organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 10| October 2015| Pages o776-o777

Crystal structure of methyl (2Z)-2-[(2Z)-2-(2-cyclo­pentyl­idenehydrazin-1-yl­­idene)-4-oxo-3-phenyl-1,3-thia­zolidin-5-yl­­idene]ethano­ate

CROSSMARK_Color_square_no_text.svg

aDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, bDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA, cChemistry and Environmental Division, Manchester Metropolitan University, Manchester M1 5GD, England, dChemistry Department, Faculty of Science, Minia University, 61519 El-Minia, Egypt, and eKirkuk University, College of Science, Department of Chemistry, Kirkuk, Iraq
*Correspondence e-mail: shaabankamel@yahoo.com

Edited by E. R. T. Tiekink, University of Malaya, Malaysia (Received 17 September 2015; accepted 18 September 2015; online 26 September 2015)

In the title compound, C17H17N3O3S, the cyclo­pentane ring is disordered over two sets of sites with an occupancy ratio of 0.775 (8):0.225 (8) for the affected atoms. The thia­zolidinyl ring is planar (r.m.s. deviation = 0.024 Å) and forms a dihedral angle of 65.13 (8)° with the attached phenyl ring. The mol­ecular packing is stabilized by C—H⋯O and C—H⋯π inter­actions, forming a three-dimensional structure.

1. Related literature

For biological properties of thia­zole-containing compounds, see: Quiroga et al. (2002[Quiroga, J., Hernández, P., Insuasty, B., Abonía, R., Cobo, J., Sánchez, A., Nogueras, M. & Low, J. N. (2002). J. Chem. Soc. Perkin Trans. 1, pp. 555-559.]); Hutchinson et al. (2002[Hutchinson, I., Jennings, S. A., Vishnuvajjala, B. R., Westwell, A. D. & Stevens, M. F. G. (2002). J. Med. Chem. 45, 744-747.]); Hargrave et al. (1983[Hargrave, K. D., Hess, F. K. & Oliver, J. T. (1983). J. Med. Chem. 26, 1158-1163.]); Patt et al. (1992[Patt, W. C., Hamilton, H. W., Taylor, M. D., Ryan, M. J., Taylor, D. G. Jr, Connolly, C. J. C., Doherty, A. M., Klutchko, S. R., Sircar, I. & Steinbaugh, B. A. (1992). J. Med. Chem. 35, 2562-2572.]); Sharma et al. (2009[Sharma, R. N., Xavier, F. P., Vasu, K. K., Chaturvedi, S. C. & Pancholi, S. S. (2009). J. Enzyme Inhib. Med. Chem. 24, 890-897.]); Jaen et al. (1990[Jaen, J. C., Wise, L. D., Caprathe, B. W., Tecle, H., Bergmeier, S., Humblet, C. C., Heffner, T. G., Meltzer, L. T. & Pugsley, T. A. (1990). J. Med. Chem. 33, 311-317.]); Tsuji & Ishikawa (1994[Tsuji, K. & Ishikawa, H. (1994). Bioorg. Med. Chem. Lett. 4, 1601-1606.]); Bell et al. (1995[Bell, F. W., Cantrell, A. S., Högberg, M., Jaskunas, S. R., Johansson, N. G., Jordan, C. L., Kinnick, M. D., Lind, P., Morin, J. M. Jr & Noréen, R. (1995). J. Med. Chem. 38, 4929-4936.]): Ergenc et al. (1999[Ergenç, N., Çapan, G., Günay, N. S., Özkirimli, S., Güngör, M., Özbey, S. & Kendi, E. (1999). Arch. Pharm. Pharm. Med. Chem. 332, 343-347.]); Carter et al. (1999[Carter, J. S., Kramer, S., Talley, J. J., Penning, T., Collins, P., Graneto, M. J., Seibert, K., Koboldt, C., Masferrer, J. & Zweifel, B. (1999). Bioorg. Med. Chem. Lett. 9, 1171-1174.]); Badorc et al. (1997[Badorc, A., Bordes, M. F., de Cointet, P., Savi, P., Bernat, A., Lalé, A., Petitou, M., Maffrand, J. P. & Herbert, J. M. (1997). J. Med. Chem. 40, 3393-3401.]); Rudolph et al. (2001[Rudolph, J., Theis, H., Hanke, R., Endermann, R., Johannsen, L. & Geschke, F. U. (2001). J. Med. Chem. 44, 619-626.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C17H17N3O3S

  • Mr = 343.40

  • Monoclinic, P 21 /n

  • a = 5.5215 (3) Å

  • b = 16.1299 (8) Å

  • c = 18.7112 (9) Å

  • β = 93.980 (5)°

  • V = 1662.42 (15) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.22 mm−1

  • T = 296 K

  • 0.28 × 0.08 × 0.04 mm

2.2. Data collection

  • Agilent Xcalibur, Eos, Gemini diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2014[Agilent (2014). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.]) Tmin = 0.850, Tmax = 1.000

  • 11300 measured reflections

  • 5503 independent reflections

  • 3958 reflections with I > 2σ(I)

  • Rint = 0.036

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.135

  • S = 1.02

  • 5503 reflections

  • 222 parameters

  • H-atom parameters constrained

  • Δρmax = 0.37 e Å−3

  • Δρmin = −0.32 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg4 is the centroid of the C9–C14 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C13—H13⋯O2i 0.93 2.35 3.245 (2) 163
C15—H15⋯O3ii 0.93 2.56 3.485 (2) 172
C17—H17A⋯O1ii 0.96 2.42 3.269 (2) 147
C3A—H3A2⋯Cg4iii 0.97 2.96 3.914 (3) 169
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (ii) -x, -y+2, -z; (iii) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: CrysAlis PRO (Agilent, 2014[Agilent (2014). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS2014 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]; molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Thiazoles are important class of heterocyclic compounds, found in many potent biologically active molecules such as sulfathiazol (antimicrobial drug), Ritonavir (antiretroviral drug), Abafungin (antifungal drug), with trade name Abasol cream, and Bleomycine and Tiazofurin (antineoplastic drug). It has been noted over the years that interesting biological activities (Quiroga et al., 2002; Hutchinson et al., 2002) were associated with thiazole derivatives. Applications of thiazoles were found in drug development for the treatment of allergies (Hargrave et al., 1983), hypertension (Patt et al., 1992), inflammation (Sharma et al., 2009), schizophrenia (Jaen et al., 1990), bacteria infection (Tsuji & Ishikawa, 1994), HIV infection (Bell et al., 1995), hypnotics (Ergenc et al., 1999) and for the treatment of pain (Carter et al., 1999), as fibrinogen receptor antagonists with antithrombotic activity (Badorc et al., 1997) and as new inhibitors of bacterial DNA gyrase B (Rudolph et al., 2001). In this context we report in this study the synthesis and crystal structure of the title compound.

The molecular structure of the title compound is shown in Fig. 1. The major and minor components of the disordered cyclo­pentane ring [0.775 (8):0.225 (8)] adopt an envelope conformations with atoms C2A and C2B as the flap in each component. The puckering parameters are Q(2) 0.274 (3) Å, φ (2) = 42.7 (6)° for major component, and Q(2) 0.253 (8) Å, φ (2) = 209.6 (16)° for minor component. The central 1,3-thiazolidine ring (S1/N3C6–C8) makes a dihedral angle of 65.13 (8)° with the phenyl ring (C9–C14).

In the crystal, C—H···O and C—H···π interactions stabilize the molecular packing, forming a three-dimensional network, Fig. 2 and Table 1.

Related literature top

For biological properties of thiazole-containing compounds, see: Quiroga et al. (2002); Hutchinson et al. (2002); Hargrave et al. (1983); Patt et al. (1992); Sharma et al. (2009); Jaen et al. (1990); Tsuji & Ishikawa (1994); Bell et al. (1995): Ergenc et al. (1999); Carter et al. (1999); Badorc et al. (1997); Rudolph et al. (2001).

Experimental top

A mixture of 2-cyclopentylidene-N-phenylhydrazinecarbothioamide (1 mmol, 233 mg) and dimethyl but-2-ynedioate (1 mmol, 142 mg) in ethylacetate (10 ml) was stirred and refluxed at 350 K. The reaction progress was monitored by TLC until completion. On cooling, a solid yellow product was precipitated, filtered off, dried under vacuum and recrystallized from ethanol to afford yellow crystals.

Refinement top

All H atoms were positioned geometrically and constrained to ride on their parent atoms (C—H = 0.93–0.97 Å) with Uiso(H) = 1.2–1.5Ueq(C). The cyclopentyl group was partially disordered over two positions with refined site-occupancies of 0.775 (8): 0.225 (8) . The (3 0 23), (2 1 24), (-1 3 13), (2 11 22), (5 16 3), (2 2 8), (1 3 27), (4 7 18) and (-1 1 14) reflections were omitted owing to poor agreement.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2014); cell refinement: CrysAlis PRO (Agilent, 2014); data reduction: CrysAlis PRO (Agilent, 2014); program(s) used to solve structure: SHELXS2014 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. View of the title compound showing only the major component of the disorder. Displacement ellipsoids for non-H atoms are drawn at the 50% probability level.
[Figure 2] Fig. 2. The molecular packing viewed down a axis. The C—H···O interactions are shown as dotted lines with non-participating H atoms omitted for clarity.
Methyl (2Z)-2-[(2Z)-2-(2-cyclopentylidenehydrazin-1-ylidene)-4-oxo-3-phenyl-1,3-thiazolidin-5-ylidene]ethanoate top
Crystal data top
C17H17N3O3SF(000) = 720
Mr = 343.40Dx = 1.372 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2753 reflections
a = 5.5215 (3) Åθ = 4.0–31.8°
b = 16.1299 (8) ŵ = 0.22 mm1
c = 18.7112 (9) ÅT = 296 K
β = 93.980 (5)°Needle, colourless
V = 1662.42 (15) Å30.28 × 0.08 × 0.04 mm
Z = 4
Data collection top
Agilent Xcalibur, Eos, Gemini
diffractometer
5503 independent reflections
Radiation source: Enhance (Mo) X-ray Source3958 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.036
Detector resolution: 16.0416 pixels mm-1θmax = 32.8°, θmin = 3.3°
ω scansh = 86
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2014)
k = 2123
Tmin = 0.850, Tmax = 1.000l = 2728
11300 measured reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.050H-atom parameters constrained
wR(F2) = 0.135 w = 1/[σ2(Fo2) + (0.058P)2 + 0.3068P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
5503 reflectionsΔρmax = 0.37 e Å3
222 parametersΔρmin = 0.32 e Å3
Crystal data top
C17H17N3O3SV = 1662.42 (15) Å3
Mr = 343.40Z = 4
Monoclinic, P21/nMo Kα radiation
a = 5.5215 (3) ŵ = 0.22 mm1
b = 16.1299 (8) ÅT = 296 K
c = 18.7112 (9) Å0.28 × 0.08 × 0.04 mm
β = 93.980 (5)°
Data collection top
Agilent Xcalibur, Eos, Gemini
diffractometer
5503 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2014)
3958 reflections with I > 2σ(I)
Tmin = 0.850, Tmax = 1.000Rint = 0.036
11300 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0500 restraints
wR(F2) = 0.135H-atom parameters constrained
S = 1.02Δρmax = 0.37 e Å3
5503 reflectionsΔρmin = 0.32 e Å3
222 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C1A1.2932 (4)0.58581 (12)0.06164 (10)0.0431 (5)0.775 (8)
H1A11.44930.61350.06740.052*0.775 (8)
H1A21.22770.59270.01250.052*0.775 (8)
C2A1.3179 (9)0.4943 (2)0.0808 (2)0.0593 (11)0.775 (8)
H2A11.20260.46130.05150.071*0.775 (8)
H2A21.48060.47460.07390.071*0.775 (8)
C3A1.2661 (6)0.48937 (15)0.15730 (14)0.0737 (9)0.775 (8)
H3A11.41540.49480.18740.088*0.775 (8)
H3A21.19320.43630.16730.088*0.775 (8)
C4A1.0943 (4)0.55863 (12)0.17258 (10)0.0435 (5)0.775 (8)
H4A10.92870.53850.17210.052*0.775 (8)
H4A21.13810.58350.21890.052*0.775 (8)
C5A1.1210 (3)0.61997 (10)0.11325 (8)0.0310 (3)0.775 (8)
C1B1.2932 (4)0.58581 (12)0.06164 (10)0.0431 (5)0.225 (8)
H1B11.40950.62710.04820.052*0.225 (8)
H1B21.20790.56330.01890.052*0.225 (8)
C2B1.413 (3)0.5181 (8)0.1087 (7)0.0593 (11)0.225 (8)
H2B11.45860.47260.07860.071*0.225 (8)
H2B21.55940.53990.13330.071*0.225 (8)
C3B1.2661 (6)0.48937 (15)0.15730 (14)0.0737 (9)0.225 (8)
H3B11.36030.47330.20080.088*0.225 (8)
H3B21.17650.44140.13860.088*0.225 (8)
C4B1.0943 (4)0.55863 (12)0.17258 (10)0.0435 (5)0.225 (8)
H4B10.92870.53850.17210.052*0.225 (8)
H4B21.13810.58350.21890.052*0.225 (8)
C5B1.1210 (3)0.61997 (10)0.11325 (8)0.0310 (3)0.225 (8)
C60.7150 (3)0.76671 (10)0.13570 (8)0.0265 (3)
C70.3804 (3)0.85436 (10)0.14664 (8)0.0285 (3)
C80.4255 (3)0.86289 (10)0.06923 (8)0.0273 (3)
C90.5666 (3)0.78876 (9)0.25645 (8)0.0252 (3)
C100.7676 (3)0.81830 (10)0.29704 (9)0.0310 (3)
H100.89220.84500.27520.037*
C110.7804 (3)0.80745 (11)0.37074 (9)0.0352 (4)
H110.91570.82610.39850.042*
C120.5927 (3)0.76895 (11)0.40315 (9)0.0352 (4)
H120.59990.76280.45270.042*
C130.3940 (3)0.73959 (11)0.36148 (9)0.0362 (4)
H130.26930.71290.38330.043*
C140.3784 (3)0.74947 (10)0.28753 (9)0.0317 (3)
H140.24430.73010.25970.038*
C150.2862 (3)0.91153 (10)0.02523 (9)0.0299 (3)
H150.15730.94050.04280.036*
C160.3360 (3)0.91924 (10)0.05004 (9)0.0300 (3)
C170.1970 (4)0.96748 (13)0.16424 (10)0.0489 (5)
H17A0.06820.99990.18710.073*
H17B0.19370.91270.18430.073*
H17C0.35010.99310.17160.073*
N11.0203 (3)0.69020 (9)0.10329 (8)0.0364 (3)
N20.8698 (3)0.71279 (9)0.15868 (7)0.0318 (3)
N30.5509 (2)0.80198 (8)0.18016 (7)0.0266 (3)
O10.2219 (2)0.88906 (8)0.17660 (7)0.0404 (3)
O20.5119 (2)0.88964 (8)0.07551 (7)0.0396 (3)
O30.1654 (2)0.96244 (8)0.08814 (6)0.0387 (3)
S10.67455 (7)0.80416 (2)0.04705 (2)0.02957 (11)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C1A0.0508 (11)0.0431 (10)0.0379 (9)0.0199 (9)0.0213 (8)0.0066 (8)
C2A0.092 (3)0.0466 (18)0.042 (2)0.0352 (18)0.0245 (18)0.0039 (13)
C3A0.114 (2)0.0509 (13)0.0616 (15)0.0400 (14)0.0432 (16)0.0202 (11)
C4A0.0522 (12)0.0412 (10)0.0390 (10)0.0131 (8)0.0183 (9)0.0094 (8)
C5A0.0314 (8)0.0372 (8)0.0249 (7)0.0078 (6)0.0061 (6)0.0017 (6)
C1B0.0508 (11)0.0431 (10)0.0379 (9)0.0199 (9)0.0213 (8)0.0066 (8)
C2B0.092 (3)0.0466 (18)0.042 (2)0.0352 (18)0.0245 (18)0.0039 (13)
C3B0.114 (2)0.0509 (13)0.0616 (15)0.0400 (14)0.0432 (16)0.0202 (11)
C4B0.0522 (12)0.0412 (10)0.0390 (10)0.0131 (8)0.0183 (9)0.0094 (8)
C5B0.0314 (8)0.0372 (8)0.0249 (7)0.0078 (6)0.0061 (6)0.0017 (6)
C60.0262 (7)0.0299 (7)0.0241 (7)0.0031 (6)0.0061 (6)0.0022 (6)
C70.0275 (7)0.0308 (8)0.0277 (8)0.0043 (6)0.0055 (6)0.0003 (6)
C80.0259 (7)0.0287 (7)0.0281 (7)0.0029 (6)0.0065 (6)0.0000 (6)
C90.0258 (7)0.0279 (7)0.0226 (7)0.0045 (5)0.0067 (6)0.0012 (5)
C100.0266 (7)0.0393 (9)0.0278 (8)0.0046 (6)0.0069 (6)0.0015 (6)
C110.0337 (9)0.0434 (9)0.0282 (8)0.0036 (7)0.0003 (7)0.0051 (7)
C120.0416 (9)0.0398 (9)0.0249 (8)0.0028 (7)0.0073 (7)0.0027 (7)
C130.0353 (9)0.0414 (9)0.0332 (9)0.0060 (7)0.0120 (7)0.0069 (7)
C140.0258 (7)0.0365 (8)0.0328 (8)0.0031 (6)0.0024 (6)0.0010 (6)
C150.0286 (8)0.0315 (8)0.0303 (8)0.0074 (6)0.0060 (6)0.0001 (6)
C160.0325 (8)0.0261 (7)0.0317 (8)0.0049 (6)0.0032 (6)0.0018 (6)
C170.0621 (13)0.0552 (12)0.0294 (9)0.0193 (10)0.0041 (9)0.0069 (8)
N10.0401 (8)0.0432 (8)0.0271 (7)0.0175 (6)0.0117 (6)0.0042 (6)
N20.0333 (7)0.0376 (7)0.0252 (6)0.0121 (6)0.0072 (5)0.0004 (5)
N30.0254 (6)0.0325 (7)0.0224 (6)0.0064 (5)0.0052 (5)0.0004 (5)
O10.0394 (7)0.0498 (7)0.0333 (6)0.0199 (6)0.0124 (5)0.0030 (5)
O20.0396 (7)0.0462 (7)0.0339 (6)0.0160 (6)0.0100 (5)0.0039 (5)
O30.0409 (7)0.0459 (7)0.0294 (6)0.0184 (6)0.0036 (5)0.0053 (5)
S10.0303 (2)0.0351 (2)0.02404 (19)0.01015 (15)0.00729 (15)0.00175 (14)
Geometric parameters (Å, º) top
C1A—C5A1.506 (2)C8—S11.7435 (15)
C1A—C2A1.523 (4)C9—C141.380 (2)
C1A—H1A10.9700C9—C101.385 (2)
C1A—H1A20.9700C9—N31.4400 (19)
C2A—C3A1.480 (4)C10—C111.387 (2)
C2A—H2A10.9700C10—H100.9300
C2A—H2A20.9700C11—C121.384 (2)
C3A—C4A1.506 (3)C11—H110.9300
C3A—H3A10.9700C12—C131.384 (3)
C3A—H3A20.9700C12—H120.9300
C4A—C5A1.502 (2)C13—C141.389 (2)
C4A—H4A10.9700C13—H130.9300
C4A—H4A20.9700C14—H140.9300
C5A—N11.270 (2)C15—C161.459 (2)
C2B—H2B10.9700C15—H150.9300
C2B—H2B20.9700C16—O21.2094 (19)
C6—N21.273 (2)C16—O31.3371 (19)
C6—N31.3930 (18)C17—O31.449 (2)
C6—S11.7648 (16)C17—H17A0.9600
C7—O11.2087 (18)C17—H17B0.9600
C7—N31.383 (2)C17—H17C0.9600
C7—C81.493 (2)N1—N21.4203 (18)
C8—C151.341 (2)
C5A—C1A—C2A104.68 (17)C14—C9—C10121.67 (14)
C5A—C1A—H1A1110.8C14—C9—N3119.38 (14)
C2A—C1A—H1A1110.8C10—C9—N3118.91 (13)
C5A—C1A—H1A2110.8C9—C10—C11119.03 (15)
C2A—C1A—H1A2110.8C9—C10—H10120.5
H1A1—C1A—H1A2108.9C11—C10—H10120.5
C3A—C2A—C1A105.0 (2)C12—C11—C10120.30 (16)
C3A—C2A—H2A1110.7C12—C11—H11119.9
C1A—C2A—H2A1110.7C10—C11—H11119.9
C3A—C2A—H2A2110.7C11—C12—C13119.66 (15)
C1A—C2A—H2A2110.7C11—C12—H12120.2
H2A1—C2A—H2A2108.8C13—C12—H12120.2
C2A—C3A—C4A108.1 (2)C12—C13—C14120.90 (15)
C2A—C3A—H3A1110.1C12—C13—H13119.6
C4A—C3A—H3A1110.1C14—C13—H13119.6
C2A—C3A—H3A2110.1C9—C14—C13118.43 (15)
C4A—C3A—H3A2110.1C9—C14—H14120.8
H3A1—C3A—H3A2108.4C13—C14—H14120.8
C5A—C4A—C3A104.65 (15)C8—C15—C16120.29 (14)
C5A—C4A—H4A1110.8C8—C15—H15119.9
C3A—C4A—H4A1110.8C16—C15—H15119.9
C5A—C4A—H4A2110.8O2—C16—O3123.44 (15)
C3A—C4A—H4A2110.8O2—C16—C15123.85 (15)
H4A1—C4A—H4A2108.9O3—C16—C15112.71 (14)
N1—C5A—C4A129.17 (15)O3—C17—H17A109.5
N1—C5A—C1A121.44 (15)O3—C17—H17B109.5
C4A—C5A—C1A109.38 (14)H17A—C17—H17B109.5
H2B1—C2B—H2B2107.8O3—C17—H17C109.5
N2—C6—N3121.76 (14)H17A—C17—H17C109.5
N2—C6—S1126.11 (12)H17B—C17—H17C109.5
N3—C6—S1112.11 (11)C5A—N1—N2113.21 (13)
O1—C7—N3124.37 (15)C6—N2—N1110.00 (13)
O1—C7—C8125.61 (15)C7—N3—C6115.42 (13)
N3—C7—C8110.00 (12)C7—N3—C9122.16 (12)
C15—C8—C7121.50 (14)C6—N3—C9122.32 (13)
C15—C8—S1126.88 (12)C16—O3—C17115.13 (13)
C7—C8—S1111.62 (11)C8—S1—C690.72 (7)
C5A—C1A—C2A—C3A26.1 (4)C4A—C5A—N1—N22.6 (3)
C1A—C2A—C3A—C4A29.1 (4)C1A—C5A—N1—N2178.28 (17)
C2A—C3A—C4A—C5A20.2 (4)N3—C6—N2—N1177.41 (14)
C3A—C4A—C5A—N1177.5 (2)S1—C6—N2—N13.9 (2)
C3A—C4A—C5A—C1A3.2 (3)C5A—N1—N2—C6158.03 (17)
C2A—C1A—C5A—N1165.2 (3)O1—C7—N3—C6178.61 (16)
C2A—C1A—C5A—C4A14.1 (3)C8—C7—N3—C62.76 (19)
O1—C7—C8—C150.4 (3)O1—C7—N3—C94.9 (3)
N3—C7—C8—C15179.02 (15)C8—C7—N3—C9173.70 (13)
O1—C7—C8—S1178.92 (15)N2—C6—N3—C7174.81 (16)
N3—C7—C8—S10.32 (17)S1—C6—N3—C74.01 (17)
C14—C9—C10—C110.5 (2)N2—C6—N3—C98.7 (2)
N3—C9—C10—C11178.44 (14)S1—C6—N3—C9172.45 (11)
C9—C10—C11—C121.1 (3)C14—C9—N3—C766.1 (2)
C10—C11—C12—C131.4 (3)C10—C9—N3—C7111.84 (17)
C11—C12—C13—C141.1 (3)C14—C9—N3—C6117.65 (16)
C10—C9—C14—C130.2 (2)C10—C9—N3—C664.4 (2)
N3—C9—C14—C13178.09 (15)O2—C16—O3—C173.7 (3)
C12—C13—C14—C90.5 (3)C15—C16—O3—C17176.13 (15)
C7—C8—C15—C16179.45 (15)C15—C8—S1—C6179.15 (16)
S1—C8—C15—C160.2 (2)C7—C8—S1—C61.56 (12)
C8—C15—C16—O26.8 (3)N2—C6—S1—C8175.66 (16)
C8—C15—C16—O3173.02 (15)N3—C6—S1—C83.10 (12)
Hydrogen-bond geometry (Å, º) top
Cg4 is the centroid of the C9–C14 ring.
D—H···AD—HH···AD···AD—H···A
C13—H13···O2i0.932.353.245 (2)163
C15—H15···O3ii0.932.563.485 (2)172
C17—H17A···O1ii0.962.423.269 (2)147
C3A—H3A2···Cg4iii0.972.963.914 (3)169
Symmetry codes: (i) x1/2, y+3/2, z+1/2; (ii) x, y+2, z; (iii) x+3/2, y1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
Cg4 is the centroid of the C9–C14 ring.
D—H···AD—HH···AD···AD—H···A
C13—H13···O2i0.932.353.245 (2)163
C15—H15···O3ii0.932.563.485 (2)172
C17—H17A···O1ii0.962.423.269 (2)147
C3A—H3A2···Cg4iii0.972.963.914 (3)169
Symmetry codes: (i) x1/2, y+3/2, z+1/2; (ii) x, y+2, z; (iii) x+3/2, y1/2, z+1/2.
 

Acknowledgements

JPJ acknowledges the NSF–MRI program (grant No. CHE-1039027) for funds to purchase the X-ray diffractometer.

References

First citationAgilent (2014). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.  Google Scholar
First citationBadorc, A., Bordes, M. F., de Cointet, P., Savi, P., Bernat, A., Lalé, A., Petitou, M., Maffrand, J. P. & Herbert, J. M. (1997). J. Med. Chem. 40, 3393–3401.  CrossRef CAS PubMed Google Scholar
First citationBell, F. W., Cantrell, A. S., Högberg, M., Jaskunas, S. R., Johansson, N. G., Jordan, C. L., Kinnick, M. D., Lind, P., Morin, J. M. Jr & Noréen, R. (1995). J. Med. Chem. 38, 4929–4936.  CrossRef CAS PubMed Google Scholar
First citationCarter, J. S., Kramer, S., Talley, J. J., Penning, T., Collins, P., Graneto, M. J., Seibert, K., Koboldt, C., Masferrer, J. & Zweifel, B. (1999). Bioorg. Med. Chem. Lett. 9, 1171–1174.  CrossRef PubMed CAS Google Scholar
First citationErgenç, N., Çapan, G., Günay, N. S., Özkirimli, S., Güngör, M., Özbey, S. & Kendi, E. (1999). Arch. Pharm. Pharm. Med. Chem. 332, 343–347.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHargrave, K. D., Hess, F. K. & Oliver, J. T. (1983). J. Med. Chem. 26, 1158–1163.  CrossRef CAS PubMed Web of Science Google Scholar
First citationHutchinson, I., Jennings, S. A., Vishnuvajjala, B. R., Westwell, A. D. & Stevens, M. F. G. (2002). J. Med. Chem. 45, 744–747.  Web of Science CrossRef PubMed CAS Google Scholar
First citationJaen, J. C., Wise, L. D., Caprathe, B. W., Tecle, H., Bergmeier, S., Humblet, C. C., Heffner, T. G., Meltzer, L. T. & Pugsley, T. A. (1990). J. Med. Chem. 33, 311–317.  CrossRef PubMed CAS Google Scholar
First citationPatt, W. C., Hamilton, H. W., Taylor, M. D., Ryan, M. J., Taylor, D. G. Jr, Connolly, C. J. C., Doherty, A. M., Klutchko, S. R., Sircar, I. & Steinbaugh, B. A. (1992). J. Med. Chem. 35, 2562–2572.  CrossRef PubMed CAS Google Scholar
First citationQuiroga, J., Hernández, P., Insuasty, B., Abonía, R., Cobo, J., Sánchez, A., Nogueras, M. & Low, J. N. (2002). J. Chem. Soc. Perkin Trans. 1, pp. 555–559.  CSD CrossRef Google Scholar
First citationRudolph, J., Theis, H., Hanke, R., Endermann, R., Johannsen, L. & Geschke, F. U. (2001). J. Med. Chem. 44, 619–626.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSharma, R. N., Xavier, F. P., Vasu, K. K., Chaturvedi, S. C. & Pancholi, S. S. (2009). J. Enzyme Inhib. Med. Chem. 24, 890–897.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTsuji, K. & Ishikawa, H. (1994). Bioorg. Med. Chem. Lett. 4, 1601–1606.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 10| October 2015| Pages o776-o777
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds