organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 10| October 2015| Pages o769-o770

Crystal structure of 1,5-di­ethyl-3′,5′-di­phenyl-1,5-di­hydro-3′H-spiro­[pyra­zolo[3,4-d]pyrimidine-4,2′-[1,3,4]thia­diazole]

CROSSMARK_Color_square_no_text.svg

aLaboratoire de Chimie Organique Hétérocyclique URAC 21, Pôle de Compétence Pharmacochimie, Av. Ibn Battouta, BP 1014, Faculté des Sciences, Université Mohammed V, Rabat, Morocco, bLaboratory of Medicinal Chemistry, Faculty of Medicine and Pharmacy, University Mohammed V, Rabat, Morocco, and cLaboratoire de Chimie du Solide Appliquée, Faculté des Sciences, Université Mohammed V, Avenue Ibn Battouta, BP 1014, Rabat, Morocco
*Correspondence e-mail: em_essassi@yahoo.fr

Edited by E. R. T. Tiekink, University of Malaya, Malaysia (Received 16 September 2015; accepted 17 September 2015; online 26 September 2015)

In the title compound, C22H22N6S, the pyrazolo­[3,4-d]pyrimidine rings system is almost planar, with the r.m.s. deviation for the fitted atoms being 0.011 Å. The two phenyl groups linked to the thia­diazole ring are nearly perpendicular to the fused-ring system as indicated by the dihedral angles of 86.93 (10) and 83.35 (11)°. However, the phenyl rings are almost coplanar with the thia­diazole ring (r.m.s. deviation = 0.015 Å), forming dihedral angles of 10.44 (11) and 10.06 (12)°. In the crystal, mol­ecules are connected into a supra­molecular layer in the ac plane via C—H⋯π inter­actions.

1. Related literature

For biological properties of pyrazolo­[3,4-d]pyrimidine derivatives, see: Chern et al. (2004[Chern, J.-H., Shia, K.-S., Hsu, T.-A., Tai, C.-L., Lee, C.-C., Lee, Y.-C., Chang, C.-S., Tseng, S.-N. & Shih, S.-R. (2004). Bioorg. Med. Chem. Lett. 14, 2519-2525.]); Schenone et al. (2009[Schenone, S., Bruno, O., Radi, M. & Botta, M. (2009). Mini-Rev. Org. Chem. 6, 220-233.]); Dinér et al. (2012[Dinér, P., Alao, J. P., Söderlund, J., Sunnerhagen, P. & Grøtli, M. (2012). J. Med. Chem. 55, 4872-4876.]); Taliani et al. (2010[Taliani, S., La Motta, C., Mugnaini, L., Simorini, F., Salerno, S., Marini, A. M., Da Settimo, F., Cosconati, S., Cosimelli, B. & Greco, G. (2010). J. Med. Chem. 53, 3954-3963.]); Trivedi et al. (2012[Trivedi, A. R., Dholariya, B. H., Vakhariya, C. P., Dodiya, D. K., Ram, H. K., Kataria, V. B., Siddiqui, A. B. & Shah, V. H. (2012). Med. Chem. Res. 21, 1887-1891.]). For related structures, see: El Fal et al. (2014[El Fal, M., Ramli, Y., Essassi, E. M., Saadi, M. & El Ammari, L. (2014). Acta Cryst. E70, o1038.], 2015[El Fal, M., Ramli, Y., Essassi, E. M., Saadi, M. & El Ammari, L. (2015). Acta Cryst. E71, o95-o96.]); Ahoya et al. (2011[Ahoya, C. A., Daouda, B., Bouhfid, R., Hançali, A., Bousmina, M., Zerzouf, A., El Aouad, R. & Essassi, E. M. (2011). Arkivoc, (ii), 217-226.]); Anothane et al. (2012[Anothane, C. A., Bouhfid, R., Essassi, E. M. & Ng, S. W. (2012). Acta Cryst. E68, o103.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C22H22N6S

  • Mr = 402.51

  • Orthorhombic, P b c a

  • a = 14.501 (5) Å

  • b = 22.898 (5) Å

  • c = 12.468 (4) Å

  • V = 4140 (2) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.18 mm−1

  • T = 296 K

  • 0.37 × 0.34 × 0.29 mm

2.2. Data collection

  • Bruker X8 APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.589, Tmax = 0.746

  • 25025 measured reflections

  • 4224 independent reflections

  • 2566 reflections with I > 2σ(I)

  • Rint = 0.079

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.138

  • S = 1.00

  • 4224 reflections

  • 262 parameters

  • H-atom parameters constrained

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.30 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C17–C22 and C11–C16 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C14—H14⋯Cg1i 0.93 2.75 3.615 (3) 155
C20—H20⋯Cg2ii 0.93 2.77 3.564 (4) 144
Symmetry codes: (i) [x-{\script{1\over 2}}, y, -z+{\script{1\over 2}}]; (ii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2009[Bruker (2009). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: SHELXL2013.

Supporting information


Comment top

The pyrazolo[3,4-d]pyrimidine nucleus is considered as a very interesting and versatile scaffold for the synthesis of potential drug candidates acting on a wide range of biological targets (Schenone et al., 2009). Among their many applications, they have been used as kinase inhibitors (Dinér et al., 2012), antiviral agents (Chern et al., 2004), adenosine antagonists (Taliani et al., 2010 and as antitubercular agents (Trivedi et al., 2012). In the search for new compounds with therapeutic interest, we have prepared spiro[pyrazolo[3,4-d]pyrimidine-1,2'-[1,3,4]thiadiazole] derivatives via 1,3-dipolar cycloaddition using diphenyl hydrazonoyl chloride as the precursor for diphenyl nitrilimine, and 1,5-diethyl-1H-pyrazolo [3,4-d]pyrimidin-4(5H)-thione as the dipolarophile (El Fal et al., 2014; El Fal et al., 2015; Ahoya et al., 2011, Anothane et al., 2012).

The molecule of the title compound is built up from two fused five- and six-membered heterocycles linked to two ethyls and to two phenyl rings via the thiadiazole ring as shown in Fig. 1. The pyrazolo[3,4-d]pyrimidine system is virtually planar with the largest deviation from the mean plane being 0.016 (2) Å at N3 and makes dihedral angles of 86.93 (10) and 83.35 (11)° with the mean plane through the first (C11 to C16) and the second (C17 to C22) phenyl rings, respectively. Furthermore, the two phenyl rings are virtually coplanar with the largest deviation from the mean plane of -0.069 (2) Å, and makes a dihedral angle of 9.88 (9)° with the thiadiazole ring. No classic hydrogen bonds are observed in the structure.

Related literature top

For biological properties of pyrazolo[3,4-d]pyrimidine derivatives, see: Chern et al. (2004); Schenone et al. (2009); Dinér et al. (2012); Taliani et al. (2010); Trivedi et al. (2012). For related structures, see: El Fal et al. (2014, 2015); Ahoya et al. (2011); Anothane et al. (2012).

Experimental top

To a solution of 1,5-diethyl-1H-pyrazolo [3,4-d] pyrimidin-4(5H)–thione (2.08 g, 10 mmol) and diphenyl hydrazonoyl chloride (3.00 g, 13 mmol) in THF (30 ml) was added triethylamine (2 ml). The mixture was refluxed for 24 h. The precipitate was collected by filtration and was separated by silica gel chromatography (hexane/ethyl acetate: 8/2). The solid obtained was recrystallized from ethanol to afford the title compound as yellow crystals (yield: 60%; m.p. = 468 K).

Refinement top

The H atoms were located in a difference map and treated as riding with C—H = 0.93 Å (aromatic), C—H = 0.97 Å (methylene) and C—H = 0.96 Å (methyl). All hydrogen with Uiso(H) = 1.2 Ueq(aromatic and methylene) and Uiso(H) = 1.5 Ueq(methyl). The reflection (0 2 0) was affected by beamstop and was removed from the refinement.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXL2013 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL2013 (Sheldrick, 2015).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound with the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented as small circles.
1,5-Diethyl-3',5'-diphenyl-1,5-dihydro-3'H-spiro[pyrazolo[3,4-d]pyrimidine-4,2'-[1,3,4]thiadiazole] top
Crystal data top
C22H22N6SDx = 1.292 Mg m3
Mr = 402.51Melting point: 468 K
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
a = 14.501 (5) ÅCell parameters from 4224 reflections
b = 22.898 (5) Åθ = 2.3–26.4°
c = 12.468 (4) ŵ = 0.18 mm1
V = 4140 (2) Å3T = 296 K
Z = 8Block, yellow
F(000) = 16960.37 × 0.34 × 0.29 mm
Data collection top
Bruker X8 APEX
diffractometer
4224 independent reflections
Radiation source: fine-focus sealed tube2566 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.079
φ and ω scansθmax = 26.4°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1817
Tmin = 0.589, Tmax = 0.746k = 2428
25025 measured reflectionsl = 1515
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.048H-atom parameters constrained
wR(F2) = 0.138 w = 1/[σ2(Fo2) + (0.0625P)2 + 0.732P]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max < 0.001
4224 reflectionsΔρmax = 0.31 e Å3
262 parametersΔρmin = 0.30 e Å3
Crystal data top
C22H22N6SV = 4140 (2) Å3
Mr = 402.51Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 14.501 (5) ŵ = 0.18 mm1
b = 22.898 (5) ÅT = 296 K
c = 12.468 (4) Å0.37 × 0.34 × 0.29 mm
Data collection top
Bruker X8 APEX
diffractometer
4224 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
2566 reflections with I > 2σ(I)
Tmin = 0.589, Tmax = 0.746Rint = 0.079
25025 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.138H-atom parameters constrained
S = 1.00Δρmax = 0.31 e Å3
4224 reflectionsΔρmin = 0.30 e Å3
262 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.48041 (15)0.16398 (10)0.52664 (19)0.0383 (5)
C20.54607 (15)0.07863 (9)0.63901 (19)0.0363 (5)
C30.49773 (15)0.04386 (10)0.72025 (19)0.0373 (5)
C40.41299 (17)0.04978 (11)0.7732 (2)0.0511 (7)
H40.37270.08090.76310.061*
C50.53365 (15)0.00752 (10)0.75801 (19)0.0377 (5)
C60.65913 (16)0.00200 (10)0.6605 (2)0.0413 (6)
H60.71620.01640.63920.050*
C70.69620 (18)0.07699 (12)0.5361 (2)0.0554 (7)
H7A0.75600.08140.57000.066*
H7B0.67330.11580.51990.066*
C80.7081 (3)0.04447 (17)0.4342 (3)0.1022 (13)
H8A0.74980.06540.38840.153*
H8B0.64950.04060.39920.153*
H8C0.73270.00640.44920.153*
C90.4750 (2)0.08616 (13)0.8837 (3)0.0726 (9)
H9A0.45540.08140.95760.087*
H9B0.53770.10090.88410.087*
C100.4139 (3)0.12911 (14)0.8295 (3)0.0962 (13)
H10A0.41660.16570.86680.144*
H10B0.43400.13450.75680.144*
H10C0.35170.11480.82980.144*
C110.61067 (15)0.15818 (10)0.76316 (19)0.0383 (6)
C120.66082 (17)0.11905 (11)0.8257 (2)0.0478 (6)
H120.66320.07970.80720.057*
C130.70698 (17)0.13906 (13)0.9156 (2)0.0538 (7)
H130.74040.11280.95710.065*
C140.70444 (18)0.19696 (13)0.9449 (2)0.0576 (8)
H140.73570.20991.00540.069*
C150.65481 (18)0.23514 (13)0.8829 (2)0.0577 (8)
H150.65240.27440.90210.069*
C160.60827 (16)0.21655 (11)0.7924 (2)0.0479 (7)
H160.57530.24320.75120.058*
C170.43453 (15)0.20319 (10)0.4501 (2)0.0399 (6)
C180.39468 (17)0.18210 (12)0.3574 (2)0.0505 (7)
H180.39700.14230.34240.061*
C190.35137 (19)0.21958 (14)0.2866 (2)0.0623 (8)
H190.32520.20510.22390.075*
C200.3471 (2)0.27838 (14)0.3090 (3)0.0665 (9)
H200.31820.30370.26140.080*
C210.38543 (19)0.29943 (13)0.4014 (3)0.0646 (8)
H210.38230.33920.41650.077*
C220.42870 (18)0.26235 (11)0.4724 (2)0.0527 (7)
H220.45400.27710.53540.063*
N10.52713 (13)0.18375 (8)0.60593 (16)0.0414 (5)
N20.56296 (14)0.14038 (8)0.67014 (16)0.0444 (5)
N30.63253 (12)0.04874 (8)0.61271 (16)0.0396 (5)
N40.61620 (13)0.03289 (9)0.73112 (17)0.0430 (5)
N50.47290 (14)0.02945 (9)0.82976 (18)0.0523 (6)
N60.39730 (15)0.00565 (10)0.8391 (2)0.0618 (7)
S10.47272 (5)0.08793 (3)0.51716 (6)0.0486 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0362 (12)0.0355 (13)0.0431 (14)0.0013 (10)0.0001 (11)0.0032 (11)
C20.0380 (12)0.0283 (12)0.0425 (14)0.0008 (10)0.0069 (10)0.0008 (10)
C30.0362 (12)0.0305 (12)0.0453 (15)0.0006 (10)0.0020 (10)0.0003 (11)
C40.0440 (14)0.0471 (16)0.0621 (19)0.0096 (12)0.0070 (12)0.0006 (14)
C50.0365 (12)0.0331 (13)0.0435 (14)0.0019 (10)0.0020 (10)0.0033 (11)
C60.0332 (12)0.0411 (14)0.0496 (15)0.0055 (11)0.0048 (11)0.0022 (12)
C70.0491 (15)0.0602 (18)0.0568 (19)0.0083 (13)0.0078 (12)0.0152 (15)
C80.127 (3)0.107 (3)0.073 (3)0.015 (2)0.048 (2)0.004 (2)
C90.070 (2)0.066 (2)0.082 (2)0.0031 (17)0.0156 (17)0.0367 (18)
C100.118 (3)0.054 (2)0.117 (3)0.008 (2)0.038 (3)0.014 (2)
C110.0373 (12)0.0403 (14)0.0372 (14)0.0053 (10)0.0004 (10)0.0034 (11)
C120.0557 (15)0.0409 (15)0.0469 (16)0.0021 (13)0.0091 (12)0.0008 (12)
C130.0506 (15)0.068 (2)0.0425 (16)0.0036 (14)0.0098 (12)0.0037 (14)
C140.0461 (15)0.075 (2)0.0516 (18)0.0088 (15)0.0046 (12)0.0178 (15)
C150.0515 (15)0.0553 (18)0.066 (2)0.0024 (14)0.0024 (14)0.0238 (15)
C160.0451 (14)0.0396 (15)0.0591 (18)0.0003 (11)0.0071 (12)0.0098 (13)
C170.0360 (12)0.0388 (14)0.0449 (15)0.0055 (11)0.0022 (10)0.0085 (11)
C180.0537 (15)0.0487 (16)0.0491 (17)0.0087 (13)0.0019 (13)0.0070 (13)
C190.0596 (17)0.074 (2)0.0532 (19)0.0092 (15)0.0122 (14)0.0101 (16)
C200.0640 (18)0.061 (2)0.074 (2)0.0148 (16)0.0108 (16)0.0262 (17)
C210.0640 (18)0.0450 (17)0.085 (2)0.0131 (14)0.0074 (17)0.0128 (16)
C220.0547 (15)0.0406 (16)0.0627 (19)0.0054 (13)0.0086 (13)0.0080 (13)
N10.0478 (11)0.0308 (11)0.0457 (12)0.0023 (9)0.0042 (10)0.0065 (9)
N20.0595 (13)0.0278 (11)0.0461 (13)0.0011 (9)0.0168 (10)0.0046 (9)
N30.0373 (10)0.0369 (11)0.0446 (12)0.0005 (9)0.0006 (8)0.0041 (9)
N40.0377 (11)0.0395 (12)0.0519 (14)0.0061 (9)0.0012 (9)0.0091 (10)
N50.0481 (12)0.0468 (13)0.0619 (15)0.0026 (10)0.0098 (11)0.0169 (11)
N60.0516 (13)0.0624 (16)0.0714 (17)0.0052 (12)0.0180 (12)0.0111 (13)
S10.0567 (4)0.0362 (4)0.0531 (4)0.0001 (3)0.0217 (3)0.0025 (3)
Geometric parameters (Å, º) top
C1—N11.281 (3)C10—H10B0.9600
C1—C171.469 (3)C10—H10C0.9600
C1—S11.749 (2)C11—C161.386 (3)
C2—N31.466 (3)C11—C121.393 (3)
C2—C31.467 (3)C11—N21.411 (3)
C2—N21.487 (3)C12—C131.383 (3)
C2—S11.867 (2)C12—H120.9300
C3—C51.370 (3)C13—C141.376 (4)
C3—C41.401 (3)C13—H130.9300
C4—N61.323 (3)C14—C151.371 (4)
C4—H40.9300C14—H140.9300
C5—N51.352 (3)C15—C161.381 (4)
C5—N41.372 (3)C15—H150.9300
C6—N41.290 (3)C16—H160.9300
C6—N31.361 (3)C17—C181.379 (4)
C6—H60.9300C17—C221.386 (3)
C7—N31.478 (3)C18—C191.382 (4)
C7—C81.482 (4)C18—H180.9300
C7—H7A0.9700C19—C201.377 (4)
C7—H7B0.9700C19—H190.9300
C8—H8A0.9600C20—C211.368 (4)
C8—H8B0.9600C20—H200.9300
C8—H8C0.9600C21—C221.378 (4)
C9—N51.463 (3)C21—H210.9300
C9—C101.486 (5)C22—H220.9300
C9—H9A0.9700N1—N21.377 (3)
C9—H9B0.9700N5—N61.364 (3)
C10—H10A0.9600
N1—C1—C17121.6 (2)C12—C11—N2122.1 (2)
N1—C1—S1115.96 (18)C13—C12—C11119.6 (2)
C17—C1—S1122.39 (18)C13—C12—H12120.2
N3—C2—C3108.05 (18)C11—C12—H12120.2
N3—C2—N2111.20 (18)C14—C13—C12121.4 (3)
C3—C2—N2114.5 (2)C14—C13—H13119.3
N3—C2—S1111.02 (16)C12—C13—H13119.3
C3—C2—S1110.59 (15)C15—C14—C13118.6 (3)
N2—C2—S1101.41 (14)C15—C14—H14120.7
C5—C3—C4104.8 (2)C13—C14—H14120.7
C5—C3—C2121.5 (2)C14—C15—C16121.3 (3)
C4—C3—C2133.8 (2)C14—C15—H15119.3
N6—C4—C3111.7 (2)C16—C15—H15119.3
N6—C4—H4124.2C15—C16—C11120.0 (3)
C3—C4—H4124.2C15—C16—H16120.0
N5—C5—C3107.4 (2)C11—C16—H16120.0
N5—C5—N4124.9 (2)C18—C17—C22119.0 (2)
C3—C5—N4127.7 (2)C18—C17—C1121.3 (2)
N4—C6—N3129.0 (2)C22—C17—C1119.6 (2)
N4—C6—H6115.5C17—C18—C19120.6 (3)
N3—C6—H6115.5C17—C18—H18119.7
N3—C7—C8114.0 (2)C19—C18—H18119.7
N3—C7—H7A108.8C20—C19—C18119.9 (3)
C8—C7—H7A108.8C20—C19—H19120.1
N3—C7—H7B108.8C18—C19—H19120.1
C8—C7—H7B108.8C21—C20—C19119.8 (3)
H7A—C7—H7B107.6C21—C20—H20120.1
C7—C8—H8A109.5C19—C20—H20120.1
C7—C8—H8B109.5C20—C21—C22120.6 (3)
H8A—C8—H8B109.5C20—C21—H21119.7
C7—C8—H8C109.5C22—C21—H21119.7
H8A—C8—H8C109.5C21—C22—C17120.1 (3)
H8B—C8—H8C109.5C21—C22—H22120.0
N5—C9—C10111.5 (3)C17—C22—H22120.0
N5—C9—H9A109.3C1—N1—N2113.15 (19)
C10—C9—H9A109.3N1—N2—C11117.04 (18)
N5—C9—H9B109.3N1—N2—C2118.15 (18)
C10—C9—H9B109.3C11—N2—C2124.77 (19)
H9A—C9—H9B108.0C6—N3—C2122.90 (19)
C9—C10—H10A109.5C6—N3—C7118.6 (2)
C9—C10—H10B109.5C2—N3—C7118.34 (19)
H10A—C10—H10B109.5C6—N4—C5110.84 (19)
C9—C10—H10C109.5C5—N5—N6111.18 (19)
H10A—C10—H10C109.5C5—N5—C9128.3 (2)
H10B—C10—H10C109.5N6—N5—C9120.0 (2)
C16—C11—C12119.1 (2)C4—N6—N5105.0 (2)
C16—C11—N2118.9 (2)C1—S1—C291.28 (10)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the ring centroids of the C17–C22 and C11–C16 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C14—H14···Cg1i0.932.753.615 (3)155
C20—H20···Cg2ii0.932.773.564 (4)144
Symmetry codes: (i) x1/2, y, z+1/2; (ii) x1/2, y+1/2, z+1.
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the ring centroids of the C17–C22 and C11–C16 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C14—H14···Cg1i0.932.753.615 (3)155
C20—H20···Cg2ii0.932.773.564 (4)144
Symmetry codes: (i) x1/2, y, z+1/2; (ii) x1/2, y+1/2, z+1.
 

Acknowledgements

The authors thank the Unit of Support for Technical and Scientific Research (UATRS, CNRST) for the X-ray measurements, and the University Mohammed V, Rabat, Morocco, for financial support.

References

First citationAhoya, C. A., Daouda, B., Bouhfid, R., Hançali, A., Bousmina, M., Zerzouf, A., El Aouad, R. & Essassi, E. M. (2011). Arkivoc, (ii), 217–226.  Google Scholar
First citationAnothane, C. A., Bouhfid, R., Essassi, E. M. & Ng, S. W. (2012). Acta Cryst. E68, o103.  CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2009). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChern, J.-H., Shia, K.-S., Hsu, T.-A., Tai, C.-L., Lee, C.-C., Lee, Y.-C., Chang, C.-S., Tseng, S.-N. & Shih, S.-R. (2004). Bioorg. Med. Chem. Lett. 14, 2519–2525.  CrossRef PubMed CAS Google Scholar
First citationDinér, P., Alao, J. P., Söderlund, J., Sunnerhagen, P. & Grøtli, M. (2012). J. Med. Chem. 55, 4872–4876.  PubMed Google Scholar
First citationEl Fal, M., Ramli, Y., Essassi, E. M., Saadi, M. & El Ammari, L. (2014). Acta Cryst. E70, o1038.  CSD CrossRef IUCr Journals Google Scholar
First citationEl Fal, M., Ramli, Y., Essassi, E. M., Saadi, M. & El Ammari, L. (2015). Acta Cryst. E71, o95–o96.  CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSchenone, S., Bruno, O., Radi, M. & Botta, M. (2009). Mini-Rev. Org. Chem. 6, 220–233.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTaliani, S., La Motta, C., Mugnaini, L., Simorini, F., Salerno, S., Marini, A. M., Da Settimo, F., Cosconati, S., Cosimelli, B. & Greco, G. (2010). J. Med. Chem. 53, 3954–3963.  CrossRef CAS PubMed Google Scholar
First citationTrivedi, A. R., Dholariya, B. H., Vakhariya, C. P., Dodiya, D. K., Ram, H. K., Kataria, V. B., Siddiqui, A. B. & Shah, V. H. (2012). Med. Chem. Res. 21, 1887–1891.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 10| October 2015| Pages o769-o770
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds