organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 10| October 2015| Pages o788-o789

Crystal structure of 2-[(1R,2R,4aS,8aS)-2-hy­dr­oxy-2,5,5,8a-tetra­methyl­deca­hydro­naphthalen-1-yl]-N-(o-tol­yl)acetamide

CROSSMARK_Color_square_no_text.svg

aLab. for Pesticide Synthesis, Department of Pesticide Science, College of Plant Protection, Nanjing Agricultural University, Weigang 1, Xuanwu District, Nanjing 210095, People's Republic of China, and bXi'an Botanical Garden, Institute of Botany of Shaanxi Province, Xi'an 710061, People's Republic of China
*Correspondence e-mail: saintkun001@njau.edu.cn

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 10 September 2015; accepted 20 September 2015; online 26 September 2015)

The title compound, C23H35NO2, is an amide derivative of the lactone (+)-sclareolide, and was synthesized from natural sclareol. In the mol­ecular structure, the two six-membered rings (A and B) of the labdane skeleton are trans-fused, and adopt chair conformations. There is an intra­molecular N—H⋯O hydrogen bond present forming an S(7) ring motif. In the crystal, O—H⋯O hydrogen bonds link the mol­ecules into helical chains propagating along the b-axis direction. The chains are linked via C—H⋯π inter­actions, forming a three-dimensional structure.

1. Related literature

For the chemistry and biological importance of sclareol and sclareolide, see: Barrero et al. (2004[Barrero, A. F., Alvarez-Manzaneda, E. J., Chahboun, R. & Arteaga, A. F. (2004). Synth. Commun. 34, 3631-3643.]); Huang et al. (2001[Huang, P.-Q., Zheng, X. & Deng, X.-M. (2001). Tetrahedron Lett. 42, 9039-9041.]); Mohamad et al. (2005[Mohamad, H., Lajis, N. H., Abas, F., Ali, A. M., Sukari, M. A., Kikuzaki, H. & Nakatani, N. (2005). J. Nat. Prod. 68, 285-288.]); Sy & Brown (1997[Sy, L.-K. & Brown, G. D. (1997). J. Nat. Prod. 60, 904-908.]). For the synthesis of coronarin and chinensines, see: Margaros & Vassilikogiannakis (2007[Margaros, I. & Vassilikogiannakis, G. (2007). J. Org. Chem. 72, 4826-4831.]). For related structures, see: Bernardinelli & Giersch (1985[Bernardinelli, G. & Giersch, W. (1985). Acta Cryst. C41, 746-749.]); Shi et al. (2015[Shi, X.-W., Li, S.-K., Li, D.-D. & Lu, Q.-Q. (2015). Acta Cryst. E71, o710-o711.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C23H35NO2

  • Mr = 357.52

  • Monoclinic, P 21

  • a = 6.3001 (5) Å

  • b = 13.2663 (10) Å

  • c = 12.7082 (10) Å

  • β = 96.983 (2)°

  • V = 1054.26 (14) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 296 K

  • 0.22 × 0.20 × 0.18 mm

2.2. Data collection

  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2002[Bruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.985, Tmax = 0.987

  • 3714 measured reflections

  • 3714 independent reflections

  • 3121 reflections with I > 2σ(I)

  • Rint = 0.020

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.095

  • S = 1.06

  • 3714 reflections

  • 242 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.11 e Å−3

  • Δρmin = −0.13 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg is the centroid of benzene ring C1–C6.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1 0.86 2.09 2.894 (2) 155
O1—H1O⋯O2i 0.82 2.00 2.8054 (19) 168
C8—H8BCgii 0.97 2.79 3.632 (2) 146
C22—H22ACgiii 0.96 2.98 3.808 (3) 145
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+2]; (ii) x+1, y, z; (iii) x, y, z-1.

Data collection: SMART (Bruker, 2002[Bruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL).

Supporting information


Comment top

The title compound, possessing an intact homodrimane skeleton, is an amide derivative of (+)-sclareolide, which was synthesized from natural sclareol (Barrero et al., 2004). The commercially available diterpene (-)-sclareol or the lactone derivative (+)-sclareolide make an ideal starting point for some biologically important natural products (Mohamad et al., 2005). Furthermore, the enanti­ometrically pure sclareolide provided the perfect tool to validate the absolute stereochemistry of certain chinensine family members, whose stereochemistry had been tentatively assigned based on comparisons to other biogenetically close compounds, such as coronarin E (Margaros & Vassilikogiannakis, 2007; Sy & Brown, 1997). Herein, we report on the first synthesis and crystal structure of the title compound.

The molecular structure of the title compound is shown in Fig. 1. The molecule is composed of three main rings (A, B and C). The six-membered rings, A (C13/C14/C17—C20) and B (C9—C14), are trans-fused and have chair conformations. Bond angles to the aliphatic rings and to the aromatic ring C (C1—C6) are in the range of 114.40 (16) to 129.65 (16)° and 117.91 (19) to 122.2 (2)°, respectively. The methyl group at C15 and the side chain at C8 are attached in ideal equatorial positions. There is an intra­molecular N—H···O hydrogen bond forming an S(7) ring motif (Table 1).

In the crystal, O—H···O hydrogen bonds link the molecules into zigzag chains propagating along the b axis direction (Table 1 and Fig. 2). The chains are linked via C—H···π inter­actions forming a three-dimensional structure (Table 1).

Synthesis and crystallization top

A solution of DIBAL-H (1.5 M in toluene, 2.58 ml, 3.87 mmol) was added to a cooled (273 K) solution of o-methyl­anilines (0.688 g, 4.0 mmol) in THF (1.7 ml) under nitro­gen. The mixture was allowed to warm up and stirred at rt for 2 h. The concentration of the prepared DIBAL-H-o-CH3C6H4NH2 complex was ca 0.88 M, and was used directly for amino­lysis. To a solution of (+)-sclareolide (0.168 g, 0.67 mmol) in THF (2.5 ml) was added, under nitro­gen at rt, the DIBAL-H-p-C6H4NH2 complexe (3.8 ml, 3.35 mmol). After stirring at rt for 2 h, the reaction was cooled to 273 K, and then quenched with H2O (1.5 ml) and a 1 M aqueous solution of KHSO4 (4 ml). The resulting mixture was extracted with CH2Cl2 (3 × 10 ml). The combined organic layers were washed with brine, dried over Na2SO4 and concentrated. The residue was purified by flash chromatography (200-300 m ilicon) with PE/EtOAc = 6:1 as eluant to give the title compound (215 mg, yield 90 %) as a white solid (Margaros & Georgios, 2007). Colourless crystals were obtained by slow evaporation of a solution in CH2Cl2.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 2. All the H atoms could be located in difference Fourier maps. In the final cycles of refinement they were included in calculated positions and refined as riding atoms: O—H = 0.82 Å, N—H = 0.86 Å and C—H = 0.93-0.97 Å with Uiso(H) = 1.5Ueq(C) for OH and methyl H atoms and 1.2Ueq(N,C) for other H atoms. The absolute configuration of the title compound is based on that of the starting reagent (+)-sclareolide.

Related literature top

For the chemistry and biological importance of sclareol and sclareolide, see: Barrero et al. (2004) Huang et al. (2001); Mohamad et al. (2005); Sy & Brown (1997). For the synthesis of coronarin and chinensines, see: Margaros & Vassilikogiannakis (2007). For related structures, see: Bernardinelli & Giersch (1985); Shi et al. (2015).

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the molecular structure of the title compound, with atom labelling. Displacement ellipsoids are drawn at the 30% probability level. The intramolecular N—H···O hydrogen bonds is shown as a dashed line (see Table 1).
[Figure 2] Fig. 2. Crystal packing of the title compound, viewed along the a axis. The hydrogen bonds are shown as dashed lines (see Table 1), and C-bound H atoms have been omitted for clarity.
2-[(1R,2R,4aS,8aS)-2-Hydroxy-2,5,5,8a-\ tetramethyldecahydronaphthalen-1-yl]-N-(o-tolyl)acetamide top
Crystal data top
C23H35NO2F(000) = 392
Mr = 357.52Dx = 1.126 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 2068 reflections
a = 6.3001 (5) Åθ = 3.1–23.4°
b = 13.2663 (10) ŵ = 0.07 mm1
c = 12.7082 (10) ÅT = 296 K
β = 96.983 (2)°Block, colorless
V = 1054.26 (14) Å30.22 × 0.20 × 0.18 mm
Z = 2
Data collection top
Bruker SMART APEX CCD
diffractometer
3714 independent reflections
Radiation source: fine-focus sealed tube3121 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
phi and ω scansθmax = 25.4°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
h = 77
Tmin = 0.985, Tmax = 0.987k = 1514
3714 measured reflectionsl = 015
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.095H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0452P)2 + 0.0489P]
where P = (Fo2 + 2Fc2)/3
3714 reflections(Δ/σ)max < 0.001
242 parametersΔρmax = 0.11 e Å3
1 restraintΔρmin = 0.13 e Å3
Crystal data top
C23H35NO2V = 1054.26 (14) Å3
Mr = 357.52Z = 2
Monoclinic, P21Mo Kα radiation
a = 6.3001 (5) ŵ = 0.07 mm1
b = 13.2663 (10) ÅT = 296 K
c = 12.7082 (10) Å0.22 × 0.20 × 0.18 mm
β = 96.983 (2)°
Data collection top
Bruker SMART APEX CCD
diffractometer
3714 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
3121 reflections with I > 2σ(I)
Tmin = 0.985, Tmax = 0.987Rint = 0.020
3714 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0401 restraint
wR(F2) = 0.095H-atom parameters constrained
S = 1.06Δρmax = 0.11 e Å3
3714 reflectionsΔρmin = 0.13 e Å3
242 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.4624 (2)0.38763 (11)0.90592 (12)0.0598 (4)
H1O0.53620.43620.92690.090*
O20.3383 (3)0.06216 (10)1.00512 (14)0.0661 (4)
N10.2698 (2)0.22934 (12)1.01913 (11)0.0413 (4)
H10.31340.28761.00120.050*
C10.0998 (3)0.23103 (14)1.08233 (13)0.0373 (4)
C20.0322 (3)0.32517 (14)1.11475 (15)0.0449 (5)
C30.1453 (4)0.32833 (19)1.16972 (18)0.0601 (6)
H30.19470.39061.19000.072*
C40.2502 (4)0.2428 (2)1.19504 (17)0.0647 (6)
H40.36920.24721.23150.078*
C50.1783 (4)0.1515 (2)1.16623 (18)0.0608 (6)
H50.24660.09311.18480.073*
C60.0049 (3)0.14439 (16)1.10965 (17)0.0503 (5)
H60.04190.08151.08980.060*
C70.3739 (3)0.15013 (14)0.98281 (15)0.0412 (4)
C80.5396 (3)0.17800 (15)0.91191 (16)0.0448 (5)
H8A0.60790.11670.89140.054*
H8B0.64850.21870.95230.054*
C90.4531 (3)0.23662 (13)0.80977 (13)0.0351 (4)
H90.29940.24390.81350.042*
C100.5404 (3)0.34563 (14)0.81224 (16)0.0461 (5)
C110.4370 (4)0.40191 (15)0.71547 (18)0.0601 (6)
H11A0.50340.46770.71310.072*
H11B0.28690.41230.72240.072*
C120.4552 (4)0.34729 (15)0.61180 (17)0.0584 (6)
H12A0.60460.34080.60160.070*
H12B0.38380.38620.55320.070*
C130.3536 (3)0.24265 (16)0.61310 (15)0.0458 (5)
H130.21130.25510.63420.055*
C140.4691 (3)0.17743 (14)0.70513 (14)0.0380 (4)
C150.7835 (4)0.35592 (19)0.82392 (19)0.0667 (7)
H15A0.82260.42440.84150.100*
H15B0.83490.33790.75840.100*
H15C0.84590.31200.87930.100*
C160.7032 (3)0.15146 (18)0.69257 (18)0.0558 (5)
H16A0.78180.14070.76120.084*
H16B0.76630.20610.65780.084*
H16C0.70730.09130.65080.084*
C170.3428 (3)0.07858 (15)0.71010 (17)0.0507 (5)
H17A0.41920.03470.76280.061*
H17B0.20470.09360.73290.061*
C180.3081 (5)0.02307 (19)0.6044 (2)0.0782 (8)
H18A0.44510.00160.58470.094*
H18B0.22200.03660.61160.094*
C190.1974 (4)0.0897 (2)0.5183 (2)0.0848 (9)
H19A0.05350.10320.53430.102*
H19B0.18580.05300.45180.102*
C200.3085 (4)0.1906 (2)0.50341 (17)0.0658 (6)
C210.5087 (5)0.1731 (3)0.4470 (2)0.0896 (9)
H21A0.60030.12480.48610.134*
H21B0.58430.23560.44310.134*
H21C0.46630.14820.37670.134*
C220.1549 (6)0.2562 (3)0.4303 (2)0.1163 (13)
H22A0.10830.21970.36640.174*
H22B0.22680.31670.41310.174*
H22C0.03330.27320.46550.174*
C230.1454 (4)0.42079 (16)1.0915 (2)0.0669 (7)
H23A0.07220.47741.11750.100*
H23B0.14670.42731.01640.100*
H23C0.28970.41881.12590.100*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0856 (11)0.0399 (8)0.0583 (9)0.0191 (7)0.0266 (8)0.0166 (7)
O20.0854 (11)0.0327 (8)0.0842 (11)0.0119 (8)0.0266 (9)0.0162 (8)
N10.0510 (9)0.0274 (8)0.0467 (9)0.0027 (7)0.0110 (7)0.0035 (7)
C10.0414 (9)0.0384 (10)0.0314 (9)0.0004 (9)0.0012 (7)0.0030 (8)
C20.0536 (12)0.0420 (11)0.0392 (11)0.0005 (9)0.0056 (9)0.0023 (8)
C30.0650 (14)0.0676 (16)0.0497 (13)0.0086 (13)0.0145 (11)0.0088 (11)
C40.0582 (13)0.092 (2)0.0467 (13)0.0002 (14)0.0160 (10)0.0072 (13)
C50.0603 (13)0.0724 (16)0.0495 (13)0.0172 (12)0.0059 (11)0.0188 (12)
C60.0605 (13)0.0429 (11)0.0473 (12)0.0045 (10)0.0051 (10)0.0092 (9)
C70.0497 (11)0.0344 (11)0.0379 (10)0.0053 (9)0.0009 (8)0.0056 (8)
C80.0452 (11)0.0438 (11)0.0449 (11)0.0107 (9)0.0044 (8)0.0001 (9)
C90.0365 (9)0.0314 (9)0.0383 (10)0.0025 (8)0.0075 (7)0.0001 (8)
C100.0594 (12)0.0352 (11)0.0459 (12)0.0093 (9)0.0151 (9)0.0071 (8)
C110.0855 (16)0.0337 (12)0.0642 (15)0.0013 (11)0.0215 (12)0.0091 (10)
C120.0787 (15)0.0495 (13)0.0489 (13)0.0011 (11)0.0152 (11)0.0159 (10)
C130.0433 (10)0.0532 (12)0.0415 (11)0.0001 (9)0.0079 (8)0.0025 (9)
C140.0395 (10)0.0366 (10)0.0397 (10)0.0017 (8)0.0116 (8)0.0019 (7)
C150.0656 (14)0.0696 (16)0.0664 (15)0.0320 (12)0.0143 (11)0.0156 (12)
C160.0493 (12)0.0572 (13)0.0639 (14)0.0062 (10)0.0193 (10)0.0053 (11)
C170.0610 (13)0.0417 (12)0.0520 (13)0.0102 (10)0.0172 (10)0.0090 (9)
C180.104 (2)0.0623 (17)0.0738 (19)0.0359 (15)0.0339 (16)0.0293 (13)
C190.0888 (19)0.111 (2)0.0561 (17)0.0440 (17)0.0149 (14)0.0369 (16)
C200.0702 (14)0.0887 (18)0.0385 (12)0.0182 (13)0.0066 (11)0.0055 (11)
C210.106 (2)0.117 (2)0.0529 (16)0.0345 (18)0.0368 (15)0.0212 (15)
C220.117 (3)0.166 (4)0.0575 (17)0.009 (2)0.0239 (17)0.0145 (19)
C230.0797 (16)0.0373 (12)0.0870 (18)0.0010 (11)0.0236 (14)0.0140 (11)
Geometric parameters (Å, º) top
O1—C101.453 (2)C13—C201.551 (3)
O1—H1O0.8200C13—C141.562 (3)
O2—C71.228 (2)C13—H130.9800
N1—C71.349 (2)C14—C171.539 (3)
N1—C11.415 (2)C14—C161.541 (3)
N1—H10.8600C15—H15A0.9600
C1—C61.390 (3)C15—H15B0.9600
C1—C21.398 (3)C15—H15C0.9600
C2—C31.390 (3)C16—H16A0.9600
C2—C231.502 (3)C16—H16B0.9600
C3—C41.371 (3)C16—H16C0.9600
C3—H30.9300C17—C181.524 (3)
C4—C51.358 (4)C17—H17A0.9700
C4—H40.9300C17—H17B0.9700
C5—C61.382 (3)C18—C191.510 (4)
C5—H50.9300C18—H18A0.9700
C6—H60.9300C18—H18B0.9700
C7—C81.506 (3)C19—C201.533 (4)
C8—C91.554 (3)C19—H19A0.9700
C8—H8A0.9700C19—H19B0.9700
C8—H8B0.9700C20—C221.529 (4)
C9—C101.546 (3)C20—C211.542 (4)
C9—C141.558 (2)C21—H21A0.9600
C9—H90.9800C21—H21B0.9600
C10—C111.516 (3)C21—H21C0.9600
C10—C151.527 (3)C22—H22A0.9600
C11—C121.520 (3)C22—H22B0.9600
C11—H11A0.9700C22—H22C0.9600
C11—H11B0.9700C23—H23A0.9600
C12—C131.530 (3)C23—H23B0.9600
C12—H12A0.9700C23—H23C0.9600
C12—H12B0.9700
C10—O1—H1O109.5C17—C14—C16108.65 (16)
C7—N1—C1129.73 (16)C17—C14—C9107.87 (14)
C7—N1—H1115.1C16—C14—C9111.29 (15)
C1—N1—H1115.1C17—C14—C13107.85 (15)
C6—C1—C2119.63 (17)C16—C14—C13114.27 (15)
C6—C1—N1122.93 (18)C9—C14—C13106.69 (14)
C2—C1—N1117.40 (16)C10—C15—H15A109.5
C3—C2—C1117.90 (19)C10—C15—H15B109.5
C3—C2—C23120.25 (19)H15A—C15—H15B109.5
C1—C2—C23121.85 (18)C10—C15—H15C109.5
C4—C3—C2122.2 (2)H15A—C15—H15C109.5
C4—C3—H3118.9H15B—C15—H15C109.5
C2—C3—H3118.9C14—C16—H16A109.5
C5—C4—C3119.3 (2)C14—C16—H16B109.5
C5—C4—H4120.4H16A—C16—H16B109.5
C3—C4—H4120.4C14—C16—H16C109.5
C4—C5—C6120.8 (2)H16A—C16—H16C109.5
C4—C5—H5119.6H16B—C16—H16C109.5
C6—C5—H5119.6C18—C17—C14113.26 (17)
C5—C6—C1120.2 (2)C18—C17—H17A108.9
C5—C6—H6119.9C14—C17—H17A108.9
C1—C6—H6119.9C18—C17—H17B108.9
O2—C7—N1123.46 (17)C14—C17—H17B108.9
O2—C7—C8122.06 (17)H17A—C17—H17B107.7
N1—C7—C8114.48 (16)C19—C18—C17111.1 (2)
C7—C8—C9115.10 (15)C19—C18—H18A109.4
C7—C8—H8A108.5C17—C18—H18A109.4
C9—C8—H8A108.5C19—C18—H18B109.4
C7—C8—H8B108.5C17—C18—H18B109.4
C9—C8—H8B108.5H18A—C18—H18B108.0
H8A—C8—H8B107.5C18—C19—C20115.0 (2)
C10—C9—C8111.30 (15)C18—C19—H19A108.5
C10—C9—C14115.40 (14)C20—C19—H19A108.5
C8—C9—C14114.09 (15)C18—C19—H19B108.5
C10—C9—H9104.9C20—C19—H19B108.5
C8—C9—H9104.9H19A—C19—H19B107.5
C14—C9—H9104.9C22—C20—C19107.9 (2)
O1—C10—C11108.73 (17)C22—C20—C21107.2 (2)
O1—C10—C15108.72 (17)C19—C20—C21109.7 (2)
C11—C10—C15111.21 (18)C22—C20—C13109.0 (2)
O1—C10—C9102.74 (14)C19—C20—C13108.33 (18)
C11—C10—C9109.11 (16)C21—C20—C13114.47 (19)
C15—C10—C9115.82 (17)C20—C21—H21A109.5
C10—C11—C12113.45 (17)C20—C21—H21B109.5
C10—C11—H11A108.9H21A—C21—H21B109.5
C12—C11—H11A108.9C20—C21—H21C109.5
C10—C11—H11B108.9H21A—C21—H21C109.5
C12—C11—H11B108.9H21B—C21—H21C109.5
H11A—C11—H11B107.7C20—C22—H22A109.5
C11—C12—C13110.33 (17)C20—C22—H22B109.5
C11—C12—H12A109.6H22A—C22—H22B109.5
C13—C12—H12A109.6C20—C22—H22C109.5
C11—C12—H12B109.6H22A—C22—H22C109.5
C13—C12—H12B109.6H22B—C22—H22C109.5
H12A—C12—H12B108.1C2—C23—H23A109.5
C12—C13—C20115.19 (17)C2—C23—H23B109.5
C12—C13—C14110.69 (16)H23A—C23—H23B109.5
C20—C13—C14116.36 (18)C2—C23—H23C109.5
C12—C13—H13104.3H23A—C23—H23C109.5
C20—C13—H13104.3H23B—C23—H23C109.5
C14—C13—H13104.3
C7—N1—C1—C66.7 (3)C11—C12—C13—C20164.77 (19)
C7—N1—C1—C2175.54 (18)C11—C12—C13—C1460.6 (2)
C6—C1—C2—C32.8 (3)C10—C9—C14—C17170.84 (16)
N1—C1—C2—C3175.04 (18)C8—C9—C14—C1758.41 (19)
C6—C1—C2—C23177.3 (2)C10—C9—C14—C1670.1 (2)
N1—C1—C2—C234.9 (3)C8—C9—C14—C1660.7 (2)
C1—C2—C3—C41.8 (3)C10—C9—C14—C1355.19 (19)
C23—C2—C3—C4178.3 (2)C8—C9—C14—C13174.06 (14)
C2—C3—C4—C50.4 (3)C12—C13—C14—C17173.35 (16)
C3—C4—C5—C61.7 (3)C20—C13—C14—C1752.6 (2)
C4—C5—C6—C10.6 (3)C12—C13—C14—C1665.7 (2)
C2—C1—C6—C51.7 (3)C20—C13—C14—C1668.3 (2)
N1—C1—C6—C5176.07 (18)C12—C13—C14—C957.69 (19)
C1—N1—C7—O23.4 (3)C20—C13—C14—C9168.28 (15)
C1—N1—C7—C8176.65 (17)C16—C14—C17—C1870.6 (2)
O2—C7—C8—C9120.4 (2)C9—C14—C17—C18168.6 (2)
N1—C7—C8—C959.7 (2)C13—C14—C17—C1853.7 (2)
C7—C8—C9—C10113.33 (18)C14—C17—C18—C1956.3 (3)
C7—C8—C9—C14113.93 (17)C17—C18—C19—C2055.1 (3)
C8—C9—C10—O160.06 (18)C18—C19—C20—C22168.8 (2)
C14—C9—C10—O1167.86 (14)C18—C19—C20—C2174.7 (3)
C8—C9—C10—C11175.33 (16)C18—C19—C20—C1351.0 (3)
C14—C9—C10—C1152.6 (2)C12—C13—C20—C2260.1 (3)
C8—C9—C10—C1558.3 (2)C14—C13—C20—C22168.0 (2)
C14—C9—C10—C1573.8 (2)C12—C13—C20—C19177.2 (2)
O1—C10—C11—C12163.68 (17)C14—C13—C20—C1950.8 (3)
C15—C10—C11—C1276.6 (2)C12—C13—C20—C2160.0 (3)
C9—C10—C11—C1252.3 (2)C14—C13—C20—C2172.0 (3)
C10—C11—C12—C1358.1 (3)
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of benzene ring C1–C6.
D—H···AD—HH···AD···AD—H···A
N1—H1···O10.862.092.894 (2)155
O1—H1O···O2i0.822.002.8054 (19)168
C8—H8B···Cgii0.972.793.632 (2)146
C22—H22A···Cgiii0.962.983.808 (3)145
Symmetry codes: (i) x+1, y+1/2, z+2; (ii) x+1, y, z; (iii) x, y, z1.
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of benzene ring C1–C6.
D—H···AD—HH···AD···AD—H···A
N1—H1···O10.862.092.894 (2)155
O1—H1O···O2i0.822.002.8054 (19)168
C8—H8B···Cgii0.972.793.632 (2)146
C22—H22A···Cgiii0.962.983.808 (3)145
Symmetry codes: (i) x+1, y+1/2, z+2; (ii) x+1, y, z; (iii) x, y, z1.
 

Acknowledgements

This project was supported by the National Natural Science Foundation of China (Nos. 3140177 and 31200257), the Science and Technology Research and Development Projects of Shaanxi Province (No. 2013KJXX-74) and the National Science Foundation of Jiangsu Province (No. BK20140684).

References

First citationBarrero, A. F., Alvarez–Manzaneda, E. J., Chahboun, R. & Arteaga, A. F. (2004). Synth. Commun. 34, 3631–3643.  CrossRef CAS Google Scholar
First citationBernardinelli, G. & Giersch, W. (1985). Acta Cryst. C41, 746–749.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationBruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHuang, P.-Q., Zheng, X. & Deng, X.-M. (2001). Tetrahedron Lett. 42, 9039–9041.  CrossRef CAS Google Scholar
First citationMargaros, I. & Vassilikogiannakis, G. (2007). J. Org. Chem. 72, 4826–4831.  CrossRef PubMed CAS Google Scholar
First citationMohamad, H., Lajis, N. H., Abas, F., Ali, A. M., Sukari, M. A., Kikuzaki, H. & Nakatani, N. (2005). J. Nat. Prod. 68, 285–288.  CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShi, X.-W., Li, S.-K., Li, D.-D. & Lu, Q.-Q. (2015). Acta Cryst. E71, o710–o711.  CrossRef IUCr Journals Google Scholar
First citationSy, L.-K. & Brown, G. D. (1997). J. Nat. Prod. 60, 904–908.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 10| October 2015| Pages o788-o789
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds