organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 4-nitro-N-[(pyridin-2-yl)methyl­­idene]aniline

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Faculty of Science, Naresuan University, Muang, Phitsanulok 65000, Thailand, and bDepartment of Physics, Faculty of Science and Technology, Thammasat University, Khlong Luang, Pathum Thani 12120, Thailand
*Correspondence e-mail: kc@tu.ac.th

Edited by E. R. T. Tiekink, University of Malaya, Malaysia (Received 2 September 2015; accepted 10 September 2015; online 17 September 2015)

The title compound, C12H9N3O2, adopts an E conformation at the imine double bond. The pyridyl ring makes a dihedral angle of 47.78 (5)° with the benzene ring, indicating the mol­ecule is twisted. In the crystal, mol­ecules are ππ stacked into columns parallel to [100], with an inter­planar separation of 3.8537 (8) Å, corresponding to the length of the a axis. The chains are further linked via weak C—H⋯O and C—H⋯N hydrogen bonds, forming two-dimensional sheets parallel to (010). The sheets interact by van der Waals inter­actions.

1. Related literature

For related crystal structures, see: Zheng & Lee (2012[Zheng, Z. N. & Lee, S. W. (2012). Acta Cryst. E68, o774.]); Marjani et al. (2011[Marjani, K., Mousavi, M. & Namazian, F. (2011). J. Chem. Crystallogr. 41, 1451-1455.]); Tzimopoulos et al. (2010[Tzimopoulos, D., Czapik, A., Gdaniec, M., Bakas, T., Isab, A. A., Varvogli, A.-C. & Akrivos, P. D. (2010). J. Mol. Struct. 965, 56-64.]); Heinze & Bueno Toro (2004[Heinze, K. & Bueno Toro, J. (2004). Eur. J. Inorg. Chem. pp. 3498-3507.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C12H9N3O2

  • Mr = 227.22

  • Monoclinic, P 21 /n

  • a = 3.8573 (8) Å

  • b = 20.334 (4) Å

  • c = 13.629 (3) Å

  • β = 90.57 (3)°

  • V = 1068.9 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 296 K

  • 0.22 × 0.14 × 0.14 mm

2.2. Data collection

  • Bruker D8 QUEST CMOS diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2014[Bruker (2014). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.983, Tmax = 0.986

  • 4963 measured reflections

  • 2729 independent reflections

  • 1389 reflections with I > 2σ(I)

  • Rint = 0.044

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.055

  • wR(F2) = 0.146

  • S = 0.96

  • 2729 reflections

  • 154 parameters

  • H-atom parameters constrained

  • Δρmax = 0.15 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯O1i 0.93 2.65 3.343 (3) 132
C6—H6⋯O2ii 0.93 2.65 3.527 (2) 158
C11—H11⋯N1iii 0.93 2.60 3.465 (2) 155
Symmetry codes: (i) x-1, y, z+1; (ii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2014[Bruker (2014). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2014[Bruker (2014). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]); program(s) used to refine structure: SHELXL2015 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]); molecular graphics: OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]) and enCIFer (Allen et al., 2004[Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335-338.]).

Supporting information


Synthesis and crystallization top

At room temperature, 2-pyridine­carboxaldehyde (1.90 ml, 0.02 mol) was added to a benzene solution (100 ml) of 4-nitro­aniline (2.76 g, 0.02 mol), with a few drops of acetic acid added as catalyst. The reaction mixture was stirred under reflux at 110 °C. After 6 h of reflux, the yellow solution was neutralized with Na2CO3 (2 mmol), filtered, and concentrated to dryness in vacuo. The residue was recrystallized from a mixture of CH2Cl2 and petroleum ether (2:1, v/v) to give light-yellow crystalline solid of (I).

Refinement top

The C–bound hydrogen atoms were placed in geometrically idealized positions and constrained to ride on their parent atom positions with a C—H distances of 0.93 Å, and with Uiso(H) = 1.2Ueq(C).

Related literature top

For related crystal structures, see: Zheng & Lee (2012); Marjani et al. (2011); Tzimopoulos et al. (2010); Heinze & Bueno Toro (2004).

Computing details top

Data collection: APEX2 (Bruker, 2014); cell refinement: SAINT (Bruker, 2014); data reduction: SAINT (Bruker, 2014); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2015 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: publCIF (Westrip, 2010) and enCIFer (Allen et al., 2004).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing 35% probability displacement ellipsoids nd atom labels.
[Figure 2] Fig. 2. A packing view of (I) along (010). Hydrogen bonds are shown as dashed lines.
4-Nitro-N-[(pyridin-2-yl)methylidene]aniline top
Crystal data top
C12H9N3O2F(000) = 472
Mr = 227.22Dx = 1.412 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 3.8573 (8) Åθ = 3.4–25.0°
b = 20.334 (4) ŵ = 0.10 mm1
c = 13.629 (3) ÅT = 296 K
β = 90.57 (3)°Block, light-yellow
V = 1068.9 (4) Å30.22 × 0.14 × 0.14 mm
Z = 4
Data collection top
Bruker D8 QUEST CMOS
diffractometer
1389 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.044
ω scansθmax = 28.8°, θmin = 3.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2014)
h = 55
Tmin = 0.983, Tmax = 0.986k = 2726
4963 measured reflectionsl = 1818
2729 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.055H-atom parameters constrained
wR(F2) = 0.146 w = 1/[σ2(Fo2) + (0.0721P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.96(Δ/σ)max < 0.001
2729 reflectionsΔρmax = 0.15 e Å3
154 parametersΔρmin = 0.18 e Å3
0 restraints
Crystal data top
C12H9N3O2V = 1068.9 (4) Å3
Mr = 227.22Z = 4
Monoclinic, P21/nMo Kα radiation
a = 3.8573 (8) ŵ = 0.10 mm1
b = 20.334 (4) ÅT = 296 K
c = 13.629 (3) Å0.22 × 0.14 × 0.14 mm
β = 90.57 (3)°
Data collection top
Bruker D8 QUEST CMOS
diffractometer
2729 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2014)
1389 reflections with I > 2σ(I)
Tmin = 0.983, Tmax = 0.986Rint = 0.044
4963 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0550 restraints
wR(F2) = 0.146H-atom parameters constrained
S = 0.96Δρmax = 0.15 e Å3
2729 reflectionsΔρmin = 0.18 e Å3
154 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O11.1083 (5)0.13951 (9)0.12132 (11)0.0956 (6)
O20.8270 (5)0.22866 (8)0.14401 (10)0.0803 (5)
N10.7398 (4)0.15745 (8)0.80644 (11)0.0590 (5)
N20.7157 (4)0.09779 (7)0.56225 (11)0.0514 (4)
N30.9470 (5)0.17696 (9)0.17367 (11)0.0593 (5)
C10.6529 (6)0.14026 (10)0.89705 (15)0.0665 (6)
H10.70130.16970.94760.080*
C20.4961 (6)0.08178 (10)0.92062 (15)0.0649 (6)
H20.44090.07210.98530.078*
C30.4229 (5)0.03823 (10)0.84726 (14)0.0608 (5)
H30.31710.00180.86110.073*
C40.5083 (5)0.05437 (9)0.75229 (13)0.0515 (5)
H40.46050.02560.70080.062*
C50.6660 (5)0.11411 (8)0.73519 (12)0.0460 (4)
C60.7641 (5)0.13469 (8)0.63552 (13)0.0488 (5)
H60.86410.17580.62650.059*
C70.7881 (5)0.12104 (8)0.46689 (12)0.0453 (4)
C80.9466 (5)0.07832 (8)0.40174 (13)0.0508 (5)
H81.01490.03670.42280.061*
C91.0034 (5)0.09701 (9)0.30649 (13)0.0506 (5)
H91.11410.06880.26320.061*
C100.8940 (5)0.15815 (8)0.27591 (12)0.0459 (5)
C110.7340 (5)0.20177 (8)0.33848 (13)0.0489 (5)
H110.66090.24280.31630.059*
C120.6854 (5)0.18309 (8)0.43442 (13)0.0494 (5)
H120.58280.21220.47800.059*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.1297 (16)0.1088 (13)0.0488 (9)0.0354 (12)0.0238 (9)0.0004 (9)
O20.1152 (14)0.0682 (10)0.0575 (9)0.0082 (9)0.0074 (8)0.0176 (8)
N10.0777 (12)0.0518 (9)0.0473 (9)0.0002 (8)0.0048 (8)0.0048 (7)
N20.0641 (11)0.0471 (8)0.0431 (9)0.0009 (7)0.0031 (7)0.0005 (7)
N30.0723 (12)0.0635 (11)0.0421 (9)0.0019 (9)0.0024 (8)0.0009 (8)
C10.0924 (17)0.0614 (13)0.0455 (12)0.0092 (12)0.0062 (11)0.0079 (9)
C20.0821 (16)0.0690 (14)0.0438 (11)0.0121 (12)0.0072 (10)0.0064 (10)
C30.0689 (14)0.0559 (11)0.0576 (13)0.0003 (10)0.0044 (10)0.0096 (10)
C40.0591 (12)0.0471 (11)0.0483 (11)0.0026 (9)0.0018 (8)0.0016 (8)
C50.0531 (11)0.0421 (9)0.0427 (10)0.0063 (8)0.0015 (8)0.0017 (8)
C60.0544 (12)0.0422 (9)0.0497 (11)0.0014 (8)0.0001 (9)0.0002 (8)
C70.0542 (11)0.0413 (9)0.0402 (10)0.0055 (8)0.0001 (8)0.0005 (7)
C80.0680 (13)0.0385 (9)0.0459 (10)0.0044 (9)0.0015 (9)0.0013 (8)
C90.0595 (12)0.0473 (10)0.0449 (10)0.0058 (9)0.0026 (9)0.0085 (8)
C100.0529 (12)0.0460 (10)0.0390 (10)0.0046 (8)0.0003 (8)0.0006 (8)
C110.0615 (12)0.0375 (9)0.0476 (11)0.0013 (8)0.0000 (8)0.0000 (8)
C120.0608 (12)0.0423 (10)0.0452 (10)0.0018 (9)0.0053 (8)0.0055 (8)
Geometric parameters (Å, º) top
O1—N31.219 (2)C4—C51.380 (3)
O2—N31.216 (2)C5—C61.474 (3)
N1—C11.330 (3)C6—H60.9300
N1—C51.340 (2)C7—C81.388 (2)
N2—C61.262 (2)C7—C121.393 (2)
N2—C71.413 (2)C8—H80.9300
N3—C101.461 (2)C8—C91.372 (3)
C1—H10.9300C9—H90.9300
C1—C21.374 (3)C9—C101.376 (2)
C2—H20.9300C10—C111.380 (2)
C2—C31.363 (3)C11—H110.9300
C3—H30.9300C11—C121.376 (3)
C3—C41.378 (3)C12—H120.9300
C4—H40.9300
C1—N1—C5116.52 (17)N2—C6—H6119.2
C6—N2—C7119.98 (15)C5—C6—H6119.2
O1—N3—C10118.14 (17)C8—C7—N2118.10 (15)
O2—N3—O1122.71 (16)C8—C7—C12119.28 (16)
O2—N3—C10119.14 (17)C12—C7—N2122.47 (16)
N1—C1—H1118.0C7—C8—H8119.8
N1—C1—C2124.10 (19)C9—C8—C7120.47 (16)
C2—C1—H1118.0C9—C8—H8119.8
C1—C2—H2120.7C8—C9—H9120.5
C3—C2—C1118.63 (19)C8—C9—C10119.04 (16)
C3—C2—H2120.7C10—C9—H9120.5
C2—C3—H3120.5C9—C10—N3118.69 (16)
C2—C3—C4118.98 (19)C9—C10—C11122.07 (16)
C4—C3—H3120.5C11—C10—N3119.24 (16)
C3—C4—H4120.7C10—C11—H11120.8
C3—C4—C5118.57 (17)C12—C11—C10118.40 (15)
C5—C4—H4120.7C12—C11—H11120.8
N1—C5—C4123.20 (17)C7—C12—H12119.6
N1—C5—C6115.24 (16)C11—C12—C7120.71 (16)
C4—C5—C6121.55 (16)C11—C12—H12119.6
N2—C6—C5121.55 (16)
O1—N3—C10—C95.2 (3)C3—C4—C5—C6179.92 (17)
O1—N3—C10—C11175.38 (18)C4—C5—C6—N21.8 (3)
O2—N3—C10—C9174.23 (18)C5—N1—C1—C20.1 (3)
O2—N3—C10—C115.2 (3)C6—N2—C7—C8139.41 (19)
N1—C1—C2—C30.1 (3)C6—N2—C7—C1245.1 (3)
N1—C5—C6—N2178.44 (17)C7—N2—C6—C5175.13 (15)
N2—C7—C8—C9175.98 (17)C7—C8—C9—C101.4 (3)
N2—C7—C12—C11174.32 (16)C8—C7—C12—C111.1 (3)
N3—C10—C11—C12179.77 (15)C8—C9—C10—N3178.34 (16)
C1—N1—C5—C40.0 (3)C8—C9—C10—C111.1 (3)
C1—N1—C5—C6179.76 (17)C9—C10—C11—C120.3 (3)
C1—C2—C3—C40.1 (3)C10—C11—C12—C71.5 (3)
C2—C3—C4—C50.2 (3)C12—C7—C8—C90.3 (3)
C3—C4—C5—N10.2 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···O1i0.932.893.510 (3)125
C2—H2···O1ii0.932.653.343 (3)132
C6—H6···O2iii0.932.653.527 (2)158
C11—H11···N1iv0.932.603.465 (2)155
Symmetry codes: (i) x, y, z+1; (ii) x1, y, z+1; (iii) x+1/2, y+1/2, z+1/2; (iv) x1/2, y+1/2, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···O1i0.932.893.510 (3)125
C2—H2···O1ii0.932.653.343 (3)132
C6—H6···O2iii0.932.653.527 (2)158
C11—H11···N1iv0.932.603.465 (2)155
Symmetry codes: (i) x, y, z+1; (ii) x1, y, z+1; (iii) x+1/2, y+1/2, z+1/2; (iv) x1/2, y+1/2, z1/2.
 

Acknowledgements

This research was supported financially by a research career development grant (No. RSA5780056) from the Thailand Research Fund.

References

First citationAllen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBruker (2014). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHeinze, K. & Bueno Toro, J. (2004). Eur. J. Inorg. Chem. pp. 3498–3507.  CSD CrossRef Google Scholar
First citationMarjani, K., Mousavi, M. & Namazian, F. (2011). J. Chem. Crystallogr. 41, 1451–1455.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTzimopoulos, D., Czapik, A., Gdaniec, M., Bakas, T., Isab, A. A., Varvogli, A.-C. & Akrivos, P. D. (2010). J. Mol. Struct. 965, 56–64.  CSD CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZheng, Z. N. & Lee, S. W. (2012). Acta Cryst. E68, o774.  CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds