organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 2,6-di­chloro-4-nitro­pyridine N-oxide

CROSSMARK_Color_square_no_text.svg

aArmstrong State University, 11935 Abercorn St., Savanah, GA 31419, USA
*Correspondence e-mail: clifford.padgett@armstrong.edu

Edited by E. R. T. Tiekink, University of Malaya, Malaysia (Received 11 September 2015; accepted 17 September 2015; online 26 September 2015)

In the title compound, C5H2Cl2N2O3, the nitro group is essentially coplanar with the aromatic ring, with a twist angle of 4.00 (6)° and a fold angle of 2.28 (17)°. The crystal structure exhibits a herringbone pattern with the zigzag running along the b axis. The herringbone layer-to-layer distance is 3.0075 (15) Å, with a shift of 5.150 (4) Å. Neighboring mol­ecules are tilted at a 57.83 (4)° (ring-to-ring) angle with each other. The nitro group on one mol­ecule points to the N-oxide group on the neighboring one, with an inter­molecular O⋯N(nitro) distance of 3.1725 (13) Å.

1. Related literature

For the synthesis of the title compound and related compounds, see: Rousseau & Robins (1965[Rousseau, R. J. & Robins, R. K. (1965). J. Heterocycl. Chem. 2, 196-201.]). For chemical inter­est in derivatives of pyridine N-oxide, including the ruthenium-catalyzed use of these compounds towards the epoxidation of olefins via an N-oxide coordinated RuIV=O inter­mediate, see: Gross & Ini (1999[Gross, Z. & Ini, S. (1999). Inorg. Chem. 38, 1446-1449.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C5H2Cl2N2O3

  • Mr = 208.99

  • Orthorhombic, P b c a

  • a = 5.964 (4) Å

  • b = 9.510 (6) Å

  • c = 26.192 (16) Å

  • V = 1485.5 (16) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.84 mm−1

  • T = 173 K

  • 0.6 × 0.2 × 0.1 mm

2.2. Data collection

  • Rigaku XtaLAB mini diffractometer

  • Absorption correction: multi-scan (REQAB; Rigaku, 1998[Rigaku (1998). REQAB. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.709, Tmax = 1.000

  • 13695 measured reflections

  • 1697 independent reflections

  • 1512 reflections with I > 2σ(I)

  • Rint = 0.043

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.078

  • S = 1.09

  • 1697 reflections

  • 109 parameters

  • H-atom parameters constrained

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.34 e Å−3

Data collection: CrystalClear-SM Expert (Rigaku, 2011[Rigaku (2011). CrystalClear-SM Expert. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear-SM Expert; data reduction: CrystalClear-SM Expert; program(s) used to solve structure: SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]); molecular graphics: OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]); software used to prepare material for publication: OLEX2.

Supporting information


Synthesis and crystallization top

2,6-Di­chloro-4-nitro­pyridine N-oxide was purchased from Sigma-Aldrich and 0.10 g was dissolved in approximately 50 mL of methanol. Diffraction quality crystals were obtained by slow evaporation of the solvent.

Refinement top

Carbon-bound H-atoms were placed in calculated positions (C—H = 0.95 Å) and were included in the refinement in the riding model approximation, with Uiso(H) set to 1.2Uequiv(C).

Related literature top

For the synthesis of the title compound and related compounds, see: Rousseau & Robins (1965). Chemical interest in derivatives of pyridine N-oxide include the ruthenium-catalyzed use of these compounds towards the epoxidation of olefins via an N-oxide coordinated RuIV O intermediate, see: Gross & Ini (1999).

Computing details top

Data collection: CrystalClear-SM Expert (Rigaku, 2011); cell refinement: CrystalClear-SM Expert (Rigaku, 2011); data reduction: CrystalClear-SM Expert (Rigaku, 2011); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Figures top
[Figure 1] Fig. 1. A view of the molecular structure of the title compound, with atom labelling. Displacement ellipsoids are drawn at the 50% probability level.
2,6-Dichloro-4-nitropyridine N-oxide top
Crystal data top
C5H2Cl2N2O3Dx = 1.869 Mg m3
Mr = 208.99Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PbcaCell parameters from 3422 reflections
a = 5.964 (4) Åθ = 2.1–27.5°
b = 9.510 (6) ŵ = 0.84 mm1
c = 26.192 (16) ÅT = 173 K
V = 1485.5 (16) Å3Prism, colorless
Z = 80.6 × 0.2 × 0.1 mm
F(000) = 832
Data collection top
Rigaku XtaLAB mini
diffractometer
1697 independent reflections
Radiation source: Sealed Tube1512 reflections with I > 2σ(I)
Graphite Monochromator monochromatorRint = 0.043
Detector resolution: 13.6612 pixels mm-1θmax = 27.5°, θmin = 3.1°
profile data from ω scansh = 77
Absorption correction: multi-scan
(REQAB; Rigaku, 1998)
k = 1212
Tmin = 0.709, Tmax = 1.000l = 3334
13695 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.032H-atom parameters constrained
wR(F2) = 0.078 w = 1/[σ2(Fo2) + (0.026P)2 + 0.628P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max = 0.001
1697 reflectionsΔρmax = 0.23 e Å3
109 parametersΔρmin = 0.34 e Å3
0 restraints
Crystal data top
C5H2Cl2N2O3V = 1485.5 (16) Å3
Mr = 208.99Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 5.964 (4) ŵ = 0.84 mm1
b = 9.510 (6) ÅT = 173 K
c = 26.192 (16) Å0.6 × 0.2 × 0.1 mm
Data collection top
Rigaku XtaLAB mini
diffractometer
1697 independent reflections
Absorption correction: multi-scan
(REQAB; Rigaku, 1998)
1512 reflections with I > 2σ(I)
Tmin = 0.709, Tmax = 1.000Rint = 0.043
13695 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0320 restraints
wR(F2) = 0.078H-atom parameters constrained
S = 1.09Δρmax = 0.23 e Å3
1697 reflectionsΔρmin = 0.34 e Å3
109 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl20.85784 (8)0.45634 (5)0.29466 (2)0.04219 (16)
Cl10.76404 (10)0.58023 (6)0.48666 (2)0.05096 (18)
O10.9698 (2)0.47138 (13)0.39871 (5)0.0406 (3)
O20.0755 (2)0.79615 (14)0.39133 (6)0.0436 (3)
O30.1322 (2)0.76147 (15)0.31036 (6)0.0494 (4)
N10.7830 (2)0.53287 (14)0.38874 (5)0.0278 (3)
N20.1835 (2)0.74825 (15)0.35543 (6)0.0337 (3)
C30.3887 (3)0.67006 (16)0.36721 (6)0.0261 (3)
C40.5076 (3)0.60983 (16)0.32781 (6)0.0273 (3)
H40.45630.61600.29350.033*
C20.4594 (3)0.66162 (17)0.41700 (7)0.0297 (4)
H20.37340.70170.44390.036*
C50.7030 (3)0.54043 (16)0.33971 (6)0.0268 (3)
C10.6574 (3)0.59381 (17)0.42689 (7)0.0302 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl20.0471 (3)0.0357 (3)0.0438 (3)0.0101 (2)0.0179 (2)0.00214 (18)
Cl10.0628 (4)0.0529 (3)0.0372 (3)0.0068 (2)0.0209 (2)0.0034 (2)
O10.0271 (6)0.0318 (7)0.0630 (9)0.0093 (5)0.0097 (6)0.0019 (6)
O20.0319 (7)0.0348 (7)0.0639 (9)0.0093 (6)0.0106 (6)0.0024 (6)
O30.0438 (8)0.0493 (9)0.0552 (9)0.0111 (7)0.0184 (7)0.0051 (7)
N10.0229 (7)0.0207 (7)0.0397 (8)0.0013 (5)0.0042 (6)0.0013 (6)
N20.0260 (7)0.0242 (7)0.0508 (9)0.0009 (6)0.0035 (7)0.0047 (6)
C30.0223 (7)0.0202 (7)0.0357 (9)0.0005 (6)0.0006 (6)0.0026 (6)
C40.0293 (8)0.0223 (8)0.0303 (8)0.0013 (6)0.0016 (7)0.0021 (6)
C20.0325 (9)0.0238 (8)0.0330 (9)0.0021 (7)0.0018 (7)0.0019 (7)
C50.0281 (8)0.0204 (8)0.0319 (9)0.0006 (6)0.0045 (7)0.0012 (6)
C10.0341 (9)0.0255 (8)0.0310 (9)0.0005 (7)0.0050 (7)0.0006 (6)
Geometric parameters (Å, º) top
Cl2—C51.6984 (18)N2—C31.465 (2)
Cl1—C11.695 (2)C3—C41.377 (2)
O1—N11.2847 (18)C3—C21.373 (2)
O2—N21.228 (2)C4—H40.9500
O3—N21.226 (2)C4—C51.375 (2)
N1—C51.372 (2)C2—H20.9500
N1—C11.377 (2)C2—C11.370 (3)
O1—N1—C5121.03 (14)C5—C4—H4121.1
O1—N1—C1121.06 (15)C3—C2—H2120.9
C5—N1—C1117.90 (14)C1—C2—C3118.13 (16)
O2—N2—C3117.74 (15)C1—C2—H2120.9
O3—N2—O2124.65 (16)N1—C5—Cl2115.89 (13)
O3—N2—C3117.61 (15)N1—C5—C4122.15 (15)
C4—C3—N2118.91 (15)C4—C5—Cl2121.96 (14)
C2—C3—N2119.10 (15)N1—C1—Cl1115.73 (13)
C2—C3—C4121.98 (16)C2—C1—Cl1122.26 (14)
C3—C4—H4121.1C2—C1—N1122.01 (16)
C5—C4—C3117.79 (16)

Experimental details

Crystal data
Chemical formulaC5H2Cl2N2O3
Mr208.99
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)173
a, b, c (Å)5.964 (4), 9.510 (6), 26.192 (16)
V3)1485.5 (16)
Z8
Radiation typeMo Kα
µ (mm1)0.84
Crystal size (mm)0.6 × 0.2 × 0.1
Data collection
DiffractometerRigaku XtaLAB mini
diffractometer
Absorption correctionMulti-scan
(REQAB; Rigaku, 1998)
Tmin, Tmax0.709, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
13695, 1697, 1512
Rint0.043
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.078, 1.09
No. of reflections1697
No. of parameters109
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.23, 0.34

Computer programs: CrystalClear-SM Expert (Rigaku, 2011), SHELXT (Sheldrick, 2015a), SHELXL2014 (Sheldrick, 2015b), OLEX2 (Dolomanov et al., 2009).

 

Acknowledgements

The authors acknowledge financial support from Armstrong State University.

References

First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGross, Z. & Ini, S. (1999). Inorg. Chem. 38, 1446–1449.  CSD CrossRef CAS Google Scholar
First citationRigaku (1998). REQAB. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2011). CrystalClear-SM Expert. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRousseau, R. J. & Robins, R. K. (1965). J. Heterocycl. Chem. 2, 196–201.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds