organic compounds
of 2-cyano-1-methylpyridinium tetrafluoroborate
aDepartment of Chemistry, Loyola University, New Orleans, LA 70118, USA, and bDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA
*Correspondence e-mail: joelt@tulane.edu
The 7H7N2+·BF4−, comprises two independent but nearly identical formula units. The solid-state structure comprises corrugated layers of cations and anions, formed by C—H⋯F hydrogen bonding, that are approximately parallel to (010). Further C—H⋯F hydrogen bonding consolidates the three-dimensional architecture. The sample was refined as a two-component non-merohedral twin.
of the title salt, CKeywords: crystal structure; salt; C—H⋯F interactions.
CCDC reference: 1420782
1. Related literature
For structures of other salts of the 2-cyano-1-methylpyridinium cation, see: Koplitz et al. (2012); Kammer et al. (2013). For structures of salts of the isomeric 2-cyanoanilinium cation, see: Zhang (2009); Cui & Chen (2010).
2. Experimental
2.1. Crystal data
|
2.3. Refinement
|
Data collection: APEX2 (Bruker, 2014); cell SAINT (Bruker, 2014); data reduction: SAINT; program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg & Putz, 2012); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).
Supporting information
CCDC reference: 1420782
10.1107/S2056989015016011/tk5380sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S2056989015016011/tk5380Isup2.hkl
Supporting information file. DOI: 10.1107/S2056989015016011/tk5380Isup3.cml
To 0.64 g (0.5 mmol) of 2-cyano-1-methylpyridinium iodide dissolved in 8.5 ml of 95% ethanol was added 1.08 g (0.55 mmol) of solid silver tetrafluoroborate with stirring. The reaction mixture was filtered to remove the precipitated AgI and the filtrate allowed to evaporate to dryness. From the resulting mass, crystals suitable for X-ray diffraction were selected.
The H-atoms attached to carbon were placed in calculated positions (C—H = 0.95 - 0.98 Å). All were included as riding contributions with isotropic displacement parameters 1.2 - 1.5 times those of the attached atoms. In the late stages of the
a consistent pattern of Fo2 >> Fc2 suggested not yet accounted for. Use of the TwinRotMat routine in PLATON (Spek, 2009) generated the -1 0 0 0 - 1 0 0 0 1, inclusion of which enabled satisfactory as a 2-component twin.Data collection: APEX2 (Bruker, 2014); cell
SAINT (Bruker, 2014); data reduction: SAINT (Bruker, 2014); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg & Putz, 2012); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).Fig. 1. Perspective view of the asymmetric unit with 50% probability ellipsoids. The C—H···F interaction is shown by a dotted line. | |
Fig. 2. Packing viewed down the a axis showing an edge view of two corrugated layers and the C—H···F interactions (dotted lines) holding them together. | |
Fig. 3. Packing viewed down the b axis providing a plan view of the corrugated sheets with C—H···F interactions shown as dotted lines. |
C7H7N2+·BF4− | F(000) = 416 |
Mr = 205.96 | Dx = 1.560 Mg m−3 |
Monoclinic, P21 | Mo Kα radiation, λ = 0.71073 Å |
a = 7.9704 (16) Å | Cell parameters from 8457 reflections |
b = 7.5527 (15) Å | θ = 2.6–29.0° |
c = 14.570 (3) Å | µ = 0.15 mm−1 |
β = 90.312 (3)° | T = 150 K |
V = 877.1 (3) Å3 | Block, colourless |
Z = 4 | 0.14 × 0.13 × 0.08 mm |
Bruker SMART APEX CCD diffractometer | 4566 independent reflections |
Radiation source: fine-focus sealed tube | 3779 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.057 |
Detector resolution: 8.3660 pixels mm-1 | θmax = 29.3°, θmin = 2.6° |
φ and ω scans | h = −10→10 |
Absorption correction: multi-scan (SADABS; Bruker, 2014) | k = −10→10 |
Tmin = 0.70, Tmax = 0.99 | l = −19→19 |
16120 measured reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.050 | H-atom parameters constrained |
wR(F2) = 0.122 | w = 1/[σ2(Fo2) + (0.0572P)2 + 0.091P] where P = (Fo2 + 2Fc2)/3 |
S = 1.08 | (Δ/σ)max < 0.001 |
4566 reflections | Δρmax = 0.33 e Å−3 |
256 parameters | Δρmin = −0.27 e Å−3 |
1 restraint | Absolute structure: The absolute structure could not be determined with certainty in this light-atom structure |
Primary atom site location: structure-invariant direct methods |
C7H7N2+·BF4− | V = 877.1 (3) Å3 |
Mr = 205.96 | Z = 4 |
Monoclinic, P21 | Mo Kα radiation |
a = 7.9704 (16) Å | µ = 0.15 mm−1 |
b = 7.5527 (15) Å | T = 150 K |
c = 14.570 (3) Å | 0.14 × 0.13 × 0.08 mm |
β = 90.312 (3)° |
Bruker SMART APEX CCD diffractometer | 4566 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2014) | 3779 reflections with I > 2σ(I) |
Tmin = 0.70, Tmax = 0.99 | Rint = 0.057 |
16120 measured reflections |
R[F2 > 2σ(F2)] = 0.050 | 1 restraint |
wR(F2) = 0.122 | H-atom parameters constrained |
S = 1.08 | Δρmax = 0.33 e Å−3 |
4566 reflections | Δρmin = −0.27 e Å−3 |
256 parameters | Absolute structure: The absolute structure could not be determined with certainty in this light-atom structure |
Experimental. The diffraction data were obtained from 3 sets of 400 frames, each of width 0.5° in ω, collected at φ = 0.00, 90.00 and 180.00° and 2 sets of 800 frames, each of width 0.45° in φ, collected at ω = -30.00 and 210.00°. The scan time was 10 sec/frame. |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. H-atoms attached to carbon were placed in calculated positions (C—H = 0.95 - 0.98 Å). All were included as riding contributions with isotropic displacement parameters 1.2 - 1.5 times those of the attached atoms. In the late stages of the refinement a consistent pattern of Fo2 >> Fc2 suggested twinning not yet accounted for. Use of the TwinRotMat routine in PLATON (Spek, 2009) generated the twin law -1 0 0 0 - 1 0 0 0 1, inclusion of which enabled satisfactory refinement as a 2-component twin. |
x | y | z | Uiso*/Ueq | ||
N1 | 0.7369 (5) | 0.1294 (4) | 0.8819 (3) | 0.0220 (7) | |
N2 | 0.3067 (5) | 0.0851 (7) | 0.8963 (3) | 0.0416 (11) | |
C1 | 0.6868 (6) | 0.1642 (6) | 0.7854 (3) | 0.0273 (10) | |
H1A | 0.7826 | 0.2126 | 0.7518 | 0.041* | |
H1B | 0.5943 | 0.2497 | 0.7841 | 0.041* | |
H1C | 0.6504 | 0.0534 | 0.7565 | 0.041* | |
C2 | 0.8990 (6) | 0.1331 (6) | 0.9067 (3) | 0.0264 (9) | |
H2 | 0.9807 | 0.1629 | 0.8620 | 0.032* | |
C3 | 0.9511 (6) | 0.0952 (7) | 0.9947 (3) | 0.0299 (10) | |
H3 | 1.0671 | 0.0973 | 1.0100 | 0.036* | |
C4 | 0.8341 (6) | 0.0543 (6) | 1.0601 (3) | 0.0283 (10) | |
H4 | 0.8678 | 0.0281 | 1.1213 | 0.034* | |
C5 | 0.6652 (6) | 0.0520 (6) | 1.0352 (3) | 0.0274 (9) | |
H5 | 0.5819 | 0.0254 | 1.0795 | 0.033* | |
C6 | 0.6204 (5) | 0.0884 (6) | 0.9464 (3) | 0.0232 (8) | |
C7 | 0.4472 (6) | 0.0856 (7) | 0.9165 (3) | 0.0295 (10) | |
B1 | 0.7236 (7) | 0.6589 (6) | 0.8140 (3) | 0.0242 (10) | |
F1 | 0.7151 (4) | 0.5195 (3) | 0.8770 (2) | 0.0328 (6) | |
F2 | 0.8600 (4) | 0.7654 (4) | 0.8350 (2) | 0.0361 (7) | |
F3 | 0.5771 (3) | 0.7603 (4) | 0.8200 (2) | 0.0389 (7) | |
F4 | 0.7353 (4) | 0.5925 (4) | 0.72573 (19) | 0.0446 (8) | |
N3 | 0.7497 (5) | 0.3325 (5) | 0.3758 (2) | 0.0246 (8) | |
N4 | 1.1617 (6) | 0.4550 (8) | 0.3990 (3) | 0.0454 (12) | |
C8 | 0.8099 (6) | 0.3192 (7) | 0.2807 (3) | 0.0316 (10) | |
H8A | 0.9110 | 0.2455 | 0.2790 | 0.047* | |
H8B | 0.8361 | 0.4378 | 0.2575 | 0.047* | |
H8C | 0.7225 | 0.2655 | 0.2421 | 0.047* | |
C9 | 0.5886 (6) | 0.2988 (6) | 0.3939 (3) | 0.0292 (10) | |
H9 | 0.5148 | 0.2630 | 0.3460 | 0.035* | |
C10 | 0.5294 (6) | 0.3159 (6) | 0.4825 (3) | 0.0302 (10) | |
H10 | 0.4148 | 0.2926 | 0.4954 | 0.036* | |
C11 | 0.6365 (6) | 0.3668 (7) | 0.5519 (3) | 0.0310 (10) | |
H11 | 0.5962 | 0.3775 | 0.6129 | 0.037* | |
C12 | 0.8039 (6) | 0.4028 (6) | 0.5327 (3) | 0.0304 (10) | |
H12 | 0.8794 | 0.4387 | 0.5798 | 0.036* | |
C13 | 0.8566 (6) | 0.3847 (6) | 0.4439 (3) | 0.0255 (9) | |
C14 | 1.0267 (7) | 0.4226 (7) | 0.4190 (3) | 0.0327 (10) | |
B2 | 0.7732 (7) | 0.8421 (7) | 0.3142 (3) | 0.0273 (10) | |
F5 | 0.8153 (4) | 0.9543 (4) | 0.3856 (2) | 0.0435 (8) | |
F6 | 0.6889 (5) | 0.6960 (4) | 0.3476 (2) | 0.0500 (9) | |
F7 | 0.9153 (4) | 0.7890 (6) | 0.2691 (2) | 0.0569 (10) | |
F8 | 0.6664 (4) | 0.9294 (4) | 0.2535 (2) | 0.0464 (8) |
U11 | U22 | U33 | U12 | U13 | U23 | |
N1 | 0.0256 (18) | 0.0142 (16) | 0.0263 (17) | 0.0013 (14) | 0.0025 (15) | −0.0004 (14) |
N2 | 0.029 (2) | 0.059 (3) | 0.038 (2) | 0.004 (2) | 0.0041 (18) | −0.002 (2) |
C1 | 0.037 (3) | 0.022 (2) | 0.023 (2) | −0.0010 (18) | −0.0026 (18) | 0.0022 (17) |
C2 | 0.023 (2) | 0.023 (2) | 0.033 (2) | −0.0011 (16) | 0.0046 (19) | −0.0008 (19) |
C3 | 0.025 (2) | 0.033 (2) | 0.032 (2) | 0.0022 (19) | −0.0025 (19) | −0.002 (2) |
C4 | 0.031 (2) | 0.029 (2) | 0.025 (2) | 0.0000 (18) | −0.0006 (18) | −0.0012 (18) |
C5 | 0.031 (2) | 0.024 (2) | 0.027 (2) | 0.0002 (18) | 0.0039 (19) | −0.0005 (18) |
C6 | 0.023 (2) | 0.0174 (19) | 0.029 (2) | 0.0007 (16) | 0.0041 (17) | −0.0020 (17) |
C7 | 0.029 (2) | 0.028 (2) | 0.032 (2) | 0.0002 (18) | 0.0046 (19) | −0.001 (2) |
B1 | 0.029 (2) | 0.018 (2) | 0.026 (2) | −0.0007 (19) | 0.001 (2) | 0.0018 (18) |
F1 | 0.0440 (15) | 0.0189 (12) | 0.0355 (14) | −0.0006 (12) | −0.0028 (13) | 0.0047 (10) |
F2 | 0.0336 (15) | 0.0254 (14) | 0.0492 (17) | −0.0069 (12) | −0.0028 (13) | 0.0005 (12) |
F3 | 0.0311 (15) | 0.0235 (13) | 0.062 (2) | 0.0040 (12) | 0.0021 (14) | 0.0036 (13) |
F4 | 0.069 (2) | 0.0343 (16) | 0.0304 (14) | −0.0020 (16) | 0.0062 (15) | −0.0067 (13) |
N3 | 0.0326 (19) | 0.0141 (15) | 0.0270 (18) | 0.0007 (14) | 0.0007 (15) | −0.0004 (14) |
N4 | 0.034 (2) | 0.060 (3) | 0.042 (2) | −0.008 (2) | 0.000 (2) | 0.005 (2) |
C8 | 0.041 (3) | 0.025 (2) | 0.028 (2) | −0.004 (2) | 0.004 (2) | 0.0001 (19) |
C9 | 0.031 (2) | 0.023 (2) | 0.034 (2) | −0.0023 (17) | −0.005 (2) | 0.0003 (19) |
C10 | 0.029 (2) | 0.023 (2) | 0.039 (3) | −0.0003 (18) | 0.0034 (19) | 0.005 (2) |
C11 | 0.037 (2) | 0.029 (2) | 0.027 (2) | 0.0017 (19) | 0.001 (2) | 0.0019 (19) |
C12 | 0.034 (2) | 0.026 (2) | 0.032 (2) | 0.000 (2) | −0.003 (2) | 0.0016 (19) |
C13 | 0.029 (2) | 0.0147 (18) | 0.033 (2) | 0.0023 (16) | −0.0026 (19) | 0.0026 (17) |
C14 | 0.035 (3) | 0.031 (2) | 0.032 (2) | −0.001 (2) | −0.002 (2) | 0.002 (2) |
B2 | 0.033 (3) | 0.023 (2) | 0.026 (2) | −0.002 (2) | 0.002 (2) | 0.004 (2) |
F5 | 0.061 (2) | 0.0328 (16) | 0.0363 (16) | 0.0103 (14) | −0.0076 (16) | −0.0078 (13) |
F6 | 0.072 (2) | 0.0196 (14) | 0.059 (2) | 0.0019 (15) | 0.0198 (17) | 0.0098 (14) |
F7 | 0.0376 (17) | 0.072 (3) | 0.061 (2) | 0.0042 (17) | 0.0157 (15) | −0.0251 (19) |
F8 | 0.057 (2) | 0.0294 (16) | 0.0522 (18) | −0.0021 (14) | −0.0197 (17) | 0.0099 (14) |
N1—C2 | 1.340 (6) | N3—C9 | 1.336 (6) |
N1—C6 | 1.360 (6) | N3—C13 | 1.362 (6) |
N1—C1 | 1.484 (6) | N3—C8 | 1.473 (6) |
N2—C7 | 1.157 (6) | N4—C14 | 1.143 (7) |
C1—H1A | 0.9800 | C8—H8A | 0.9800 |
C1—H1B | 0.9800 | C8—H8B | 0.9800 |
C1—H1C | 0.9800 | C8—H8C | 0.9800 |
C2—C3 | 1.376 (7) | C9—C10 | 1.382 (7) |
C2—H2 | 0.9500 | C9—H9 | 0.9500 |
C3—C4 | 1.372 (7) | C10—C11 | 1.375 (7) |
C3—H3 | 0.9500 | C10—H10 | 0.9500 |
C4—C5 | 1.392 (6) | C11—C12 | 1.392 (7) |
C4—H4 | 0.9500 | C11—H11 | 0.9500 |
C5—C6 | 1.369 (6) | C12—C13 | 1.370 (6) |
C5—H5 | 0.9500 | C12—H12 | 0.9500 |
C6—C7 | 1.446 (6) | C13—C14 | 1.434 (7) |
B1—F4 | 1.384 (6) | B2—F7 | 1.372 (6) |
B1—F2 | 1.385 (6) | B2—F6 | 1.382 (6) |
B1—F1 | 1.398 (5) | B2—F5 | 1.382 (6) |
B1—F3 | 1.400 (6) | B2—F8 | 1.391 (6) |
C2—N1—C6 | 118.7 (4) | C9—N3—C13 | 120.6 (4) |
C2—N1—C1 | 120.4 (4) | C9—N3—C8 | 119.4 (4) |
C6—N1—C1 | 120.9 (4) | C13—N3—C8 | 119.9 (4) |
N1—C1—H1A | 109.5 | N3—C8—H8A | 109.5 |
N1—C1—H1B | 109.5 | N3—C8—H8B | 109.5 |
H1A—C1—H1B | 109.5 | H8A—C8—H8B | 109.5 |
N1—C1—H1C | 109.5 | N3—C8—H8C | 109.5 |
H1A—C1—H1C | 109.5 | H8A—C8—H8C | 109.5 |
H1B—C1—H1C | 109.5 | H8B—C8—H8C | 109.5 |
N1—C2—C3 | 122.1 (4) | N3—C9—C10 | 119.9 (5) |
N1—C2—H2 | 118.9 | N3—C9—H9 | 120.0 |
C3—C2—H2 | 118.9 | C10—C9—H9 | 120.0 |
C4—C3—C2 | 119.5 (4) | C11—C10—C9 | 120.0 (4) |
C4—C3—H3 | 120.3 | C11—C10—H10 | 120.0 |
C2—C3—H3 | 120.3 | C9—C10—H10 | 120.0 |
C3—C4—C5 | 118.8 (4) | C10—C11—C12 | 119.9 (4) |
C3—C4—H4 | 120.6 | C10—C11—H11 | 120.0 |
C5—C4—H4 | 120.6 | C12—C11—H11 | 120.0 |
C6—C5—C4 | 119.4 (4) | C13—C12—C11 | 118.0 (5) |
C6—C5—H5 | 120.3 | C13—C12—H12 | 121.0 |
C4—C5—H5 | 120.3 | C11—C12—H12 | 121.0 |
N1—C6—C5 | 121.5 (4) | N3—C13—C12 | 121.5 (4) |
N1—C6—C7 | 116.7 (4) | N3—C13—C14 | 117.6 (4) |
C5—C6—C7 | 121.7 (4) | C12—C13—C14 | 120.9 (5) |
N2—C7—C6 | 177.1 (5) | N4—C14—C13 | 179.1 (6) |
F4—B1—F2 | 111.1 (4) | F7—B2—F6 | 109.9 (4) |
F4—B1—F1 | 109.9 (4) | F7—B2—F5 | 110.0 (4) |
F2—B1—F1 | 109.5 (4) | F6—B2—F5 | 110.0 (4) |
F4—B1—F3 | 108.5 (4) | F7—B2—F8 | 109.7 (4) |
F2—B1—F3 | 108.8 (4) | F6—B2—F8 | 107.8 (4) |
F1—B1—F3 | 109.1 (4) | F5—B2—F8 | 109.5 (4) |
C6—N1—C2—C3 | 0.7 (7) | C13—N3—C9—C10 | −0.4 (7) |
C1—N1—C2—C3 | −177.6 (4) | C8—N3—C9—C10 | −178.0 (4) |
N1—C2—C3—C4 | −0.9 (8) | N3—C9—C10—C11 | −0.3 (7) |
C2—C3—C4—C5 | 0.2 (8) | C9—C10—C11—C12 | 0.7 (8) |
C3—C4—C5—C6 | 0.7 (7) | C10—C11—C12—C13 | −0.3 (7) |
C2—N1—C6—C5 | 0.2 (6) | C9—N3—C13—C12 | 0.7 (7) |
C1—N1—C6—C5 | 178.5 (4) | C8—N3—C13—C12 | 178.4 (4) |
C2—N1—C6—C7 | −179.9 (4) | C9—N3—C13—C14 | −178.6 (4) |
C1—N1—C6—C7 | −1.6 (6) | C8—N3—C13—C14 | −0.9 (7) |
C4—C5—C6—N1 | −0.9 (7) | C11—C12—C13—N3 | −0.3 (7) |
C4—C5—C6—C7 | 179.2 (5) | C11—C12—C13—C14 | 178.9 (5) |
D—H···A | D—H | H···A | D···A | D—H···A |
C1—H1A···F7i | 0.98 | 2.50 | 3.407 (6) | 154 |
C1—H1B···F8ii | 0.98 | 2.54 | 3.498 (6) | 166 |
C1—H1C···F3iii | 0.98 | 2.47 | 3.214 (5) | 132 |
C2—H2···F7i | 0.95 | 2.29 | 3.190 (5) | 157 |
C3—H3···F1iv | 0.95 | 2.46 | 3.294 (6) | 147 |
C5—H5···F1v | 0.95 | 2.45 | 3.306 (5) | 149 |
C8—H8A···F2i | 0.98 | 2.48 | 3.159 (6) | 126 |
C8—H8C···F3ii | 0.98 | 2.55 | 3.437 (6) | 151 |
C9—H9···F3ii | 0.95 | 2.52 | 3.392 (6) | 152 |
C9—H9···F4ii | 0.95 | 2.59 | 3.476 (6) | 156 |
C10—H10···F6ii | 0.95 | 2.54 | 3.167 (6) | 123 |
C12—H12···F5i | 0.95 | 2.49 | 3.277 (6) | 141 |
Symmetry codes: (i) −x+2, y−1/2, −z+1; (ii) −x+1, y−1/2, −z+1; (iii) x, y−1, z; (iv) −x+2, y−1/2, −z+2; (v) −x+1, y−1/2, −z+2. |
D—H···A | D—H | H···A | D···A | D—H···A |
C1—H1A···F7i | 0.98 | 2.50 | 3.407 (6) | 154 |
C1—H1B···F8ii | 0.98 | 2.54 | 3.498 (6) | 166 |
C1—H1C···F3iii | 0.98 | 2.47 | 3.214 (5) | 132 |
C2—H2···F7i | 0.95 | 2.29 | 3.190 (5) | 157 |
C3—H3···F1iv | 0.95 | 2.46 | 3.294 (6) | 147 |
C5—H5···F1v | 0.95 | 2.45 | 3.306 (5) | 149 |
C8—H8A···F2i | 0.98 | 2.48 | 3.159 (6) | 126 |
C8—H8C···F3ii | 0.98 | 2.55 | 3.437 (6) | 151 |
C9—H9···F3ii | 0.95 | 2.52 | 3.392 (6) | 152 |
C9—H9···F4ii | 0.95 | 2.59 | 3.476 (6) | 156 |
C10—H10···F6ii | 0.95 | 2.54 | 3.167 (6) | 123 |
C12—H12···F5i | 0.95 | 2.49 | 3.277 (6) | 141 |
Symmetry codes: (i) −x+2, y−1/2, −z+1; (ii) −x+1, y−1/2, −z+1; (iii) x, y−1, z; (iv) −x+2, y−1/2, −z+2; (v) −x+1, y−1/2, −z+2. |
Acknowledgements
JTM thanks Tulane University for support of the Tulane Crystallography Laboratory.
References
Brandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Bruker (2014). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Cui, L.-J. & Chen, X.-Y. (2010). Acta Cryst. E66, o467. Web of Science CSD CrossRef IUCr Journals Google Scholar
Kammer, M. N., Koplitz, L. V. & Mague, J. T. (2013). Acta Cryst. E69, o1281. CSD CrossRef IUCr Journals Google Scholar
Koplitz, L. V., Mague, J. T., Kammer, M. N., McCormick, C. A., Renfro, H. E. & Vumbaco, D. J. (2012). Acta Cryst. E68, o1653. CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Zhang, Y. (2009). Acta Cryst. E65, o2373. CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The asymmetric unit consists of two independent formula units. A portion of the C—H···F hydrogen bonding network which aids the packing of the several ions is shown in Fig. 1 with fuller depictions appearing in Figs 2 and 3. The solid state structure comprises corrugated layers of cations and anions formed by C—H···F hydrogen bonding between them and approximately parallel to (010). These layers are held to one another by additional C—H···F interactions.