organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 10| October 2015| Pages o794-o795

Crystal structure of benzimidazolium salicylate

CROSSMARK_Color_square_no_text.svg

aDepartment of physics, Presidency College, Chennai 600 005, India, bDepartment of Physics, Aalim Muhammed Salegh College of Engineering, Chennai 600 055, India, and cDepartment of Physics, CPCL Polytechnic College, Chennai 600 068, India
*Correspondence e-mail: ppkpresidency@gmail.com, chakkaravarthi_2005@yahoo.com

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 12 September 2015; accepted 22 September 2015; online 26 September 2015)

In the anion of the title mol­ecular salt, C7H7N2+·C7H5O3 (systematic name: 1H-benzimidazol-3-ium 2-hy­droxy­ben­zo­ate), there is an intra­molecular O—H⋯O hydrogen bond that generates an S(6) ring motif. The CO2 group makes a dihedral angle of 5.33 (15)° with its attached ring. In the crystal, the dihedral angle between the benzimidazolium ring and the anion benzene ring is 75.88 (5)°. Two cations bridge two anions via two pairs of N—H⋯O hydrogen bonds, enclosing an R44(16) ring motif, forming a four-membered centrosymmetric arrangement. These units are linked via C—H⋯O hydrogen bonds, forming chains propagating along the b-axis direction. The chains are linked by C—H⋯π and ππ inter­actions [inter-centroid distances = 3.4156 (7) and 3.8196 (8) Å], forming a three-dimensional structure.

1. Related literature

For biological applications of benzimidazole derivatives, see: Narasimhan et al. (2012[Narasimhan, B., Sharma, D. & Kumar, P. (2012). Med. Chem. Res. 21, 269-283.]). For related structures, see: Ennajih et al. (2010[Ennajih, H., Bouhfid, R., Zouihri, H., Essassi, E. M. & Ng, S. W. (2010). Acta Cryst. E66, o455.]); Haque et al. (2012[Haque, R. A., Iqbal, M. A., Budagumpi, S., Hemamalini, M. & Fun, H.-K. (2012). Acta Cryst. E68, o573.]); Mani et al. (2015[Mani, A., Kumar, P. P. & Chakkaravarthi, G. (2015). Acta Cryst. E71, o643-o644.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C7H7N2+·C7H5O3

  • Mr = 256.26

  • Monoclinic, P 21 /c

  • a = 7.4776 (3) Å

  • b = 6.7002 (2) Å

  • c = 24.9017 (9) Å

  • β = 94.445 (2)°

  • V = 1243.86 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 295 K

  • 0.34 × 0.30 × 0.25 mm

2.2. Data collection

  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.967, Tmax = 0.976

  • 23125 measured reflections

  • 4606 independent reflections

  • 3020 reflections with I > 2σ(I)

  • Rint = 0.024

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.142

  • S = 1.03

  • 4606 reflections

  • 176 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg3 is the centroid of the C1–C6 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3A⋯O2 0.83 (1) 1.78 (1) 2.5425 (14) 152 (2)
N1—H1A⋯O1i 0.86 1.81 2.6139 (13) 155
N2—H2A⋯O2ii 0.86 1.81 2.6448 (13) 164
C14—H14⋯O1iii 0.93 2.22 3.1161 (16) 161
C3—H3⋯Cg3iv 0.93 2.81 3.5779 (15) 141
C10—H10⋯Cg3v 0.93 2.88 3.6302 (17) 139
Symmetry codes: (i) x, y+1, z; (ii) -x+2, -y+1, -z; (iii) -x+2, -y+2, -z; (iv) [-x+2, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (v) x+1, y, z.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97 and PLATON.

Supporting information


Structural commentary top

Benzimidazoles and their derivatives have diverse biological and clinical applications (Narasimhan et al., 2012).

The molecular structure of the title salt is illustrated in Fig. 1. The geometric parameters are comparable with those reported for similar structures (Ennajih et al., 2010; Haque et al., 2012; Mani et al., 2015). The molecular structure of the anion is stabilized by an intra­molecular O—H···O hydrogen bond which generates an S(6) ring motif (Table 1 and Fig. 1).

In the crystal, the dihedral angle between the nine-membered benzimidazolium ring (C8—C13/N2/C14/N1) and the anion benzene ring (C1—C6) is 75.88 (5)°. Two cations bridge two anions via two pairs of N—H···O hydrogen bonds, enclosing an R44(16) ring motif, forming a four-membered centrosymmetric arrangement (Table 1 and Fig. 2). These units are linked via C—H···O hydrogen bonds forming chains along the b axis direction. The chains are linked by C—H···π (Table 1) and π···π inter­actions [Cg1···Cg1i = 3.4156 (7) Å; Cg1···Cg2ii = 3.8196 (8) Å; Cg1 and Cg2 are the centroids of rings (N1/C8/C13/N2/C14) and (C8—C13), respectively; symmetry codes: (i) x+2, y+2, -z; (ii) -x+3, -y+2, -z], forming a three-dimensional structure.

Synthesis and crystallization top

Benzimidazole (6 g) and salicylic acid (7.002 g) were dissolved in an equimolar ratio in methanol and stirred well for ca 6 h. The saturated solution was filtered and allowed to evaporate slowly at room temperature. Colourless block-shaped crystals of the title compound were obtained within seven days.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 2. The hydroxyl H atom was located in a difference Fourier map and refined with a distance restraint: O—H = 0.82 (1) Å with Uiso(H) = 1.5Ueq(O). The NH and C-bound H atoms were positioned geometrically and refined using a riding model: N—H = 0.86 Å, C—H = 0.93 Å with Uiso(H) = 1.2Ueq(N,C).

Related literature top

For biological applications of benzimidazole derivatives, see: Narasimhan et al. (2012). For related structures, see: Ennajih et al. (2010); Haque et al. (2012); Mani et al. (2015).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title salt, with atom labelling. The displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. The crystal packing of the title molecular salt, viewed along the b axis. The N—H···O and C—H···O hydrogen bonds are shown as dashed lines (see Table 1). H atoms not involved in these interactions have been omitted for clarity.
1H-Benzimidazol-3-ium 2-hydroxybenzoate top
Crystal data top
C7H7N2+·C7H5O3F(000) = 536
Mr = 256.26Dx = 1.368 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 8207 reflections
a = 7.4776 (3) Åθ = 2.7–31.0°
b = 6.7002 (2) ŵ = 0.10 mm1
c = 24.9017 (9) ÅT = 295 K
β = 94.445 (2)°Block, colourless
V = 1243.86 (8) Å30.34 × 0.30 × 0.25 mm
Z = 4
Data collection top
Bruker Kappa APEXII CCD
diffractometer
4606 independent reflections
Radiation source: fine-focus sealed tube3020 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
ω and φ scanθmax = 39.4°, θmin = 2.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1010
Tmin = 0.967, Tmax = 0.976k = 119
23125 measured reflectionsl = 3535
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.048H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.142 w = 1/[σ2(Fo2) + (0.0618P)2 + 0.2364P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
4606 reflectionsΔρmax = 0.35 e Å3
176 parametersΔρmin = 0.26 e Å3
1 restraintExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.025 (3)
Crystal data top
C7H7N2+·C7H5O3V = 1243.86 (8) Å3
Mr = 256.26Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.4776 (3) ŵ = 0.10 mm1
b = 6.7002 (2) ÅT = 295 K
c = 24.9017 (9) Å0.34 × 0.30 × 0.25 mm
β = 94.445 (2)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
4606 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3020 reflections with I > 2σ(I)
Tmin = 0.967, Tmax = 0.976Rint = 0.024
23125 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0481 restraint
wR(F2) = 0.142H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.35 e Å3
4606 reflectionsΔρmin = 0.26 e Å3
176 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.85922 (14)0.54826 (15)0.16407 (4)0.0321 (2)
C20.94451 (17)0.73153 (18)0.17277 (5)0.0414 (3)
H21.03470.76920.15110.050*
C30.8971 (2)0.8581 (2)0.21304 (5)0.0499 (3)
H30.95540.97980.21870.060*
C40.76260 (19)0.8026 (2)0.24480 (5)0.0503 (3)
H40.72960.88820.27170.060*
C50.67701 (18)0.6234 (2)0.23729 (5)0.0475 (3)
H50.58660.58780.25910.057*
C60.72508 (16)0.49396 (18)0.19710 (4)0.0391 (3)
C70.91104 (17)0.41505 (16)0.12000 (4)0.0375 (2)
C81.27512 (15)1.05724 (17)0.05515 (5)0.0381 (2)
C91.3448 (2)1.0252 (2)0.10764 (6)0.0562 (4)
H91.33551.12030.13450.067*
C101.4287 (2)0.8448 (3)0.11783 (7)0.0697 (5)
H101.47810.81800.15250.084*
C111.4420 (2)0.7016 (3)0.07804 (8)0.0659 (4)
H111.49810.58100.08700.079*
C121.37525 (18)0.7325 (2)0.02618 (6)0.0516 (3)
H121.38540.63670.00040.062*
C131.29132 (15)0.91474 (16)0.01517 (5)0.0371 (2)
C141.14314 (16)1.17020 (18)0.02020 (5)0.0409 (3)
H141.07971.25240.04500.049*
N11.18155 (14)1.21523 (14)0.03109 (4)0.0398 (2)
H1A1.15321.32390.04670.048*
N21.20728 (13)0.99240 (14)0.03137 (4)0.0400 (2)
H2A1.19810.93510.06240.048*
O11.02203 (14)0.47695 (13)0.08885 (4)0.0521 (3)
O20.83774 (17)0.24546 (14)0.11610 (4)0.0613 (3)
O30.63621 (17)0.31901 (17)0.19135 (4)0.0653 (3)
H3A0.680 (3)0.261 (3)0.1658 (7)0.098*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0371 (5)0.0327 (5)0.0266 (4)0.0025 (4)0.0035 (4)0.0024 (4)
C20.0442 (6)0.0390 (6)0.0411 (6)0.0041 (5)0.0050 (5)0.0034 (4)
C30.0594 (8)0.0395 (6)0.0497 (7)0.0019 (6)0.0034 (6)0.0137 (5)
C40.0556 (7)0.0559 (8)0.0389 (6)0.0139 (6)0.0004 (5)0.0169 (5)
C50.0454 (6)0.0626 (8)0.0357 (6)0.0047 (6)0.0106 (5)0.0078 (5)
C60.0413 (6)0.0431 (6)0.0334 (5)0.0024 (5)0.0065 (4)0.0031 (4)
C70.0508 (6)0.0334 (5)0.0290 (5)0.0041 (4)0.0074 (4)0.0012 (4)
C80.0342 (5)0.0409 (6)0.0400 (6)0.0039 (4)0.0077 (4)0.0050 (4)
C90.0551 (8)0.0698 (9)0.0426 (7)0.0019 (7)0.0021 (6)0.0076 (6)
C100.0627 (9)0.0871 (12)0.0566 (9)0.0073 (9)0.0127 (7)0.0111 (8)
C110.0541 (8)0.0583 (9)0.0838 (11)0.0114 (7)0.0049 (8)0.0125 (8)
C120.0431 (7)0.0421 (6)0.0701 (9)0.0045 (5)0.0083 (6)0.0051 (6)
C130.0321 (5)0.0367 (5)0.0433 (6)0.0031 (4)0.0089 (4)0.0040 (4)
C140.0436 (6)0.0393 (6)0.0409 (6)0.0013 (5)0.0113 (5)0.0021 (4)
N10.0439 (5)0.0342 (5)0.0426 (5)0.0009 (4)0.0119 (4)0.0064 (4)
N20.0454 (5)0.0404 (5)0.0354 (5)0.0036 (4)0.0100 (4)0.0066 (4)
O10.0708 (6)0.0415 (5)0.0480 (5)0.0047 (4)0.0301 (4)0.0018 (4)
O20.0956 (8)0.0428 (5)0.0487 (5)0.0176 (5)0.0264 (5)0.0168 (4)
O30.0751 (7)0.0598 (6)0.0656 (7)0.0275 (5)0.0340 (5)0.0142 (5)
Geometric parameters (Å, º) top
C1—C21.3929 (16)C8—C131.3913 (16)
C1—C61.3939 (15)C9—C101.376 (2)
C1—C71.4889 (14)C9—H90.9300
C2—C31.3803 (17)C10—C111.388 (3)
C2—H20.9300C10—H100.9300
C3—C41.378 (2)C11—C121.364 (2)
C3—H30.9300C11—H110.9300
C4—C51.367 (2)C12—C131.3902 (17)
C4—H40.9300C12—H120.9300
C5—C61.3922 (16)C13—N21.3769 (15)
C5—H50.9300C14—N21.3219 (15)
C6—O31.3496 (15)C14—N11.3220 (15)
C7—O11.2499 (14)C14—H140.9300
C7—O21.2620 (14)N1—H1A0.8600
C8—N11.3798 (15)N2—H2A0.8600
C8—C91.3861 (18)O3—H3A0.834 (9)
C2—C1—C6118.68 (10)C10—C9—H9121.9
C2—C1—C7120.07 (10)C8—C9—H9121.9
C6—C1—C7121.25 (10)C9—C10—C11122.17 (14)
C3—C2—C1120.96 (12)C9—C10—H10118.9
C3—C2—H2119.5C11—C10—H10118.9
C1—C2—H2119.5C12—C11—C10121.97 (14)
C4—C3—C2119.41 (12)C12—C11—H11119.0
C4—C3—H3120.3C10—C11—H11119.0
C2—C3—H3120.3C11—C12—C13116.52 (13)
C5—C4—C3120.90 (11)C11—C12—H12121.7
C5—C4—H4119.5C13—C12—H12121.7
C3—C4—H4119.5N2—C13—C12131.86 (11)
C4—C5—C6120.08 (12)N2—C13—C8106.47 (10)
C4—C5—H5120.0C12—C13—C8121.64 (12)
C6—C5—H5120.0N2—C14—N1110.72 (11)
O3—C6—C5117.70 (11)N2—C14—H14124.6
O3—C6—C1122.34 (10)N1—C14—H14124.6
C5—C6—C1119.96 (11)C14—N1—C8108.01 (10)
O1—C7—O2123.80 (10)C14—N1—H1A126.0
O1—C7—C1118.80 (10)C8—N1—H1A126.0
O2—C7—C1117.40 (10)C14—N2—C13108.22 (10)
N1—C8—C9132.02 (11)C14—N2—H2A125.9
N1—C8—C13106.57 (10)C13—N2—H2A125.9
C9—C8—C13121.41 (12)C6—O3—H3A105.2 (16)
C10—C9—C8116.28 (14)
C6—C1—C2—C30.37 (17)C13—C8—C9—C100.6 (2)
C7—C1—C2—C3179.30 (11)C8—C9—C10—C110.5 (2)
C1—C2—C3—C40.42 (19)C9—C10—C11—C121.1 (3)
C2—C3—C4—C50.6 (2)C10—C11—C12—C130.6 (2)
C3—C4—C5—C60.1 (2)C11—C12—C13—N2178.38 (13)
C4—C5—C6—O3179.93 (12)C11—C12—C13—C80.51 (19)
C4—C5—C6—C10.75 (19)N1—C8—C13—N20.10 (12)
C2—C1—C6—O3179.91 (12)C9—C8—C13—N2179.49 (11)
C7—C1—C6—O30.42 (18)N1—C8—C13—C12178.25 (11)
C2—C1—C6—C50.96 (17)C9—C8—C13—C121.14 (18)
C7—C1—C6—C5178.71 (11)N2—C14—N1—C80.50 (13)
C2—C1—C7—O15.18 (17)C9—C8—N1—C14179.06 (14)
C6—C1—C7—O1174.49 (11)C13—C8—N1—C140.23 (13)
C2—C1—C7—O2175.54 (12)N1—C14—N2—C130.56 (13)
C6—C1—C7—O24.79 (17)C12—C13—N2—C14177.72 (13)
N1—C8—C9—C10178.60 (14)C8—C13—N2—C140.40 (12)
Hydrogen-bond geometry (Å, º) top
Cg3 is the centroid of the C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
O3—H3A···O20.83 (1)1.78 (1)2.5425 (14)152 (2)
N1—H1A···O1i0.861.812.6139 (13)155
N2—H2A···O2ii0.861.812.6448 (13)164
C14—H14···O1iii0.932.223.1161 (16)161
C3—H3···Cg3iv0.932.813.5779 (15)141
C10—H10···Cg3v0.932.883.6302 (17)139
Symmetry codes: (i) x, y+1, z; (ii) x+2, y+1, z; (iii) x+2, y+2, z; (iv) x+2, y+1/2, z+1/2; (v) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
Cg3 is the centroid of the C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
O3—H3A···O20.834 (9)1.775 (13)2.5425 (14)152 (2)
N1—H1A···O1i0.861.812.6139 (13)155
N2—H2A···O2ii0.861.812.6448 (13)164
C14—H14···O1iii0.932.223.1161 (16)161
C3—H3···Cg3iv0.932.813.5779 (15)141
C10—H10···Cg3v0.932.883.6302 (17)139
Symmetry codes: (i) x, y+1, z; (ii) x+2, y+1, z; (iii) x+2, y+2, z; (iv) x+2, y+1/2, z+1/2; (v) x+1, y, z.
 

Acknowledgements

The authors wish to acknowledge the SAIF, IIT Madras, for the data collection.

References

First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEnnajih, H., Bouhfid, R., Zouihri, H., Essassi, E. M. & Ng, S. W. (2010). Acta Cryst. E66, o455.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHaque, R. A., Iqbal, M. A., Budagumpi, S., Hemamalini, M. & Fun, H.-K. (2012). Acta Cryst. E68, o573.  CSD CrossRef IUCr Journals Google Scholar
First citationMani, A., Kumar, P. P. & Chakkaravarthi, G. (2015). Acta Cryst. E71, o643–o644.  CSD CrossRef IUCr Journals Google Scholar
First citationNarasimhan, B., Sharma, D. & Kumar, P. (2012). Med. Chem. Res. 21, 269–283.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 10| October 2015| Pages o794-o795
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds