 × 0.20 × 0.08 mm |
β = 93.7408 (13)° |
Nonius KappaCCD diffractometer | 11227 independent reflections |
Absorption correction: multi-scan (SORTAV; Blessing, 1995) | 6356 reflections with I > 2σ(I) |
Tmin = 0.808, Tmax = 1.000 | Rint = 0.109 |
74528 measured reflections |
R[F2 > 2σ(F2)] = 0.071 | 1 restraint |
wR(F2) = 0.217 | H-atom parameters constrained |
S = 1.07 | Δρmax = 0.33 e Å−3 |
11227 reflections | Δρmin = −0.27 e Å−3 |
587 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.2370 (5) | −0.01295 (16) | 0.10190 (12) | 0.0227 (6) | |
C2 | 0.3869 (5) | −0.03265 (16) | 0.15104 (12) | 0.0228 (6) | |
C3 | 0.4509 (5) | −0.10465 (16) | 0.13551 (13) | 0.0243 (6) | |
H3 | 0.5452 | −0.1260 | 0.1611 | 0.029* | |
C4 | 0.3597 (5) | −0.14879 (16) | 0.07364 (13) | 0.0258 (6) | |
C5 | −0.0104 (5) | 0.00458 (18) | 0.11846 (14) | 0.0299 (7) | |
H5A | −0.1095 | 0.0036 | 0.0825 | 0.045* | |
H5B | −0.0082 | 0.0557 | 0.1468 | 0.045* | |
H5C | −0.0727 | −0.0343 | 0.1367 | 0.045* | |
C6 | 0.3447 (5) | 0.04980 (17) | 0.07767 (14) | 0.0294 (7) | |
H6A | 0.5016 | 0.0368 | 0.0661 | 0.044* | |
H6B | 0.3544 | 0.0991 | 0.1085 | 0.044* | |
H6C | 0.2475 | 0.0539 | 0.0428 | 0.044* | |
C7 | 0.4547 (5) | 0.02506 (17) | 0.20817 (13) | 0.0242 (6) | |
C8 | 0.5527 (5) | −0.17353 (18) | 0.03214 (14) | 0.0319 (7) | |
H8A | 0.4832 | −0.1971 | −0.0085 | 0.048* | |
H8B | 0.6441 | −0.2110 | 0.0456 | 0.048* | |
H8C | 0.6548 | −0.1284 | 0.0326 | 0.048* | |
C9 | 0.1932 (5) | −0.21795 (18) | 0.07291 (15) | 0.0343 (7) | |
H9A | 0.0694 | −0.2006 | 0.0993 | 0.051* | |
H9B | 0.2799 | −0.2562 | 0.0867 | 0.051* | |
H9C | 0.1238 | −0.2412 | 0.0322 | 0.051* | |
C10 | 0.6996 (5) | 0.04666 (16) | 0.29676 (13) | 0.0280 (7) | |
C11 | 0.9052 (6) | 0.08515 (19) | 0.29138 (14) | 0.0358 (7) | |
H11 | 0.9637 | 0.0790 | 0.2534 | 0.043* | |
C12 | 1.0255 (6) | 0.13289 (19) | 0.34188 (14) | 0.0342 (7) | |
H12 | 1.1682 | 0.1591 | 0.3381 | 0.041* | |
C13 | 0.9437 (5) | 0.14379 (16) | 0.39818 (13) | 0.0256 (6) | |
C14 | 0.7358 (5) | 0.10257 (19) | 0.40168 (14) | 0.0330 (7) | |
H14 | 0.6767 | 0.1076 | 0.4395 | 0.040* | |
C15 | 0.6137 (6) | 0.05439 (19) | 0.35106 (14) | 0.0342 (7) | |
H15 | 0.4721 | 0.0271 | 0.3542 | 0.041* | |
C16 | 1.0710 (5) | 0.19732 (17) | 0.45189 (13) | 0.0253 (6) | |
C17 | 1.2858 (6) | 0.23439 (19) | 0.44816 (14) | 0.0360 (8) | |
H17 | 1.3476 | 0.2258 | 0.4104 | 0.043* | |
C18 | 1.4098 (6) | 0.2824 (2) | 0.49680 (14) | 0.0361 (8) | |
H18 | 1.5546 | 0.3067 | 0.4922 | 0.043* | |
C19 | 1.3264 (5) | 0.29639 (17) | 0.55323 (13) | 0.0285 (7) | |
C20 | 1.1098 (6) | 0.2615 (2) | 0.55805 (14) | 0.0366 (8) | |
H20 | 1.0467 | 0.2711 | 0.5957 | 0.044* | |
C21 | 0.9861 (5) | 0.21278 (19) | 0.50809 (14) | 0.0345 (7) | |
H21 | 0.8395 | 0.1893 | 0.5123 | 0.041* | |
C22 | 1.4677 (5) | 0.34418 (17) | 0.60378 (14) | 0.0299 (7) | |
C23 | 1.6001 (5) | 0.38338 (17) | 0.64283 (13) | 0.0288 (7) | |
C24 | 1.7619 (5) | 0.43207 (17) | 0.68813 (13) | 0.0273 (6) | |
C25 | 1.9752 (5) | 0.45919 (17) | 0.67281 (13) | 0.0296 (7) | |
H25 | 2.0113 | 0.4455 | 0.6324 | 0.036* | |
C26 | 2.1331 (5) | 0.50571 (17) | 0.71624 (13) | 0.0285 (7) | |
H26 | 2.2755 | 0.5242 | 0.7051 | 0.034* | |
C27 | 2.0868 (5) | 0.52596 (15) | 0.77632 (13) | 0.0235 (6) | |
C28 | 1.8728 (5) | 0.49925 (16) | 0.79124 (13) | 0.0256 (6) | |
H28 | 1.8368 | 0.5129 | 0.8317 | 0.031* | |
C29 | 1.7132 (5) | 0.45334 (16) | 0.74799 (13) | 0.0265 (6) | |
H29 | 1.5689 | 0.4361 | 0.7591 | 0.032* | |
C30 | 2.2616 (5) | 0.57301 (15) | 0.82326 (12) | 0.0230 (6) | |
C31 | 2.4348 (5) | 0.62120 (16) | 0.80997 (13) | 0.0247 (6) | |
H31 | 2.4364 | 0.6278 | 0.7710 | 0.030* | |
C32 | 2.6059 (5) | 0.65965 (16) | 0.85480 (12) | 0.0241 (6) | |
C33 | 2.4383 (5) | 0.60956 (16) | 0.92376 (13) | 0.0240 (6) | |
C34 | 2.2643 (5) | 0.56824 (16) | 0.88191 (12) | 0.0244 (6) | |
H34 | 2.1482 | 0.5370 | 0.8931 | 0.029* | |
C35 | 2.7986 (5) | 0.70819 (16) | 0.84142 (13) | 0.0249 (6) | |
C36 | 2.9585 (5) | 0.75177 (17) | 0.88581 (14) | 0.0292 (7) | |
H36 | 2.9416 | 0.7538 | 0.9264 | 0.035* | |
C37 | 3.1439 (5) | 0.79252 (17) | 0.87052 (14) | 0.0310 (7) | |
H37 | 3.2553 | 0.8228 | 0.9004 | 0.037* | |
C38 | 3.1634 (6) | 0.78823 (18) | 0.81163 (14) | 0.0337 (7) | |
H38 | 3.2898 | 0.8146 | 0.7996 | 0.040* | |
C39 | 2.9941 (6) | 0.7444 (2) | 0.77017 (15) | 0.0388 (8) | |
H39 | 3.0071 | 0.7421 | 0.7294 | 0.047* | |
C40 | 2.4478 (5) | 0.60351 (15) | 0.98644 (12) | 0.0236 (6) | |
C41 | 2.6483 (5) | 0.62869 (17) | 1.02509 (13) | 0.0279 (6) | |
H41 | 2.7844 | 0.6482 | 1.0117 | 0.033* | |
C42 | 2.6446 (6) | 0.62468 (18) | 1.08338 (13) | 0.0320 (7) | |
H42 | 2.7765 | 0.6429 | 1.1111 | 0.038* | |
C43 | 2.4456 (6) | 0.59362 (18) | 1.10055 (14) | 0.0333 (7) | |
H43 | 2.4384 | 0.5898 | 1.1402 | 0.040* | |
C44 | 2.2573 (6) | 0.56820 (18) | 1.05891 (14) | 0.0324 (7) | |
H44 | 2.1224 | 0.5461 | 1.0709 | 0.039* | |
C45 | 0.4296 (6) | 0.3900 (2) | 0.35899 (16) | 0.0421 (8) | |
H45 | 0.2895 | 0.3889 | 0.3349 | 0.050* | |
C46 | 0.4922 (7) | 0.4522 (2) | 0.40689 (16) | 0.0465 (9) | |
H46 | 0.3934 | 0.4938 | 0.4163 | 0.056* | |
C47 | 0.6977 (7) | 0.4549 (2) | 0.44152 (17) | 0.0527 (10) | |
H47 | 0.7416 | 0.4984 | 0.4743 | 0.063* | |
C48 | 0.8395 (7) | 0.3934 (3) | 0.42804 (18) | 0.0557 (11) | |
H48 | 0.9812 | 0.3948 | 0.4516 | 0.067* | |
C49 | 0.7751 (7) | 0.3310 (2) | 0.38076 (17) | 0.0507 (10) | |
H49 | 0.8713 | 0.2887 | 0.3717 | 0.061* | |
C50 | 0.5700 (7) | 0.3294 (2) | 0.34612 (16) | 0.0446 (9) | |
H50 | 0.5262 | 0.2861 | 0.3132 | 0.053* | |
C51 | 0.7877 (6) | 0.84135 (17) | 0.29690 (18) | 0.101 (2) | |
H51 | 0.6861 | 0.8779 | 0.3170 | 0.121* | |
C52 | 0.9878 (6) | 0.86602 (14) | 0.27527 (19) | 0.0911 (18) | |
H52 | 1.0230 | 0.9195 | 0.2805 | 0.109* | |
C53 | 1.1364 (5) | 0.8125 (2) | 0.24592 (18) | 0.097 (2) | |
H53 | 1.2732 | 0.8293 | 0.2311 | 0.117* | |
C54 | 1.0849 (6) | 0.73429 (18) | 0.23820 (15) | 0.0828 (16) | |
H54 | 1.1864 | 0.6977 | 0.2181 | 0.099* | |
C55 | 0.8848 (6) | 0.70963 (13) | 0.25983 (16) | 0.0666 (13) | |
H55 | 0.8495 | 0.6562 | 0.2546 | 0.080* | |
C56 | 0.7362 (5) | 0.76315 (19) | 0.28918 (17) | 0.0800 (16) | |
H56 | 0.5994 | 0.7463 | 0.3040 | 0.096* | |
C57 | 1.2877 (8) | 0.0159 (4) | 0.4782 (3) | 0.0794 (17) | |
H57 | 1.1403 | 0.0270 | 0.4629 | 0.095* | |
C58 | 1.3994 (10) | 0.0665 (3) | 0.5279 (3) | 0.0766 (15) | |
H58 | 1.3291 | 0.1122 | 0.5471 | 0.092* | |
C59 | 1.6137 (11) | 0.0509 (4) | 0.5499 (3) | 0.0865 (17) | |
H59 | 1.6928 | 0.0860 | 0.5841 | 0.104* | |
N1 | 0.2293 (4) | −0.08860 (14) | 0.05611 (11) | 0.0272 (5) | |
N2 | 2.6094 (4) | 0.65448 (13) | 0.91102 (10) | 0.0233 (5) | |
N3 | 2.8130 (5) | 0.70501 (16) | 0.78374 (11) | 0.0348 (6) | |
N4 | 2.2537 (4) | 0.57284 (14) | 1.00265 (11) | 0.0286 (6) | |
O1 | 0.1208 (4) | −0.10055 (12) | 0.00485 (9) | 0.0358 (5) | |
O2 | 0.4049 (4) | 0.09116 (12) | 0.22097 (9) | 0.0312 (5) | |
O3 | 0.5864 (4) | −0.00577 (12) | 0.24535 (9) | 0.0334 (5) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0219 (14) | 0.0236 (14) | 0.0216 (14) | 0.0012 (11) | 0.0000 (11) | 0.0047 (11) |
C2 | 0.0209 (13) | 0.0238 (14) | 0.0228 (14) | −0.0039 (11) | 0.0002 (11) | 0.0064 (11) |
C3 | 0.0219 (14) | 0.0243 (15) | 0.0258 (15) | −0.0022 (11) | −0.0030 (11) | 0.0070 (12) |
C4 | 0.0251 (14) | 0.0224 (14) | 0.0275 (15) | −0.0001 (12) | −0.0033 (12) | 0.0041 (12) |
C5 | 0.0238 (15) | 0.0324 (17) | 0.0300 (17) | −0.0001 (13) | −0.0004 (12) | 0.0036 (13) |
C6 | 0.0287 (15) | 0.0310 (16) | 0.0288 (16) | −0.0024 (13) | −0.0009 (12) | 0.0104 (13) |
C7 | 0.0213 (14) | 0.0265 (16) | 0.0251 (15) | −0.0022 (12) | −0.0008 (11) | 0.0087 (12) |
C8 | 0.0319 (16) | 0.0278 (16) | 0.0333 (17) | 0.0026 (13) | 0.0014 (13) | 0.0040 (13) |
C9 | 0.0303 (16) | 0.0278 (16) | 0.0416 (19) | −0.0068 (13) | −0.0038 (14) | 0.0071 (14) |
C10 | 0.0353 (16) | 0.0225 (15) | 0.0220 (15) | −0.0013 (13) | −0.0093 (12) | 0.0020 (12) |
C11 | 0.0404 (18) | 0.0417 (19) | 0.0226 (16) | −0.0030 (15) | 0.0012 (13) | 0.0052 (14) |
C12 | 0.0327 (17) | 0.0395 (18) | 0.0258 (16) | −0.0100 (14) | 0.0016 (13) | 0.0032 (14) |
C13 | 0.0272 (15) | 0.0255 (15) | 0.0236 (15) | 0.0014 (12) | −0.0021 (12) | 0.0069 (12) |
C14 | 0.0333 (17) | 0.0409 (18) | 0.0224 (16) | −0.0086 (14) | −0.0001 (13) | 0.0070 (13) |
C15 | 0.0324 (17) | 0.0391 (18) | 0.0276 (17) | −0.0108 (14) | −0.0033 (13) | 0.0068 (14) |
C16 | 0.0239 (14) | 0.0285 (15) | 0.0225 (15) | −0.0017 (12) | −0.0031 (11) | 0.0067 (12) |
C17 | 0.0350 (17) | 0.045 (2) | 0.0253 (16) | −0.0097 (15) | 0.0019 (13) | 0.0069 (14) |
C18 | 0.0294 (16) | 0.0439 (19) | 0.0306 (17) | −0.0140 (14) | −0.0002 (13) | 0.0059 (14) |
C19 | 0.0288 (15) | 0.0285 (16) | 0.0254 (15) | −0.0020 (13) | −0.0055 (12) | 0.0048 (12) |
C20 | 0.0355 (17) | 0.045 (2) | 0.0228 (16) | −0.0098 (15) | 0.0028 (13) | 0.0007 (14) |
C21 | 0.0299 (16) | 0.0423 (19) | 0.0264 (16) | −0.0095 (14) | 0.0020 (13) | 0.0027 (14) |
C22 | 0.0293 (16) | 0.0295 (16) | 0.0286 (16) | −0.0029 (13) | −0.0015 (13) | 0.0056 (13) |
C23 | 0.0276 (15) | 0.0311 (16) | 0.0258 (16) | −0.0013 (13) | −0.0005 (12) | 0.0057 (13) |
C24 | 0.0282 (15) | 0.0269 (15) | 0.0247 (15) | −0.0016 (12) | −0.0040 (12) | 0.0054 (12) |
C25 | 0.0316 (16) | 0.0307 (16) | 0.0231 (15) | −0.0040 (13) | −0.0009 (12) | 0.0032 (13) |
C26 | 0.0265 (15) | 0.0310 (16) | 0.0258 (16) | −0.0039 (12) | −0.0012 (12) | 0.0052 (13) |
C27 | 0.0261 (14) | 0.0180 (13) | 0.0249 (15) | −0.0002 (11) | −0.0022 (11) | 0.0047 (11) |
C28 | 0.0247 (14) | 0.0276 (15) | 0.0236 (15) | −0.0021 (12) | −0.0014 (11) | 0.0068 (12) |
C29 | 0.0247 (14) | 0.0260 (15) | 0.0267 (16) | −0.0027 (12) | −0.0020 (12) | 0.0051 (12) |
C30 | 0.0242 (14) | 0.0191 (14) | 0.0244 (15) | −0.0009 (11) | −0.0001 (11) | 0.0046 (11) |
C31 | 0.0284 (15) | 0.0235 (14) | 0.0223 (15) | −0.0021 (12) | 0.0013 (12) | 0.0072 (12) |
C32 | 0.0274 (15) | 0.0222 (14) | 0.0221 (15) | −0.0009 (12) | 0.0000 (11) | 0.0061 (11) |
C33 | 0.0267 (14) | 0.0207 (14) | 0.0250 (15) | 0.0011 (12) | 0.0004 (12) | 0.0073 (12) |
C34 | 0.0270 (15) | 0.0223 (14) | 0.0243 (15) | −0.0023 (12) | 0.0030 (12) | 0.0075 (12) |
C35 | 0.0292 (15) | 0.0200 (14) | 0.0238 (15) | −0.0009 (12) | 0.0025 (12) | 0.0031 (11) |
C36 | 0.0308 (16) | 0.0279 (16) | 0.0271 (16) | −0.0054 (13) | −0.0001 (12) | 0.0061 (13) |
C37 | 0.0298 (16) | 0.0253 (15) | 0.0340 (17) | −0.0067 (13) | 0.0000 (13) | 0.0033 (13) |
C38 | 0.0341 (17) | 0.0300 (16) | 0.0363 (18) | −0.0069 (13) | 0.0060 (14) | 0.0088 (14) |
C39 | 0.046 (2) | 0.044 (2) | 0.0284 (17) | −0.0093 (16) | 0.0064 (14) | 0.0140 (15) |
C40 | 0.0274 (15) | 0.0191 (14) | 0.0237 (15) | −0.0020 (11) | 0.0011 (12) | 0.0055 (11) |
C41 | 0.0294 (15) | 0.0266 (15) | 0.0276 (16) | −0.0025 (12) | −0.0009 (12) | 0.0089 (12) |
C42 | 0.0380 (17) | 0.0319 (17) | 0.0252 (16) | 0.0019 (14) | −0.0027 (13) | 0.0075 (13) |
C43 | 0.0464 (19) | 0.0323 (17) | 0.0230 (16) | 0.0016 (14) | 0.0025 (14) | 0.0108 (13) |
C44 | 0.0402 (18) | 0.0302 (16) | 0.0298 (17) | −0.0001 (14) | 0.0037 (14) | 0.0135 (13) |
C45 | 0.0380 (19) | 0.057 (2) | 0.036 (2) | 0.0008 (17) | 0.0055 (15) | 0.0213 (17) |
C46 | 0.061 (2) | 0.045 (2) | 0.041 (2) | 0.0118 (18) | 0.0159 (18) | 0.0194 (17) |
C47 | 0.063 (3) | 0.053 (2) | 0.037 (2) | −0.012 (2) | 0.0112 (18) | 0.0051 (18) |
C48 | 0.037 (2) | 0.090 (3) | 0.041 (2) | 0.004 (2) | 0.0034 (17) | 0.021 (2) |
C49 | 0.061 (2) | 0.060 (3) | 0.042 (2) | 0.027 (2) | 0.0204 (19) | 0.026 (2) |
C50 | 0.061 (2) | 0.040 (2) | 0.0322 (19) | −0.0056 (18) | 0.0072 (17) | 0.0103 (15) |
C51 | 0.116 (5) | 0.067 (3) | 0.141 (6) | 0.038 (3) | 0.062 (4) | 0.046 (4) |
C52 | 0.081 (4) | 0.060 (3) | 0.152 (6) | 0.009 (3) | 0.020 (4) | 0.059 (4) |
C53 | 0.073 (3) | 0.113 (5) | 0.149 (6) | 0.026 (3) | 0.046 (4) | 0.097 (4) |
C54 | 0.099 (4) | 0.069 (3) | 0.088 (4) | 0.040 (3) | 0.028 (3) | 0.025 (3) |
C55 | 0.071 (3) | 0.046 (2) | 0.084 (3) | 0.002 (2) | −0.015 (3) | 0.025 (2) |
C56 | 0.061 (3) | 0.084 (4) | 0.121 (5) | 0.013 (3) | 0.024 (3) | 0.068 (3) |
C57 | 0.048 (3) | 0.109 (4) | 0.119 (5) | 0.026 (3) | 0.031 (3) | 0.088 (4) |
C58 | 0.082 (4) | 0.077 (4) | 0.095 (4) | 0.024 (3) | 0.035 (3) | 0.057 (3) |
C59 | 0.093 (4) | 0.102 (4) | 0.088 (4) | −0.014 (4) | 0.015 (3) | 0.068 (4) |
N1 | 0.0300 (13) | 0.0256 (13) | 0.0215 (13) | 0.0024 (10) | −0.0069 (10) | 0.0008 (10) |
N2 | 0.0258 (12) | 0.0205 (12) | 0.0223 (12) | −0.0009 (10) | 0.0013 (10) | 0.0043 (10) |
N3 | 0.0401 (15) | 0.0379 (15) | 0.0256 (14) | −0.0101 (12) | 0.0026 (11) | 0.0092 (12) |
N4 | 0.0301 (13) | 0.0276 (13) | 0.0286 (14) | −0.0056 (11) | 0.0028 (10) | 0.0093 (11) |
O1 | 0.0413 (13) | 0.0371 (12) | 0.0238 (11) | 0.0037 (10) | −0.0113 (9) | 0.0023 (9) |
O2 | 0.0334 (11) | 0.0276 (12) | 0.0290 (12) | 0.0003 (9) | −0.0022 (9) | 0.0028 (9) |
O3 | 0.0464 (13) | 0.0265 (11) | 0.0220 (11) | −0.0053 (10) | −0.0143 (9) | 0.0030 (9) |
C1—C2 | 1.519 (4) | C30—C34 | 1.395 (4) |
C1—C5 | 1.526 (4) | C31—H31 | 0.9500 |
C1—C6 | 1.522 (4) | C31—C32 | 1.401 (4) |
C1—N1 | 1.489 (4) | C32—C35 | 1.483 (4) |
C2—C3 | 1.329 (4) | C32—N2 | 1.341 (4) |
C2—C7 | 1.473 (4) | C33—C34 | 1.389 (4) |
C3—H3 | 0.9500 | C33—C40 | 1.496 (4) |
C3—C4 | 1.498 (4) | C33—N2 | 1.346 (4) |
C4—C8 | 1.526 (4) | C34—H34 | 0.9500 |
C4—C9 | 1.535 (4) | C35—C36 | 1.384 (4) |
C4—N1 | 1.479 (4) | C35—N3 | 1.342 (4) |
C5—H5A | 0.9800 | C36—H36 | 0.9500 |
C5—H5B | 0.9800 | C36—C37 | 1.389 (4) |
C5—H5C | 0.9800 | C37—H37 | 0.9500 |
C6—H6A | 0.9800 | C37—C38 | 1.370 (4) |
C6—H6B | 0.9800 | C38—H38 | 0.9500 |
C6—H6C | 0.9800 | C38—C39 | 1.382 (5) |
C7—O2 | 1.203 (3) | C39—H39 | 0.9500 |
C7—O3 | 1.361 (3) | C39—N3 | 1.338 (4) |
C8—H8A | 0.9800 | C40—C41 | 1.397 (4) |
C8—H8B | 0.9800 | C40—N4 | 1.346 (4) |
C8—H8C | 0.9800 | C41—H41 | 0.9500 |
C9—H9A | 0.9800 | C41—C42 | 1.385 (4) |
C9—H9B | 0.9800 | C42—H42 | 0.9500 |
C9—H9C | 0.9800 | C42—C43 | 1.383 (4) |
C10—C11 | 1.375 (4) | C43—H43 | 0.9500 |
C10—C15 | 1.367 (4) | C43—C44 | 1.382 (4) |
C10—O3 | 1.413 (3) | C44—H44 | 0.9500 |
C11—H11 | 0.9500 | C44—N4 | 1.339 (4) |
C11—C12 | 1.381 (4) | C45—H45 | 0.9500 |
C12—H12 | 0.9500 | C45—C46 | 1.371 (5) |
C12—C13 | 1.394 (4) | C45—C50 | 1.370 (5) |
C13—C14 | 1.399 (4) | C46—H46 | 0.9500 |
C13—C16 | 1.487 (4) | C46—C47 | 1.381 (6) |
C14—H14 | 0.9500 | C47—H47 | 0.9500 |
C14—C15 | 1.391 (4) | C47—C48 | 1.387 (6) |
C15—H15 | 0.9500 | C48—H48 | 0.9500 |
C16—C17 | 1.398 (4) | C48—C49 | 1.367 (6) |
C16—C21 | 1.393 (4) | C49—H49 | 0.9500 |
C17—H17 | 0.9500 | C49—C50 | 1.382 (5) |
C17—C18 | 1.365 (4) | C50—H50 | 0.9500 |
C18—H18 | 0.9500 | C51—H51 | 0.9500 |
C18—C19 | 1.396 (4) | C51—C52 | 1.3900 |
C19—C20 | 1.397 (4) | C51—C56 | 1.3900 |
C19—C22 | 1.437 (4) | C52—H52 | 0.9500 |
C20—H20 | 0.9500 | C52—C53 | 1.3900 |
C20—C21 | 1.388 (4) | C53—H53 | 0.9500 |
C21—H21 | 0.9500 | C53—C54 | 1.3900 |
C22—C23 | 1.195 (4) | C54—H54 | 0.9500 |
C23—C24 | 1.435 (4) | C54—C55 | 1.3900 |
C24—C25 | 1.405 (4) | C55—H55 | 0.9500 |
C24—C29 | 1.398 (4) | C55—C56 | 1.3900 |
C25—H25 | 0.9500 | C56—H56 | 0.9500 |
C25—C26 | 1.384 (4) | C57—H57 | 0.9500 |
C26—H26 | 0.9500 | C57—C58 | 1.370 (8) |
C26—C27 | 1.399 (4) | C57—C59i | 1.376 (8) |
C27—C28 | 1.402 (4) | C58—H58 | 0.9500 |
C27—C30 | 1.489 (4) | C58—C59 | 1.376 (7) |
C28—H28 | 0.9500 | C59—C57i | 1.376 (8) |
C28—C29 | 1.383 (4) | C59—H59 | 0.9500 |
C29—H29 | 0.9500 | N1—O1 | 1.274 (3) |
C30—C31 | 1.398 (4) | O1—O1ii | 4.004 (4) |
C2—C1—C5 | 113.1 (2) | C28—C29—C24 | 120.7 (3) |
C2—C1—C6 | 114.8 (2) | C28—C29—H29 | 119.6 |
C6—C1—C5 | 110.6 (2) | C31—C30—C27 | 121.5 (3) |
N1—C1—C2 | 98.8 (2) | C34—C30—C27 | 121.0 (2) |
N1—C1—C5 | 108.9 (2) | C34—C30—C31 | 117.4 (2) |
N1—C1—C6 | 109.8 (2) | C30—C31—H31 | 120.4 |
C3—C2—C1 | 112.7 (2) | C30—C31—C32 | 119.2 (3) |
C3—C2—C7 | 125.8 (3) | C32—C31—H31 | 120.4 |
C7—C2—C1 | 121.4 (2) | C31—C32—C35 | 120.5 (3) |
C2—C3—H3 | 123.3 | N2—C32—C31 | 123.3 (3) |
C2—C3—C4 | 113.4 (3) | N2—C32—C35 | 116.2 (2) |
C4—C3—H3 | 123.3 | C34—C33—C40 | 120.2 (2) |
C3—C4—C8 | 113.1 (2) | N2—C33—C34 | 123.6 (3) |
C3—C4—C9 | 112.5 (2) | N2—C33—C40 | 116.2 (2) |
C8—C4—C9 | 110.9 (2) | C30—C34—H34 | 120.3 |
N1—C4—C3 | 99.6 (2) | C33—C34—C30 | 119.4 (3) |
N1—C4—C8 | 110.1 (2) | C33—C34—H34 | 120.3 |
N1—C4—C9 | 110.2 (2) | C36—C35—C32 | 121.6 (3) |
C1—C5—H5A | 109.5 | N3—C35—C32 | 116.1 (2) |
C1—C5—H5B | 109.5 | N3—C35—C36 | 122.3 (3) |
C1—C5—H5C | 109.5 | C35—C36—H36 | 120.3 |
H5A—C5—H5B | 109.5 | C35—C36—C37 | 119.4 (3) |
H5A—C5—H5C | 109.5 | C37—C36—H36 | 120.3 |
H5B—C5—H5C | 109.5 | C36—C37—H37 | 120.6 |
C1—C6—H6A | 109.5 | C38—C37—C36 | 118.9 (3) |
C1—C6—H6B | 109.5 | C38—C37—H37 | 120.6 |
C1—C6—H6C | 109.5 | C37—C38—H38 | 120.9 |
H6A—C6—H6B | 109.5 | C37—C38—C39 | 118.1 (3) |
H6A—C6—H6C | 109.5 | C39—C38—H38 | 120.9 |
H6B—C6—H6C | 109.5 | C38—C39—H39 | 117.9 |
O2—C7—C2 | 125.5 (3) | N3—C39—C38 | 124.2 (3) |
O2—C7—O3 | 123.5 (3) | N3—C39—H39 | 117.9 |
O3—C7—C2 | 111.0 (2) | C41—C40—C33 | 121.0 (3) |
C4—C8—H8A | 109.5 | N4—C40—C33 | 116.1 (2) |
C4—C8—H8B | 109.5 | N4—C40—C41 | 122.9 (3) |
C4—C8—H8C | 109.5 | C40—C41—H41 | 120.7 |
H8A—C8—H8B | 109.5 | C42—C41—C40 | 118.6 (3) |
H8A—C8—H8C | 109.5 | C42—C41—H41 | 120.7 |
H8B—C8—H8C | 109.5 | C41—C42—H42 | 120.6 |
C4—C9—H9A | 109.5 | C43—C42—C41 | 118.8 (3) |
C4—C9—H9B | 109.5 | C43—C42—H42 | 120.6 |
C4—C9—H9C | 109.5 | C42—C43—H43 | 120.7 |
H9A—C9—H9B | 109.5 | C44—C43—C42 | 118.7 (3) |
H9A—C9—H9C | 109.5 | C44—C43—H43 | 120.7 |
H9B—C9—H9C | 109.5 | C43—C44—H44 | 118.0 |
C11—C10—O3 | 118.5 (3) | N4—C44—C43 | 123.9 (3) |
C15—C10—C11 | 121.2 (3) | N4—C44—H44 | 118.0 |
C15—C10—O3 | 120.1 (3) | C46—C45—H45 | 120.2 |
C10—C11—H11 | 120.4 | C50—C45—H45 | 120.2 |
C10—C11—C12 | 119.2 (3) | C50—C45—C46 | 119.7 (4) |
C12—C11—H11 | 120.4 | C45—C46—H46 | 119.7 |
C11—C12—H12 | 119.0 | C45—C46—C47 | 120.5 (4) |
C11—C12—C13 | 121.9 (3) | C47—C46—H46 | 119.7 |
C13—C12—H12 | 119.0 | C46—C47—H47 | 120.3 |
C12—C13—C14 | 117.0 (3) | C46—C47—C48 | 119.5 (4) |
C12—C13—C16 | 121.4 (3) | C48—C47—H47 | 120.3 |
C14—C13—C16 | 121.7 (3) | C47—C48—H48 | 120.1 |
C13—C14—H14 | 119.3 | C49—C48—C47 | 119.9 (4) |
C15—C14—C13 | 121.4 (3) | C49—C48—H48 | 120.1 |
C15—C14—H14 | 119.3 | C48—C49—H49 | 120.0 |
C10—C15—C14 | 119.3 (3) | C48—C49—C50 | 120.0 (4) |
C10—C15—H15 | 120.4 | C50—C49—H49 | 120.0 |
C14—C15—H15 | 120.4 | C45—C50—C49 | 120.4 (4) |
C17—C16—C13 | 120.9 (3) | C45—C50—H50 | 119.8 |
C21—C16—C13 | 122.5 (3) | C49—C50—H50 | 119.8 |
C21—C16—C17 | 116.6 (3) | C52—C51—H51 | 120.0 |
C16—C17—H17 | 118.8 | C52—C51—C56 | 120.0 |
C18—C17—C16 | 122.4 (3) | C56—C51—H51 | 120.0 |
C18—C17—H17 | 118.8 | C51—C52—H52 | 120.0 |
C17—C18—H18 | 119.6 | C51—C52—C53 | 120.0 |
C17—C18—C19 | 120.8 (3) | C53—C52—H52 | 120.0 |
C19—C18—H18 | 119.6 | C52—C53—H53 | 120.0 |
C18—C19—C20 | 118.0 (3) | C54—C53—C52 | 120.0 |
C18—C19—C22 | 119.1 (3) | C54—C53—H53 | 120.0 |
C20—C19—C22 | 122.9 (3) | C53—C54—H54 | 120.0 |
C19—C20—H20 | 119.8 | C55—C54—C53 | 120.0 |
C21—C20—C19 | 120.4 (3) | C55—C54—H54 | 120.0 |
C21—C20—H20 | 119.8 | C54—C55—H55 | 120.0 |
C16—C21—H21 | 119.1 | C54—C55—C56 | 120.0 |
C20—C21—C16 | 121.8 (3) | C56—C55—H55 | 120.0 |
C20—C21—H21 | 119.1 | C51—C56—H56 | 120.0 |
C23—C22—C19 | 174.6 (3) | C55—C56—C51 | 120.0 |
C22—C23—C24 | 177.8 (3) | C55—C56—H56 | 120.0 |
C25—C24—C23 | 120.0 (3) | C58—C57—H57 | 119.6 |
C29—C24—C23 | 121.5 (3) | C58—C57—C59i | 120.8 (5) |
C29—C24—C25 | 118.5 (3) | C59i—C57—H57 | 119.6 |
C24—C25—H25 | 119.8 | C57—C58—H58 | 120.1 |
C26—C25—C24 | 120.4 (3) | C57—C58—C59 | 119.8 (5) |
C26—C25—H25 | 119.8 | C59—C58—H58 | 120.1 |
C25—C26—H26 | 119.4 | C57i—C59—H59 | 120.3 |
C25—C26—C27 | 121.2 (3) | C58—C59—C57i | 119.4 (6) |
C27—C26—H26 | 119.4 | C58—C59—H59 | 120.3 |
C26—C27—C28 | 118.1 (3) | C4—N1—C1 | 115.5 (2) |
C26—C27—C30 | 121.1 (3) | O1—N1—C1 | 122.4 (2) |
C28—C27—C30 | 120.8 (3) | O1—N1—C4 | 122.1 (2) |
C27—C28—H28 | 119.5 | C32—N2—C33 | 117.1 (2) |
C29—C28—C27 | 121.0 (3) | C39—N3—C35 | 117.2 (3) |
C29—C28—H28 | 119.5 | C44—N4—C40 | 117.0 (3) |
C24—C29—H29 | 119.6 | C7—O3—C10 | 116.5 (2) |
C1—C2—C3—C4 | −0.1 (3) | C27—C30—C31—C32 | −175.1 (3) |
C1—C2—C7—O2 | −1.5 (4) | C27—C30—C34—C33 | 176.3 (3) |
C1—C2—C7—O3 | 179.4 (2) | C28—C27—C30—C31 | −158.0 (3) |
C2—C1—N1—C4 | −0.5 (3) | C28—C27—C30—C34 | 24.6 (4) |
C2—C1—N1—O1 | −179.4 (2) | C29—C24—C25—C26 | 0.2 (5) |
C2—C3—C4—C8 | 116.6 (3) | C30—C27—C28—C29 | −177.8 (3) |
C2—C3—C4—C9 | −116.8 (3) | C30—C31—C32—C35 | 177.0 (3) |
C2—C3—C4—N1 | −0.2 (3) | C30—C31—C32—N2 | −2.0 (4) |
C2—C7—O3—C10 | 168.2 (2) | C31—C30—C34—C33 | −1.2 (4) |
C3—C2—C7—O2 | 176.4 (3) | C31—C32—C35—C36 | 174.6 (3) |
C3—C2—C7—O3 | −2.6 (4) | C31—C32—C35—N3 | −7.8 (4) |
C3—C4—N1—C1 | 0.4 (3) | C31—C32—N2—C33 | 0.2 (4) |
C3—C4—N1—O1 | 179.4 (2) | C32—C35—C36—C37 | 176.1 (3) |
C5—C1—C2—C3 | 115.3 (3) | C32—C35—N3—C39 | −175.8 (3) |
C5—C1—C2—C7 | −66.5 (3) | C33—C40—C41—C42 | 177.4 (3) |
C5—C1—N1—C4 | −118.7 (3) | C33—C40—N4—C44 | −178.8 (3) |
C5—C1—N1—O1 | 62.4 (3) | C34—C30—C31—C32 | 2.4 (4) |
C6—C1—C2—C3 | −116.4 (3) | C34—C33—C40—C41 | 164.3 (3) |
C6—C1—C2—C7 | 61.8 (3) | C34—C33—C40—N4 | −15.8 (4) |
C6—C1—N1—C4 | 120.0 (3) | C34—C33—N2—C32 | 1.1 (4) |
C6—C1—N1—O1 | −58.9 (3) | C35—C32—N2—C33 | −178.8 (2) |
C7—C2—C3—C4 | −178.2 (3) | C35—C36—C37—C38 | −0.1 (5) |
C8—C4—N1—C1 | −118.6 (3) | C36—C35—N3—C39 | 1.8 (5) |
C8—C4—N1—O1 | 60.4 (3) | C36—C37—C38—C39 | 1.2 (5) |
C9—C4—N1—C1 | 118.8 (3) | C37—C38—C39—N3 | −0.8 (5) |
C9—C4—N1—O1 | −62.3 (4) | C38—C39—N3—C35 | −0.7 (5) |
C10—C11—C12—C13 | −0.6 (5) | C40—C33—C34—C30 | −178.3 (3) |
C11—C10—C15—C14 | 0.5 (5) | C40—C33—N2—C32 | 179.0 (2) |
C11—C10—O3—C7 | −80.9 (4) | C40—C41—C42—C43 | 2.1 (4) |
C11—C12—C13—C14 | 1.5 (5) | C41—C40—N4—C44 | 1.1 (4) |
C11—C12—C13—C16 | −178.0 (3) | C41—C42—C43—C44 | −0.4 (5) |
C12—C13—C14—C15 | −1.5 (5) | C42—C43—C44—N4 | −1.1 (5) |
C12—C13—C16—C17 | −4.5 (5) | C43—C44—N4—C40 | 0.8 (5) |
C12—C13—C16—C21 | 176.1 (3) | C45—C46—C47—C48 | −0.9 (6) |
C13—C14—C15—C10 | 0.5 (5) | C46—C45—C50—C49 | −0.6 (5) |
C13—C16—C17—C18 | −178.4 (3) | C46—C47—C48—C49 | 0.0 (6) |
C13—C16—C21—C20 | 178.4 (3) | C47—C48—C49—C50 | 0.6 (6) |
C14—C13—C16—C17 | 176.0 (3) | C48—C49—C50—C45 | −0.3 (5) |
C14—C13—C16—C21 | −3.4 (5) | C50—C45—C46—C47 | 1.2 (5) |
C15—C10—C11—C12 | −0.5 (5) | C51—C52—C53—C54 | 0.0 |
C15—C10—O3—C7 | 103.6 (3) | C52—C51—C56—C55 | 0.0 |
C16—C13—C14—C15 | 178.0 (3) | C52—C53—C54—C55 | 0.0 |
C16—C17—C18—C19 | 0.4 (5) | C53—C54—C55—C56 | 0.0 |
C17—C16—C21—C20 | −1.0 (5) | C54—C55—C56—C51 | 0.0 |
C17—C18—C19—C20 | −1.8 (5) | C56—C51—C52—C53 | 0.0 |
C17—C18—C19—C22 | 176.8 (3) | C57—C58—C59—C57i | −0.5 (8) |
C18—C19—C20—C21 | 1.8 (5) | C59i—C57—C58—C59 | 0.5 (8) |
C19—C20—C21—C16 | −0.4 (5) | N1—C1—C2—C3 | 0.4 (3) |
C21—C16—C17—C18 | 1.0 (5) | N1—C1—C2—C7 | 178.5 (2) |
C22—C19—C20—C21 | −176.7 (3) | N2—C32—C35—C36 | −6.4 (4) |
C23—C24—C25—C26 | −179.5 (3) | N2—C32—C35—N3 | 171.3 (3) |
C23—C24—C29—C28 | 178.9 (3) | N2—C33—C34—C30 | −0.5 (4) |
C24—C25—C26—C27 | 1.0 (5) | N2—C33—C40—C41 | −13.7 (4) |
C25—C24—C29—C28 | −0.8 (4) | N2—C33—C40—N4 | 166.2 (2) |
C25—C26—C27—C28 | −1.5 (4) | N3—C35—C36—C37 | −1.5 (5) |
C25—C26—C27—C30 | 177.1 (3) | N4—C40—C41—C42 | −2.5 (4) |
C26—C27—C28—C29 | 0.9 (4) | O2—C7—O3—C10 | −10.8 (4) |
C26—C27—C30—C31 | 23.4 (4) | O3—C10—C11—C12 | −175.9 (3) |
C26—C27—C30—C34 | −154.0 (3) | O3—C10—C15—C14 | 175.9 (3) |
C27—C28—C29—C24 | 0.3 (4) |
Symmetry codes: (i) −x+3, −y, −z+1; (ii) −x, −y, −z. |
Cg4, Cg7 and Cg10 are the centroids of pyridine ring N4/C40–C44, spacer ring C24–C29 and benzene ring C54–C59, respectively. |
D—H···A | D—H | H···A | D···A | D—H···A |
C37—H37···O1iii | 0.95 | 2.65 | 3.228 (4) | 120 |
C38—H38···O2iv | 0.95 | 2.55 | 3.485 (4) | 169 |
C6—H6C···O1ii | 0.98 | 2.61 | 3.499 (4) | 151 |
C9—H9B···Cg4v | 0.96 | 2.79 | 3.602 (4) | 140 |
C14—H14···Cg10vi | 0.95 | 2.88 | 3.608 (4) | 134 |
C14—H14···Cg10vii | 0.95 | 2.88 | 3.608 (4) | 134 |
C55—H55···Cg7viii | 0.95 | 2.90 | 3.680 (3) | 140 |
Symmetry codes: (ii) −x, −y, −z; (iii) x+3, y+1, z+1; (iv) −x+4, −y+1, −z+1; (v) x−2, y−1, z−1; (vi) x−1, y, z; (vii) −x+2, −y, −z+1; (viii) −x+3, −y+1, −z+1. |
Cg4, Cg7 and Cg10 are the centroids of pyridine ring N4/C40–C44, spacer ring C24–C29 and benzene ring C54–C59, respectively. |
D—H···A | D—H | H···A | D···A | D—H···A |
C37—H37···O1i | 0.95 | 2.65 | 3.228 (4) | 120 |
C38—H38···O2ii | 0.95 | 2.55 | 3.485 (4) | 169 |
C6—H6C···O1iii | 0.98 | 2.61 | 3.499 (4) | 151 |
C9—H9B···Cg4iv | 0.96 | 2.79 | 3.602 (4) | 140 |
C14—H14···Cg10v | 0.95 | 2.88 | 3.608 (4) | 134 |
C14—H14···Cg10vi | 0.95 | 2.88 | 3.608 (4) | 134 |
C55—H55···Cg7vii | 0.95 | 2.90 | 3.680 (3) | 140 |
Symmetry codes: (i) x+3, y+1, z+1; (ii) −x+4, −y+1, −z+1; (iii) −x, −y, −z; (iv) x−2, y−1, z−1; (v) x−1, y, z; (vi) −x+2, −y, −z+1; (vii) −x+3, −y+1, −z+1. |
Experimental details
Crystal data | |
Chemical formula | C44H35N4O3·2.5C6H6 |
Mr | 863.03 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 123 |
a, b, c (Å) | 5.7578 (1), 18.0559 (4), 23.3716 (6) |
α, β, γ (°) | 105.5870 (13), 93.7408 (13), 92.6002 (14) |
V (Å3) | 2330.41 (9) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 0.08 |
Crystal size (mm) | 0.28 × 0.20 × 0.08 |
Data collection | |
Diffractometer | Nonius KappaCCD diffractometer |
Absorption correction | Multi-scan (SORTAV; Blessing, 1995) |
Tmin, Tmax | 0.808, 1.000 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 74528, 11227, 6356 |
Rint | 0.109 |
(sin θ/λ)max (Å−1) | 0.661 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.071, 0.217, 1.07 |
No. of reflections | 11227 |
No. of parameters | 587 |
No. of restraints | 1 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.33, −0.27 |
Computer programs: HKL DENZO and SCALEPACK (Otwinowski & Minor 1997), HKL SCALEPACK (Otwinowski & Minor 1997), SHELXS97 (Sheldrick,2008), SHELXL2013 (Sheldrick, 2015), Olex2 (Dolomanov et al., 2009) and Mercury (Macrae et al., 2008), Olex2 (Dolomanov et al., 2009).
Acknowledgements
The authors thank Professor Dr. A. C. Filippou for providing the X-ray infrastructure. OS thanks the DFG for funding via SFB 813.
References
Ackermann, K., Giannoulis, A., Cordes, D. B., Slawin, A. M. Z. & Bode, B. E. (2015). Chem. Commun. 51, 5257–5260. Web of Science CSD CrossRef CAS Google Scholar
Bessel, C. A., See, R. F., Jameson, D. L., Churchill, M. R. & Takeuchi, K. J. (1992). J. Chem. Soc. Dalton Trans. pp. 3223–3228. CSD CrossRef Web of Science Google Scholar
Blessing, R. H. (1995). Acta Cryst. A51, 33–38. CrossRef CAS Web of Science IUCr Journals Google Scholar
Bode, E. B., Plackmeyer, J., Prisner, T. F. & Schiemann, O. (2008). J. Phys. Chem. A, 112, 5064–5073. CrossRef PubMed CAS Google Scholar
Constable, E. C., Baum, G., Bill, E., Dyson, R., van Eldik, R., Fenske, D., Kaderli, D., Morris, D., Neubrand, A., Neuburger, M., Smith, D. R., Wieghardt, K., Zehnder, M. & Zuberbühler, A. D. (1999). Chem. Eur. J. 5, 498–508. CrossRef CAS Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Eryazici, I., Moorefield, C. N., Durmus, S. & Newkome, G. R. (2006). J. Org. Chem. 71, 1009–1014. Web of Science CSD CrossRef PubMed CAS Google Scholar
Fallahpour, R.-A., Neuburger, M. & Zehnder, M. (1999). Polyhedron, 18, 2445–2454. Web of Science CSD CrossRef CAS Google Scholar
Fey, T., Fischer, H., Bachmann, S., Albert, K. & Bolm, C. (2001). J. Org. Chem. 66, 8154–8159. CrossRef PubMed CAS Google Scholar
Fink, D. W. & Ohnesorge, W. E. (1970). J. Phys. Chem. 74, 72–77. CrossRef CAS Google Scholar
Folgado, J. V., Henke, W., Allmann, R., Stratemeier, H., Beltrán-Porter, D., Rojo, T. & Reinen, D. (1990). Inorg. Chem. 29, 2035–2042. CSD CrossRef CAS Web of Science Google Scholar
Fritscher, J., Beyer, M. & Schiemann, O. (2002). Chem. Phys. Lett. 364, 393–401. Web of Science CSD CrossRef CAS Google Scholar
Grave, C., Lentz, D., Schäfer, A., Samorì, P., Rabe, P. J., Franke, P. & Schlüter, A. D. (2003). J. Am. Chem. Soc. 125, 6907–6918. Web of Science CSD CrossRef PubMed CAS Google Scholar
Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671. Web of Science CSD CrossRef CAS Google Scholar
Grosshenny, V. & Ziessel, R. (1993). J. Organomet. Chem. 453, C19–C22. CrossRef CAS Google Scholar
Hogg, R. & Wilkins, R. G. (1962). J. Chem. Soc. pp. 341–350. CrossRef Web of Science Google Scholar
Hoover, J. M. & Stahl, S. S. (2011). J. Am. Chem. Soc. 133, 16901–16910. CrossRef CAS PubMed Google Scholar
Janiak, C. (2000). J. Chem. Soc. Dalton Trans. pp. 3885–3896. Web of Science CrossRef Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Margraf, D., Schuetz, D., Prisner, T. F. & Bats, J. W. (2009). Acta Cryst. E65, o1784. Web of Science CSD CrossRef IUCr Journals Google Scholar
Meyer, A., Schnakenburg, G., Glaum, R. & Schiemann, O. (2015b). Inorg. Chem. 54, 8456–8464. CrossRef CAS PubMed Google Scholar
Meyer, A., Wiecek, J., Schnakenburg, G. & Schiemann, O. (2015a). Acta Cryst. E71, 870–874. CSD CrossRef IUCr Journals Google Scholar
Murguly, E., Norsten, T. B. & Branda, N. (1999). J. Chem. Soc. Perkin Trans. 2, pp. 2789–2794. Web of Science CSD CrossRef Google Scholar
Nakamoto, K. (1960). J. Phys. Chem. 64, 1420–1425. CrossRef CAS Web of Science Google Scholar
Narr, E., Godt, A. & Jeschke, G. (2002). Angew. Chem. Int. Ed. 41, 3907–3910. CrossRef CAS Google Scholar
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press. Google Scholar
Rajca, A., Mukherjee, S., Pink, M. & Rajca, S. (2006). J. Am. Chem. Soc. 128, 13497–13507. Web of Science CSD CrossRef PubMed CAS Google Scholar
Reginsson, G. W. & Schiemann, O. (2011). Biochem. Soc. Trans. 39, 128–139. Web of Science CrossRef CAS PubMed Google Scholar
Schuetz, D., Margraf, D., Prisner, T. F. & Bats, J. W. (2010). Acta Cryst. E66, o729–o730. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.