organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 10| October 2015| Pages o733-o734

Crystal structure of (2R)-1-[(methyl­sulfon­yl)­­oxy]propan-2-aminium chloride: a chiral mol­ecular salt

CROSSMARK_Color_square_no_text.svg

aDepartment of Studies and Research in Chemistry, Tumkur University, Tumkur 572 103, Karnataka, India, bDepartment of Studies and Research in Physics, U.C.S., Tumkur University, Tumkur, Karnataka 572 103, India, cDepartment of Studies in Physics, University of Mysore, Manasagangotri, Mysore, Karnataka 570 005, India, and dInstitution of Excellence, University of Mysore, Manasagangotri, Mysore 570 006, India
*Correspondence e-mail: raghukp1@gmail.com

Edited by E. R. T. Tiekink, University of Malaya, Malaysia (Received 28 March 2015; accepted 26 August 2015; online 12 September 2015)

In the title chiral mol­ecular salt, C4H12NO3S+·Cl, the cation is protonated at the N atom, producing [RNH3]+, where R is CH3SO2OCH2C(H)CH3. The N atom in the cation is sp3-hybridized. In the crystal, cations and anions are connected by strong N—H⋯Cl hydrogen bonds to generate edge-shared 12-membered rings of the form {⋯Cl⋯HNH}3. This pattern of hydrogen bonding gives rise to zigzag supra­molecular layers in the ab plane. The layers are connected into a three-dimensional architecture by C—H⋯O hydrogen bonds. The structure was refined as an inversion twin.

1. Related literature

For background to chiral 2-amino-2-(alk­yl/ar­yl/aralk­yl)ethyl methane­sulfonate hydro­chlorides, see: Braghiroli & Di Bella (1996[Braghiroli, D. & Di Bella, M. (1996). Tetrahedron Asymmetry, 7, 2145-2150.]); Higashiura et al. (1989[Higashiura, H., Morino, H., Matsuura, H., Toyomaki, Y. & Ienaga, K. (1989). J. Chem. Soc. Perkin Trans. 1, pp. 1479-1481.]); Morgan et al. (1991[Morgan, B. P., Scholtz, J. M., Ballinger, M. D., Zipkin, I. D. & Bartlett, P. A. (1991). J. Am. Chem. Soc. 113, 297-307.]); Pollack et al. (1989[Pollack, S. J., Hsiun, P. & Schultz, P. G. (1989). J. Am. Chem. Soc. 111, 5961-5962.]); Xu (2002[Xu, J. (2002). Tetrahedron Asymmetry, 13, 1129-1134.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C4H12ClNO3S+·Cl

  • Mr = 189.66

  • Monoclinic, P 21

  • a = 5.4012 (1) Å

  • b = 8.2178 (2) Å

  • c = 10.2713 (2) Å

  • β = 94.534 (1)°

  • V = 454.48 (2) Å3

  • Z = 2

  • Cu Kα radiation

  • μ = 5.57 mm−1

  • T = 296 K

  • 0.24 × 0.20 × 0.16 mm

2.2. Data collection

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2013[Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.302, Tmax = 0.410

  • 2476 measured reflections

  • 1387 independent reflections

  • 1385 reflections with I > 2σ(I)

  • Rint = 0.029

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.078

  • S = 1.11

  • 1387 reflections

  • 96 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.42 e Å−3

  • Absolute structure: Refined as an inversion twin

  • Absolute structure parameter: 0.08 (3)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1E⋯Cl1 0.89 2.33 3.169 (3) 156
C3—H3A⋯O3i 0.97 2.58 3.428 (4) 147
N1—H1D⋯Cl1ii 0.89 2.24 3.116 (3) 169
N1—H1F⋯Cl1iii 0.89 2.26 3.139 (3) 171
C2—H2A⋯O2iv 0.98 2.44 3.186 (4) 133
C4—H4B⋯O3v 0.96 2.50 3.250 (4) 135
C4—H4C⋯O2vi 0.96 2.51 3.438 (5) 163
Symmetry codes: (i) [-x, y-{\script{1\over 2}}, -z+2]; (ii) [-x+1, y-{\script{1\over 2}}, -z+1]; (iii) x-1, y, z; (iv) [-x+1, y-{\script{1\over 2}}, -z+2]; (v) x+1, y, z; (vi) [-x+1, y+{\script{1\over 2}}, -z+2].

Data collection: APEX2 (Bruker, 2013[Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2013[Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]); molecular graphics: Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXL2014.

Supporting information


Chemical context top

The chiral 2-amino-2-(alkyl/aryl/aralkyl)­ethyl methane­sulfonate hydro­chlorides are useful starting materials for the preparation of amines, benzoates, thio­benzoates, sulfonic acids, etc., as methane­sulfonate is a very good leaving group in nucleophilic substitution reactions. The chiral 2-(alkyl/aryl/aralkyl)­ethane­sulfonic acid derivatives and sulfono­peptides (Higashiura et al., 1989) occur in high concentrations in many mammalian tissues. These compounds are involved in various important physiological processes and are used as enzyme inhibitors and heptans in the development of catalytic anti-bodies (Braghiroli & Di Bella, 1996). The enanti­omers of chiral 2-(alkyl/aryl/aralkyl)­ethane­sulfonic acid derivatives mimic the hypotensive effect of taurine (2-amino­ethane­sulfonic acid), one of the most abundant amino acids in mammals that seems to exhibit a special affinity for excitable tissues, such as brain, nerve and muscle (Xu et al., 2002; Pollack et al., 1989; Morgan et al., 1991). In particular, the title compound was used in the synthesis of chiral amines by our group and as a part of our on-going research the structure of the title compound was determined.

Structural commentary top

In the title chiral molecular salt, C4H12NO3S+.Cl-, the N atom is protonated resulting the cation [RNH3]+ where R is CH3SO2OCH2CH(CH3)- and the anion is chloride ion [Cl]-. The N atom in the cation is sp3 hybridized and the bond angles represents that the cation has tetra­hedral structure around N (Fig. 1). In the crystal packing N—H···Cl hydrogen bonds connect ions into a supra­molecular assembly in the ab plane (Fig. 2 and Table 1). Further, there exist C—H···O hydrogen bonds that connect the layers into a three-dimensional architecture.

Synthesis and crystallization top

The title chiral molecular salt was synthesised as per the literature procedure (Higashiura et al., 1989). An aqueous solution of HCl (4 M, 12 ml) was added to a stirred solution of (2R)-2-[(tert-but­oxy­carbonyl)­amino] propyl methane­sulfonate (2.53 g, 10 mmol ) in dioxane (15 ml). The resulting mixture was stirred for a further 1 h. The solution was then concentrated under reduced pressure and the residue obtained was recrystallized from hot ethanol to afford colourless single crystals suitable for single crystal X-ray diffraction.

Refinement details top

The H atom of the NH3 group was located in a difference map but refined with N—H = 0.89, and with Uiso(H) = 1.2Ueq(N). Similarly, the other H atoms were positioned with idealized geometry using a riding model with C—H = 0.96–0.98 Å, and with Uiso(H) = 1.2–1.5Ueq(C). The structure was refined as an inversion twin with a Flack parameter of 0.08 (3)

Related literature top

For background to chiral 2-amino-2-(alkyl/aryl/aralkyl)ethyl methanesulfonate hydrochlorides, see: Braghiroli & Di Bella (1996); Higashiura et al. (1989); Morgan et al. (1991); Pollack et al. (1989); Xu (2002).

Computing details top

Data collection: APEX2 (Bruker, 2013); cell refinement: SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2014).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title molecular salt showing displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. The molecular packing of the title molecular salt with N—H···Cl hydrogen bonds (aqua bonds) leading to a supramolecular assembly in the ab plane.
(2R)-2-Azaniumylpropyl methanesulfonate chloride top
Crystal data top
C4H12ClNO3S+·Clprism
Mr = 189.66Dx = 1.386 Mg m3
Monoclinic, P21Melting point: 354 K
Hall symbol: P 2ybCu Kα radiation, λ = 1.54178 Å
a = 5.4012 (1) ÅCell parameters from 830 reflections
b = 8.2178 (2) Åθ = 4.3–64.7°
c = 10.2713 (2) ŵ = 5.57 mm1
β = 94.534 (1)°T = 296 K
V = 454.48 (2) Å3Prism, colourless
Z = 20.24 × 0.20 × 0.16 mm
F(000) = 200
Data collection top
Bruker APEXII CCD
diffractometer
1387 independent reflections
Radiation source: fine-focus sealed tube1385 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
Detector resolution: 2.01 pixels mm-1θmax = 64.7°, θmin = 4.3°
φ and ω scansh = 62
Absorption correction: multi-scan
(SADABS; Bruker, 2013)
k = 99
Tmin = 0.302, Tmax = 0.410l = 1112
2476 measured reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.031 w = 1/[σ2(Fo2) + (0.0448P)2 + 0.0553P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.078(Δ/σ)max < 0.001
S = 1.11Δρmax = 0.29 e Å3
1387 reflectionsΔρmin = 0.42 e Å3
96 parametersExtinction correction: SHELXL2014 (Sheldrick, 2014), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
1 restraintExtinction coefficient: 0.120 (8)
0 constraintsAbsolute structure: Refined as an inversion twin
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.08 (3)
Secondary atom site location: difference Fourier map
Crystal data top
C4H12ClNO3S+·ClV = 454.48 (2) Å3
Mr = 189.66Z = 2
Monoclinic, P21Cu Kα radiation
a = 5.4012 (1) ŵ = 5.57 mm1
b = 8.2178 (2) ÅT = 296 K
c = 10.2713 (2) Å0.24 × 0.20 × 0.16 mm
β = 94.534 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
1387 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2013)
1385 reflections with I > 2σ(I)
Tmin = 0.302, Tmax = 0.410Rint = 0.029
2476 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.031H-atom parameters constrained
wR(F2) = 0.078Δρmax = 0.29 e Å3
S = 1.11Δρmin = 0.42 e Å3
1387 reflectionsAbsolute structure: Refined as an inversion twin
96 parametersAbsolute structure parameter: 0.08 (3)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refined as a 2-component inversion twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.0227 (7)0.1587 (5)0.7527 (4)0.0204 (8)
H1A0.18070.20290.72110.031*
H1B0.02820.12680.84230.031*
H1C0.01420.06550.70130.031*
Cl10.67754 (13)0.51693 (10)0.53323 (7)0.0149 (3)
S10.33444 (13)0.70873 (9)0.88988 (7)0.0118 (3)
O10.3212 (4)0.5513 (3)0.8028 (2)0.0190 (6)
N10.1849 (5)0.3392 (4)0.6037 (3)0.0111 (6)
H1D0.21530.25350.55440.013*
H1E0.30470.41270.59820.013*
H1F0.03950.38280.57590.013*
C20.1771 (6)0.2864 (4)0.7423 (3)0.0119 (7)
H2A0.33830.23940.77250.014*
O30.0905 (4)0.7735 (4)0.8958 (3)0.0225 (6)
C30.1271 (6)0.4323 (5)0.8265 (3)0.0140 (7)
H3B0.03620.47700.80210.017*
H3A0.13580.40190.91800.017*
C40.5119 (6)0.8308 (5)0.7941 (3)0.0159 (7)
H4B0.66470.77630.78010.024*
H4C0.54750.93230.83800.024*
H4A0.42120.85120.71160.024*
O20.4703 (5)0.6718 (4)1.0115 (2)0.0241 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0242 (19)0.0177 (18)0.0211 (17)0.0055 (15)0.0130 (14)0.0007 (15)
Cl10.0110 (4)0.0182 (5)0.0161 (4)0.0006 (3)0.0051 (3)0.0047 (3)
S10.0117 (4)0.0156 (5)0.0085 (4)0.0016 (3)0.0030 (3)0.0020 (3)
O10.0205 (13)0.0198 (14)0.0186 (12)0.0093 (10)0.0134 (9)0.0075 (11)
N10.0094 (13)0.0128 (15)0.0118 (13)0.0016 (11)0.0051 (10)0.0004 (11)
C20.0117 (15)0.0138 (17)0.0110 (15)0.0003 (13)0.0052 (12)0.0003 (13)
O30.0138 (12)0.0264 (14)0.0283 (14)0.0026 (11)0.0088 (10)0.0058 (11)
C30.0120 (15)0.0159 (17)0.0152 (17)0.0047 (15)0.0076 (12)0.0014 (16)
C40.0158 (16)0.0165 (17)0.0158 (16)0.0032 (15)0.0044 (12)0.0020 (15)
O20.0278 (14)0.0330 (17)0.0107 (12)0.0060 (12)0.0040 (9)0.0035 (11)
Geometric parameters (Å, º) top
C1—C21.515 (5)N1—H1D0.8900
C1—H1A0.9600N1—H1E0.8900
C1—H1B0.9600N1—H1F0.8900
C1—H1C0.9600C2—C31.515 (5)
S1—O31.427 (3)C2—H2A0.9800
S1—O21.430 (3)C3—H3B0.9700
S1—O11.571 (3)C3—H3A0.9700
S1—C41.744 (4)C4—H4B0.9600
O1—C31.468 (4)C4—H4C0.9600
N1—C21.491 (4)C4—H4A0.9600
C2—C1—H1A109.5N1—C2—C1110.1 (3)
C2—C1—H1B109.5N1—C2—C3109.5 (3)
H1A—C1—H1B109.5C1—C2—C3110.3 (3)
C2—C1—H1C109.5N1—C2—H2A109.0
H1A—C1—H1C109.5C1—C2—H2A109.0
H1B—C1—H1C109.5C3—C2—H2A109.0
O3—S1—O2116.97 (15)O1—C3—C2105.7 (2)
O3—S1—O1109.32 (15)O1—C3—H3B110.6
O2—S1—O1108.65 (17)C2—C3—H3B110.6
O3—S1—C4111.10 (17)O1—C3—H3A110.6
O2—S1—C4110.34 (16)C2—C3—H3A110.6
O1—S1—C498.91 (16)H3B—C3—H3A108.7
C3—O1—S1117.07 (19)S1—C4—H4B109.5
C2—N1—H1D109.5S1—C4—H4C109.5
C2—N1—H1E109.5H4B—C4—H4C109.5
H1D—N1—H1E109.5S1—C4—H4A109.5
C2—N1—H1F109.5H4B—C4—H4A109.5
H1D—N1—H1F109.5H4C—C4—H4A109.5
H1E—N1—H1F109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1E···Cl10.892.333.169 (3)156
C3—H3A···O3i0.972.583.428 (4)147
N1—H1D···Cl1ii0.892.243.116 (3)169
N1—H1F···Cl1iii0.892.263.139 (3)171
C2—H2A···O2iv0.982.443.186 (4)133
C4—H4B···O3v0.962.503.250 (4)135
C4—H4C···O2vi0.962.513.438 (5)163
Symmetry codes: (i) x, y1/2, z+2; (ii) x+1, y1/2, z+1; (iii) x1, y, z; (iv) x+1, y1/2, z+2; (v) x+1, y, z; (vi) x+1, y+1/2, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1E···Cl10.892.333.169 (3)156
C3—H3A···O3i0.972.583.428 (4)147
N1—H1D···Cl1ii0.892.243.116 (3)169
N1—H1F···Cl1iii0.892.263.139 (3)171
C2—H2A···O2iv0.982.443.186 (4)133
C4—H4B···O3v0.962.503.250 (4)135
C4—H4C···O2vi0.962.513.438 (5)163
Symmetry codes: (i) x, y1/2, z+2; (ii) x+1, y1/2, z+1; (iii) x1, y, z; (iv) x+1, y1/2, z+2; (v) x+1, y, z; (vi) x+1, y+1/2, z+2.
 

Acknowledgements

PRK thanks the DST–SERB, Government of India, for financial support to carry out the project No. DST/SR/S-1/IC-76/2010(G).

References

First citationBraghiroli, D. & Di Bella, M. (1996). Tetrahedron Asymmetry, 7, 2145–2150.  CrossRef CAS Google Scholar
First citationBruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHigashiura, H., Morino, H., Matsuura, H., Toyomaki, Y. & Ienaga, K. (1989). J. Chem. Soc. Perkin Trans. 1, pp. 1479–1481.  CrossRef Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMorgan, B. P., Scholtz, J. M., Ballinger, M. D., Zipkin, I. D. & Bartlett, P. A. (1991). J. Am. Chem. Soc. 113, 297–307.  CrossRef CAS Google Scholar
First citationPollack, S. J., Hsiun, P. & Schultz, P. G. (1989). J. Am. Chem. Soc. 111, 5961–5962.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationXu, J. (2002). Tetrahedron Asymmetry, 13, 1129–1134.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 10| October 2015| Pages o733-o734
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds