organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 10| October 2015| Pages o697-o698

Crystal structure of 2-cyano-1-methyl­pyridinium tetra­fluoro­borate

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Loyola University, New Orleans, LA 70118, USA, and bDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA
*Correspondence e-mail: joelt@tulane.edu

Edited by E. R. T. Tiekink, University of Malaya, Malaysia (Received 26 August 2015; accepted 26 August 2015; online 12 September 2015)

The asymmetric unit of the title salt, C7H7N2+·BF4, comprises two independent but nearly identical formula units. The solid-state structure comprises corrugated layers of cations and anions, formed by C—H⋯F hydrogen bonding, that are approximately parallel to (010). Further C—H⋯F hydrogen bonding consolidates the three-dimensional architecture. The sample was refined as a two-component non-merohedral twin.

1. Related literature

For structures of other salts of the 2-cyano-1-methyl­pyridinium cation, see: Koplitz et al. (2012[Koplitz, L. V., Mague, J. T., Kammer, M. N., McCormick, C. A., Renfro, H. E. & Vumbaco, D. J. (2012). Acta Cryst. E68, o1653.]); Kammer et al. (2013[Kammer, M. N., Koplitz, L. V. & Mague, J. T. (2013). Acta Cryst. E69, o1281.]). For structures of salts of the isomeric 2-cyano­anilinium cation, see: Zhang (2009[Zhang, Y. (2009). Acta Cryst. E65, o2373.]); Cui & Chen (2010[Cui, L.-J. & Chen, X.-Y. (2010). Acta Cryst. E66, o467.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C7H7N2+·BF4

  • Mr = 205.96

  • Monoclinic, P 21

  • a = 7.9704 (16) Å

  • b = 7.5527 (15) Å

  • c = 14.570 (3) Å

  • β = 90.312 (3)°

  • V = 877.1 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.15 mm−1

  • T = 150 K

  • 0.14 × 0.13 × 0.08 mm

2.2. Data collection

  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2014[Bruker (2014). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.70, Tmax = 0.99

  • 16120 measured reflections

  • 4566 independent reflections

  • 3779 reflections with I > 2σ(I)

  • Rint = 0.057

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.122

  • S = 1.08

  • 4566 reflections

  • 256 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.27 e Å−3

  • Absolute structure: the absolute structure could not be determined with certainty in this light-atom structure

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1A⋯F7i 0.98 2.50 3.407 (6) 154
C1—H1B⋯F8ii 0.98 2.54 3.498 (6) 166
C1—H1C⋯F3iii 0.98 2.47 3.214 (5) 132
C2—H2⋯F7i 0.95 2.29 3.190 (5) 157
C3—H3⋯F1iv 0.95 2.46 3.294 (6) 147
C5—H5⋯F1v 0.95 2.45 3.306 (5) 149
C8—H8A⋯F2i 0.98 2.48 3.159 (6) 126
C8—H8C⋯F3ii 0.98 2.55 3.437 (6) 151
C9—H9⋯F3ii 0.95 2.52 3.392 (6) 152
C9—H9⋯F4ii 0.95 2.59 3.476 (6) 156
C10—H10⋯F6ii 0.95 2.54 3.167 (6) 123
C12—H12⋯F5i 0.95 2.49 3.277 (6) 141
Symmetry codes: (i) [-x+2, y-{\script{1\over 2}}, -z+1]; (ii) [-x+1, y-{\script{1\over 2}}, -z+1]; (iii) x, y-1, z; (iv) [-x+2, y-{\script{1\over 2}}, -z+2]; (v) [-x+1, y-{\script{1\over 2}}, -z+2].

Data collection: APEX2 (Bruker, 2014[Bruker (2014). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2014[Bruker (2014). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]); molecular graphics: DIAMOND (Brandenburg & Putz, 2012[Brandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The asymmetric unit consists of two independent formula units. A portion of the C—H···F hydrogen bonding network which aids the packing of the several ions is shown in Fig. 1 with fuller depictions appearing in Figs 2 and 3. The solid state structure comprises corrugated layers of cations and anions formed by C—H···F hydrogen bonding between them and approximately parallel to (010). These layers are held to one another by additional C—H···F interactions.

Related literature top

For structures of other salts of the 2-cyano-1-methylpyridinium cation, see: Koplitz et al. (2012); Kammer et al. (2013). For structures of salts of the isomeric 2-cyanoanilinium cation, see: Zhang (2009); Cui & Chen (2010).

Experimental top

To 0.64 g (0.5 mmol) of 2-cyano-1-methylpyridinium iodide dissolved in 8.5 ml of 95% ethanol was added 1.08 g (0.55 mmol) of solid silver tetrafluoroborate with stirring. The reaction mixture was filtered to remove the precipitated AgI and the filtrate allowed to evaporate to dryness. From the resulting mass, crystals suitable for X-ray diffraction were selected.

Refinement top

The H-atoms attached to carbon were placed in calculated positions (C—H = 0.95 - 0.98 Å). All were included as riding contributions with isotropic displacement parameters 1.2 - 1.5 times those of the attached atoms. In the late stages of the refinement a consistent pattern of Fo2 >> Fc2 suggested twinning not yet accounted for. Use of the TwinRotMat routine in PLATON (Spek, 2009) generated the twin law -1 0 0 0 - 1 0 0 0 1, inclusion of which enabled satisfactory refinement as a 2-component twin.

Computing details top

Data collection: APEX2 (Bruker, 2014); cell refinement: SAINT (Bruker, 2014); data reduction: SAINT (Bruker, 2014); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg & Putz, 2012); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. Perspective view of the asymmetric unit with 50% probability ellipsoids. The C—H···F interaction is shown by a dotted line.
[Figure 2] Fig. 2. Packing viewed down the a axis showing an edge view of two corrugated layers and the C—H···F interactions (dotted lines) holding them together.
[Figure 3] Fig. 3. Packing viewed down the b axis providing a plan view of the corrugated sheets with C—H···F interactions shown as dotted lines.
2-Cyano-1-methylpyridinium tetrafluoroborate top
Crystal data top
C7H7N2+·BF4F(000) = 416
Mr = 205.96Dx = 1.560 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
a = 7.9704 (16) ÅCell parameters from 8457 reflections
b = 7.5527 (15) Åθ = 2.6–29.0°
c = 14.570 (3) ŵ = 0.15 mm1
β = 90.312 (3)°T = 150 K
V = 877.1 (3) Å3Block, colourless
Z = 40.14 × 0.13 × 0.08 mm
Data collection top
Bruker SMART APEX CCD
diffractometer
4566 independent reflections
Radiation source: fine-focus sealed tube3779 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.057
Detector resolution: 8.3660 pixels mm-1θmax = 29.3°, θmin = 2.6°
φ and ω scansh = 1010
Absorption correction: multi-scan
(SADABS; Bruker, 2014)
k = 1010
Tmin = 0.70, Tmax = 0.99l = 1919
16120 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.050H-atom parameters constrained
wR(F2) = 0.122 w = 1/[σ2(Fo2) + (0.0572P)2 + 0.091P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max < 0.001
4566 reflectionsΔρmax = 0.33 e Å3
256 parametersΔρmin = 0.27 e Å3
1 restraintAbsolute structure: The absolute structure could not be determined with certainty in this light-atom structure
Primary atom site location: structure-invariant direct methods
Crystal data top
C7H7N2+·BF4V = 877.1 (3) Å3
Mr = 205.96Z = 4
Monoclinic, P21Mo Kα radiation
a = 7.9704 (16) ŵ = 0.15 mm1
b = 7.5527 (15) ÅT = 150 K
c = 14.570 (3) Å0.14 × 0.13 × 0.08 mm
β = 90.312 (3)°
Data collection top
Bruker SMART APEX CCD
diffractometer
4566 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2014)
3779 reflections with I > 2σ(I)
Tmin = 0.70, Tmax = 0.99Rint = 0.057
16120 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0501 restraint
wR(F2) = 0.122H-atom parameters constrained
S = 1.08Δρmax = 0.33 e Å3
4566 reflectionsΔρmin = 0.27 e Å3
256 parametersAbsolute structure: The absolute structure could not be determined with certainty in this light-atom structure
Special details top

Experimental. The diffraction data were obtained from 3 sets of 400 frames, each of width 0.5° in ω, collected at φ = 0.00, 90.00 and 180.00° and 2 sets of 800 frames, each of width 0.45° in φ, collected at ω = -30.00 and 210.00°. The scan time was 10 sec/frame.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. H-atoms attached to carbon were placed in calculated positions (C—H = 0.95 - 0.98 Å). All were included as riding contributions with isotropic displacement parameters 1.2 - 1.5 times those of the attached atoms. In the late stages of the refinement a consistent pattern of Fo2 >> Fc2 suggested twinning not yet accounted for. Use of the TwinRotMat routine in PLATON (Spek, 2009) generated the twin law -1 0 0 0 - 1 0 0 0 1, inclusion of which enabled satisfactory refinement as a 2-component twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.7369 (5)0.1294 (4)0.8819 (3)0.0220 (7)
N20.3067 (5)0.0851 (7)0.8963 (3)0.0416 (11)
C10.6868 (6)0.1642 (6)0.7854 (3)0.0273 (10)
H1A0.78260.21260.75180.041*
H1B0.59430.24970.78410.041*
H1C0.65040.05340.75650.041*
C20.8990 (6)0.1331 (6)0.9067 (3)0.0264 (9)
H20.98070.16290.86200.032*
C30.9511 (6)0.0952 (7)0.9947 (3)0.0299 (10)
H31.06710.09731.01000.036*
C40.8341 (6)0.0543 (6)1.0601 (3)0.0283 (10)
H40.86780.02811.12130.034*
C50.6652 (6)0.0520 (6)1.0352 (3)0.0274 (9)
H50.58190.02541.07950.033*
C60.6204 (5)0.0884 (6)0.9464 (3)0.0232 (8)
C70.4472 (6)0.0856 (7)0.9165 (3)0.0295 (10)
B10.7236 (7)0.6589 (6)0.8140 (3)0.0242 (10)
F10.7151 (4)0.5195 (3)0.8770 (2)0.0328 (6)
F20.8600 (4)0.7654 (4)0.8350 (2)0.0361 (7)
F30.5771 (3)0.7603 (4)0.8200 (2)0.0389 (7)
F40.7353 (4)0.5925 (4)0.72573 (19)0.0446 (8)
N30.7497 (5)0.3325 (5)0.3758 (2)0.0246 (8)
N41.1617 (6)0.4550 (8)0.3990 (3)0.0454 (12)
C80.8099 (6)0.3192 (7)0.2807 (3)0.0316 (10)
H8A0.91100.24550.27900.047*
H8B0.83610.43780.25750.047*
H8C0.72250.26550.24210.047*
C90.5886 (6)0.2988 (6)0.3939 (3)0.0292 (10)
H90.51480.26300.34600.035*
C100.5294 (6)0.3159 (6)0.4825 (3)0.0302 (10)
H100.41480.29260.49540.036*
C110.6365 (6)0.3668 (7)0.5519 (3)0.0310 (10)
H110.59620.37750.61290.037*
C120.8039 (6)0.4028 (6)0.5327 (3)0.0304 (10)
H120.87940.43870.57980.036*
C130.8566 (6)0.3847 (6)0.4439 (3)0.0255 (9)
C141.0267 (7)0.4226 (7)0.4190 (3)0.0327 (10)
B20.7732 (7)0.8421 (7)0.3142 (3)0.0273 (10)
F50.8153 (4)0.9543 (4)0.3856 (2)0.0435 (8)
F60.6889 (5)0.6960 (4)0.3476 (2)0.0500 (9)
F70.9153 (4)0.7890 (6)0.2691 (2)0.0569 (10)
F80.6664 (4)0.9294 (4)0.2535 (2)0.0464 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0256 (18)0.0142 (16)0.0263 (17)0.0013 (14)0.0025 (15)0.0004 (14)
N20.029 (2)0.059 (3)0.038 (2)0.004 (2)0.0041 (18)0.002 (2)
C10.037 (3)0.022 (2)0.023 (2)0.0010 (18)0.0026 (18)0.0022 (17)
C20.023 (2)0.023 (2)0.033 (2)0.0011 (16)0.0046 (19)0.0008 (19)
C30.025 (2)0.033 (2)0.032 (2)0.0022 (19)0.0025 (19)0.002 (2)
C40.031 (2)0.029 (2)0.025 (2)0.0000 (18)0.0006 (18)0.0012 (18)
C50.031 (2)0.024 (2)0.027 (2)0.0002 (18)0.0039 (19)0.0005 (18)
C60.023 (2)0.0174 (19)0.029 (2)0.0007 (16)0.0041 (17)0.0020 (17)
C70.029 (2)0.028 (2)0.032 (2)0.0002 (18)0.0046 (19)0.001 (2)
B10.029 (2)0.018 (2)0.026 (2)0.0007 (19)0.001 (2)0.0018 (18)
F10.0440 (15)0.0189 (12)0.0355 (14)0.0006 (12)0.0028 (13)0.0047 (10)
F20.0336 (15)0.0254 (14)0.0492 (17)0.0069 (12)0.0028 (13)0.0005 (12)
F30.0311 (15)0.0235 (13)0.062 (2)0.0040 (12)0.0021 (14)0.0036 (13)
F40.069 (2)0.0343 (16)0.0304 (14)0.0020 (16)0.0062 (15)0.0067 (13)
N30.0326 (19)0.0141 (15)0.0270 (18)0.0007 (14)0.0007 (15)0.0004 (14)
N40.034 (2)0.060 (3)0.042 (2)0.008 (2)0.000 (2)0.005 (2)
C80.041 (3)0.025 (2)0.028 (2)0.004 (2)0.004 (2)0.0001 (19)
C90.031 (2)0.023 (2)0.034 (2)0.0023 (17)0.005 (2)0.0003 (19)
C100.029 (2)0.023 (2)0.039 (3)0.0003 (18)0.0034 (19)0.005 (2)
C110.037 (2)0.029 (2)0.027 (2)0.0017 (19)0.001 (2)0.0019 (19)
C120.034 (2)0.026 (2)0.032 (2)0.000 (2)0.003 (2)0.0016 (19)
C130.029 (2)0.0147 (18)0.033 (2)0.0023 (16)0.0026 (19)0.0026 (17)
C140.035 (3)0.031 (2)0.032 (2)0.001 (2)0.002 (2)0.002 (2)
B20.033 (3)0.023 (2)0.026 (2)0.002 (2)0.002 (2)0.004 (2)
F50.061 (2)0.0328 (16)0.0363 (16)0.0103 (14)0.0076 (16)0.0078 (13)
F60.072 (2)0.0196 (14)0.059 (2)0.0019 (15)0.0198 (17)0.0098 (14)
F70.0376 (17)0.072 (3)0.061 (2)0.0042 (17)0.0157 (15)0.0251 (19)
F80.057 (2)0.0294 (16)0.0522 (18)0.0021 (14)0.0197 (17)0.0099 (14)
Geometric parameters (Å, º) top
N1—C21.340 (6)N3—C91.336 (6)
N1—C61.360 (6)N3—C131.362 (6)
N1—C11.484 (6)N3—C81.473 (6)
N2—C71.157 (6)N4—C141.143 (7)
C1—H1A0.9800C8—H8A0.9800
C1—H1B0.9800C8—H8B0.9800
C1—H1C0.9800C8—H8C0.9800
C2—C31.376 (7)C9—C101.382 (7)
C2—H20.9500C9—H90.9500
C3—C41.372 (7)C10—C111.375 (7)
C3—H30.9500C10—H100.9500
C4—C51.392 (6)C11—C121.392 (7)
C4—H40.9500C11—H110.9500
C5—C61.369 (6)C12—C131.370 (6)
C5—H50.9500C12—H120.9500
C6—C71.446 (6)C13—C141.434 (7)
B1—F41.384 (6)B2—F71.372 (6)
B1—F21.385 (6)B2—F61.382 (6)
B1—F11.398 (5)B2—F51.382 (6)
B1—F31.400 (6)B2—F81.391 (6)
C2—N1—C6118.7 (4)C9—N3—C13120.6 (4)
C2—N1—C1120.4 (4)C9—N3—C8119.4 (4)
C6—N1—C1120.9 (4)C13—N3—C8119.9 (4)
N1—C1—H1A109.5N3—C8—H8A109.5
N1—C1—H1B109.5N3—C8—H8B109.5
H1A—C1—H1B109.5H8A—C8—H8B109.5
N1—C1—H1C109.5N3—C8—H8C109.5
H1A—C1—H1C109.5H8A—C8—H8C109.5
H1B—C1—H1C109.5H8B—C8—H8C109.5
N1—C2—C3122.1 (4)N3—C9—C10119.9 (5)
N1—C2—H2118.9N3—C9—H9120.0
C3—C2—H2118.9C10—C9—H9120.0
C4—C3—C2119.5 (4)C11—C10—C9120.0 (4)
C4—C3—H3120.3C11—C10—H10120.0
C2—C3—H3120.3C9—C10—H10120.0
C3—C4—C5118.8 (4)C10—C11—C12119.9 (4)
C3—C4—H4120.6C10—C11—H11120.0
C5—C4—H4120.6C12—C11—H11120.0
C6—C5—C4119.4 (4)C13—C12—C11118.0 (5)
C6—C5—H5120.3C13—C12—H12121.0
C4—C5—H5120.3C11—C12—H12121.0
N1—C6—C5121.5 (4)N3—C13—C12121.5 (4)
N1—C6—C7116.7 (4)N3—C13—C14117.6 (4)
C5—C6—C7121.7 (4)C12—C13—C14120.9 (5)
N2—C7—C6177.1 (5)N4—C14—C13179.1 (6)
F4—B1—F2111.1 (4)F7—B2—F6109.9 (4)
F4—B1—F1109.9 (4)F7—B2—F5110.0 (4)
F2—B1—F1109.5 (4)F6—B2—F5110.0 (4)
F4—B1—F3108.5 (4)F7—B2—F8109.7 (4)
F2—B1—F3108.8 (4)F6—B2—F8107.8 (4)
F1—B1—F3109.1 (4)F5—B2—F8109.5 (4)
C6—N1—C2—C30.7 (7)C13—N3—C9—C100.4 (7)
C1—N1—C2—C3177.6 (4)C8—N3—C9—C10178.0 (4)
N1—C2—C3—C40.9 (8)N3—C9—C10—C110.3 (7)
C2—C3—C4—C50.2 (8)C9—C10—C11—C120.7 (8)
C3—C4—C5—C60.7 (7)C10—C11—C12—C130.3 (7)
C2—N1—C6—C50.2 (6)C9—N3—C13—C120.7 (7)
C1—N1—C6—C5178.5 (4)C8—N3—C13—C12178.4 (4)
C2—N1—C6—C7179.9 (4)C9—N3—C13—C14178.6 (4)
C1—N1—C6—C71.6 (6)C8—N3—C13—C140.9 (7)
C4—C5—C6—N10.9 (7)C11—C12—C13—N30.3 (7)
C4—C5—C6—C7179.2 (5)C11—C12—C13—C14178.9 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1A···F7i0.982.503.407 (6)154
C1—H1B···F8ii0.982.543.498 (6)166
C1—H1C···F3iii0.982.473.214 (5)132
C2—H2···F7i0.952.293.190 (5)157
C3—H3···F1iv0.952.463.294 (6)147
C5—H5···F1v0.952.453.306 (5)149
C8—H8A···F2i0.982.483.159 (6)126
C8—H8C···F3ii0.982.553.437 (6)151
C9—H9···F3ii0.952.523.392 (6)152
C9—H9···F4ii0.952.593.476 (6)156
C10—H10···F6ii0.952.543.167 (6)123
C12—H12···F5i0.952.493.277 (6)141
Symmetry codes: (i) x+2, y1/2, z+1; (ii) x+1, y1/2, z+1; (iii) x, y1, z; (iv) x+2, y1/2, z+2; (v) x+1, y1/2, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1A···F7i0.982.503.407 (6)154
C1—H1B···F8ii0.982.543.498 (6)166
C1—H1C···F3iii0.982.473.214 (5)132
C2—H2···F7i0.952.293.190 (5)157
C3—H3···F1iv0.952.463.294 (6)147
C5—H5···F1v0.952.453.306 (5)149
C8—H8A···F2i0.982.483.159 (6)126
C8—H8C···F3ii0.982.553.437 (6)151
C9—H9···F3ii0.952.523.392 (6)152
C9—H9···F4ii0.952.593.476 (6)156
C10—H10···F6ii0.952.543.167 (6)123
C12—H12···F5i0.952.493.277 (6)141
Symmetry codes: (i) x+2, y1/2, z+1; (ii) x+1, y1/2, z+1; (iii) x, y1, z; (iv) x+2, y1/2, z+2; (v) x+1, y1/2, z+2.
 

Acknowledgements

JTM thanks Tulane University for support of the Tulane Crystallography Laboratory.

References

First citationBrandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2014). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCui, L.-J. & Chen, X.-Y. (2010). Acta Cryst. E66, o467.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKammer, M. N., Koplitz, L. V. & Mague, J. T. (2013). Acta Cryst. E69, o1281.  CSD CrossRef IUCr Journals Google Scholar
First citationKoplitz, L. V., Mague, J. T., Kammer, M. N., McCormick, C. A., Renfro, H. E. & Vumbaco, D. J. (2012). Acta Cryst. E68, o1653.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, Y. (2009). Acta Cryst. E65, o2373.  CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 10| October 2015| Pages o697-o698
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds