research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 10| October 2015| Pages 1143-1146

Crystal structure of [μ2-1,1′-bis­­(di­phenyl­phos­phanyl)ferrocene-κ2P:P′]bis­­[(pyrrolidine-1-carbo­di­thioato-κS)gold(I)]

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and bCentre for Chemical Crystallography, Faculty of Science and Technology, Sunway University, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia
*Correspondence e-mail: edward.tiekink@gmail.com

Edited by A. Van der Lee, Université de Montpellier II, France (Received 29 August 2015; accepted 2 September 2015; online 12 September 2015)

The asymmetric unit of the title compound, {(C34H28FeP2)[Au(C5H8NS2)]2}, comprises half a mol­ecule, with the full mol­ecule being generated by the application of a centre of inversion. The independent AuI atom is coordinated by thiol­ate S and phosphane P atoms that define an approximate linear geometry [S—Au—P = 169.35 (3)°]. The deviation from the ideal linear is traced to the close approach of the (intra­molecular) non-coordinating thione S atom [Au⋯S = 3.1538 (8) Å]. Supra­molecular layers parallel to (100) feature in the crystal packing, being sustained by phen­yl–thione C—H⋯S inter­actions, with the non-coordinating thione S atom in the role of a dual acceptor. Layers stack with no specific inter­actions between them.

1. Chemical context

Investigations into the potential anti-cancer activity of phosphanegold(I) di­thio­carbamates, R3PAu(S2CNR2), date back over a decade (de Vos et al., 2004[Vos, D. de, Ho, S. Y. & Tiekink, E. R. T. (2004). Bioinorg. Chem. Appl. 2, 141-154.]; Vergara et al., 2007[Vergara, E., Miranda, S., Mohr, F., Cerrada, E., Tiekink, E. R. T., Romero, P., Mendía, A. & Laguna, M. (2007). Eur. J. Inorg. Chem. pp. 2926-2933.]; Jamaludin et al., 2013[Jamaludin, N. S., Goh, Z.-J., Cheah, Y. K., Ang, K.-P., Sim, J. H., Khoo, C. H., Fairuz, Z. A., Halim, S. N. B. A., Ng, S. W., Seng, H.-L. & Tiekink, E. R. T. (2013). Eur. J. Med. Chem. 67, 127-141.]). These investigations are complemented by the recently reported impressive anti-microbial activity for this class of compound (Sim et al., 2014[Sim, J.-H., Jamaludin, N. S., Khoo, C.-H., Cheah, Y.-K., Halim, S. N. B. A., Seng, H.-L. & Tiekink, E. R. T. (2014). Gold Bull. 47, 225-236.]) whereby R3PAu[S2CN(iPr)CH2CH2OH], R = Ph and Cy, exhibited specific activity against Gram-positive bacteria while the R = Et derivative displayed broad-range activity against both Gram-positive and Gram-negative bacteria. Motivated by observations that 1,1′-bis­(di­phenyl­phosphan­yl)ferrocene (dppf) derivatives also possess biological activity (Ornelas, 2011[Ornelas, C. (2011). New J. Chem. 35, 1973-1985.]; Braga & Silva, 2013[Braga, S. S. & Silva, A. M. S. (2013). Organometallics, 32, 5626-5639.]), it was thought of inter­est to couple dppf with AuI di­thio­carbamates. This led to the isolation of the broadly insoluble title compound, dppf{Au[S2CN(CH2)4]}2, (I)[link], which was subjected to a crystal structure determination. The results of this study are reported herein along with a comparison to related species.

2. Structural commentary

The FeII atom in dppf{Au[S2CN(CH2)4]}2, (I)[link], is located on a centre of inversion, Fig. 1[link]. The AuI central atom exists in the anti­cipated linear geometry defined by thiol­ate-S and phosphane-P atoms. The Au—S1 bond length is considerably longer than the Au—P1 bond, i.e. 2.3378 (8) cf. 2.2580 (8) Å. The di­thio­carbamate ligand is orientated to place the S2 atom in close proximity to the AuI atom. However, the resulting intra­molecular Au⋯S2 inter­action is long at 3.1538 (8) Å, consistent with a monodentate mode of coordination for the di­thio­carbamate ligand. The pattern of C1—S1, S2 bond lengths supports this conclusion in that the strongly bound S1 atom forms a longer, i.e. weaker, C1—S1 bond [1.757 (3) Å] cf. with C1—S2 of 1.689 (3) Å. Nevertheless, the close approach of the S2 atom to the AuI central atom is correlated with the deviation from the ideal linear geometry, i.e. S1—Au—P1 is 169.35 (3)°.

[Scheme 1]
[Figure 1]
Figure 1
The mol­ecular structure of (I)[link], showing the atom-labelling scheme and displacement ellipsoids at the 70% probability level. Unlabelled atoms are related by the symmetry operation (−x + 1, −y, −z + 2).

Similar features are noted in related structures as outlined below in the Database survey. The pyrrolidine ring is twisted about the C2—C3 bond. Owing to being located on a centre of inversion, the FeII atom is equidistant from the ring centroids of the Cp rings [Fe⋯Cg, Cgi = 1.6566 (13) Å] and the Cg—Fe—Cgi angle is constrained by symmetry to be 180°; symmetry operation (i): 1 − x, −y, 2 − z. Again, from symmetry, the Cp rings have a staggered relationship.

3. Supra­molecular features

In the crystal packing, the most prominent inter­actions are of the type C—H⋯S. Data for the phenyl-C—H⋯S(thione) inter­actions are collected in Table 1[link]. These inter­actions, involving the dual acceptor S2 atom, serve to assemble mol­ecules into supra­molecular layers in the bc plane, Fig. 2[link]. The thickness of each layer corresponds to the length of the a axis, i.e. 10.9635 (4) Å, and the layers stack along this axis with no directional inter­actions between them, Fig. 3[link].

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C13—H13⋯S2i 0.95 2.86 3.680 (3) 144
C20—H20⋯S2ii 0.95 2.84 3.628 (3) 141
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) -x+1, -y, -z+1.
[Figure 2]
Figure 2
A view of the supra­molecular layer in the bc plane sustained by phen­yl–thione C—H⋯S inter­actions, shown as orange dashed lines. H atoms not involved in inter­molecular inter­actions have been omitted for clarity.
[Figure 3]
Figure 3
Unit-cell contents shown in projection down the c axis, showing the stacking of supra­molecular layers. The phen­yl–thione C—H⋯S inter­actions are shown as orange dashed lines. One layer is shown in space-filling mode.

4. Database survey

It has been approximately 40 years since the first report of a structure related to (I)[link], i.e. Ph3PAu(S2CNEt2), by Wijnhoven et al. (1972[Wijnhoven, J. G., Bosman, W. P. J. H. & Beurskens, P. T. (1972). J. Cryst. Mol. Struct. 2, 7-15.]). This serves as the archetype for approximately 20 other neutral phosphanegold(I) di­thio­carbamate structures in the crystallographic literature (Groom & Allen, 2014[Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662-671.]), each having a more or less linear P—Au—S arrangement. There are two structures containing the pyrrolinedi­thio­carbamate ligand, as in (I)[link], but with phosphane ligands Ph3P [(II); Ho & Tiekink, 2004[Ho, S. Y. & Tiekink, E. R. T. (2004). Z. Kristallogr. New Cryst. Struct. 219, 73-74.]] and Cy3P [(III); Ho & Tiekink, 2002[Ho, S. Y. & Tiekink, E. R. T. (2002). Z. Kristallogr. New Cryst. Struct. 217, 359-360.]]. From the data collated for (I)–(III) in Table 2[link], it is evident that the basic structural features in all three compounds are similar. There is also a closely related dppf-type structure whereby a methyl­ene bridge has been inserted between one P atom and the Cp ring, i.e. (Ph2PCH2C5H4FeC5H4PPh2)[Au(S2CNEt2)]2·2CHCl3, [(IV); Štěpnička & Císařová, 2012[Štěpnička, P. & Císařová, I. (2012). J. Organomet. Chem. 716, 110-119.]]. In this analogue of (I)[link], the FeII atom is in a general position. While the Au2P2 entity in (IV) remains approximately co-planar, as is crystallo­graphically imposed in (I)[link], i.e. the Au—P⋯P—Au pseudo torsion angle is 161.82 (5)°, the AuI atoms lie approximately to the same side of the mol­ecule as opposed to the strictly anti conformation found in (I)[link]. As seen in Table 2[link], the selected geometric parameters in (I)[link] and (IV) are comparable. Despite having the shortest intra­molecular Au⋯S2 contact in (IV), the deviation of the S—Au—P angle from linearity is not the greatest in this structure.

Table 2
Geometric details (Å, °) for (I)[link] and related literature structures

Structure Au—S Au—P S—Au—P Au⋯S2 CSD Refcodea Reference
(I) 2.3378 (8) 2.2580 (8) 169.35 (3) 3.1538 (8) This work
(II) 2.3333 (11) 2.2447 (10) 173.82 (4) 3.0440 (10) AYIYAI Ho & Tiekink (2004[Ho, S. Y. & Tiekink, E. R. T. (2004). Z. Kristallogr. New Cryst. Struct. 219, 73-74.])
(III) 2.3256 (16) 2.2547 (15) 176.55 (5) 3.1067 (17) XUMRIG Ho & Tiekink (2002[Ho, S. Y. & Tiekink, E. R. T. (2002). Z. Kristallogr. New Cryst. Struct. 217, 359-360.])
(IV) 2.3365 (11) 2.2495 (10) 171.98 (3) 3.0472 (10) GICZAV Štěpnička & Císařová (2012[Štěpnička, P. & Císařová, I. (2012). J. Organomet. Chem. 716, 110-119.])
  2.3559 (8) 2.2459 (8) 172.12 (3) 2.9178 (12)    
Reference: (a) Groom & Allen (2014[Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662-671.]).

5. Synthesis and crystallization

Two solutions were prepared. Firstly, a solution of the sodium salt of pyrrolidine di­thio­carbamate (Aldrich, 1.6 mmol) was prepared by dissolving this (0.2628 g) in methanol (25 ml). A second solution containing [1,1′-bis­(di­phenyl­phosphan­yl)ferrocene]bis­[chlorido­gold(I)] (synthesized by the reduction of KAuCl4 by Na2SO3 followed by the addition of a stoichiometric amount of 1,1′-bis­(di­phenyl­phosphan­yl)ferrocene; 0.8154 g, 0.8 mmol) was prepared by dissolution in di­chloro­methane (75 ml). The solution containing the di­thio­carbamate salt was added to the gold precursor solution. The resulting mixture was stirred for 3 h at room condition and then filtered. After a week of slow evaporation in a refrigerator, some dark-yellow blocks appeared that were characterized crystallographically. M. p. 378–379 K. IR (cm−1): 1435 s ν(C—N); 1152 m, 996 m ν(C—S).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. Carbon-bound H-atoms were placed in calculated positions (C—H = 0.95–0.99 Å) and were included in the refinement in the riding-model approximation, with Uiso(H) set to 1.2Ueq(C). The maximum and minimum residual electron density peaks of 1.57 and 1.11 e Å−3, respectively, were located 0.92 and 0.79 Å from the Au atom.

Table 3
Experimental details

Crystal data
Chemical formula [Au2Fe(C5H8NS2)2(C34H28P2)]
Mr 1240.77
Crystal system, space group Monoclinic, P21/c
Temperature (K) 100
a, b, c (Å) 10.9635 (4), 14.9720 (5), 13.0087 (4)
β (°) 102.977 (3)
V3) 2080.78 (12)
Z 2
Radiation type Mo Kα
μ (mm−1) 7.69
Crystal size (mm) 0.20 × 0.20 × 0.20
 
Data collection
Diffractometer Agilent SuperNova Dual diffractometer with an Atlas detector
Absorption correction Multi-scan (CrysAlis PRO; Agilent, 2014[Agilent (2014). CrysAlis PRO. Agilent Technologies Inc., Santa Clara, CA, USA.])
Tmin, Tmax 0.294, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 24384, 4777, 4363
Rint 0.048
(sin θ/λ)max−1) 0.650
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.022, 0.051, 1.06
No. of reflections 4777
No. of parameters 250
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.57, −1.11
Computer programs: CrysAlis PRO (Agilent, 2014[Agilent (2014). CrysAlis PRO. Agilent Technologies Inc., Santa Clara, CA, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Chemical context top

Investigations into the potential anti-cancer activity of phosphanegold(I) di­thio­carbamates, R3PAu(S2CNR'2), date back over a decade (de Vos et al., 2004; Vergara et al., 2007; Jamaludin et al., 2013). These investigations are complemented by the recently reported impressive anti-microbial activity for this class of compound (Sim et al., 2014) whereby R3PAu[S2CN(iPr)CH2CH2OH], R = Ph and Cy, exhibited specific activity against Gram-positive bacteria while the R = Et derivative displayed broad-range activity against both Gram-positive and Gram-negative bacteria. Motivated by observations that 1,1'-bis­(di­phenyl­phosphanyl)ferrocene (dppf) derivatives also possess biological activity (Ornelas, 2011; Braga & Silva, 2013), it was thought of inter­est to couple dppf with AuI di­thio­carbamates. This led to the isolation of the broadly insoluble title compound, dppf{Au[S2CN(CH2)4]}2, (I), which was subjected to a crystal structure determination. The results of this study are reported herein along with a comparison to related species.

Structural commentary top

The FeII atom in dppf{Au[S2CN(CH2)4]}2, (I), is located on a centre of inversion, Fig. 1. The AuI centre exists in the anti­cipated linear geometry defined by thiol­ate-S and phosphane-P atoms. The Au—S1 bond length is considerably longer than the Au—P1 bond, i.e. 2.3378 (8) cf. 2.2580 (8) Å. The di­thio­carbamate ligand is orientated to place the S2 atom in close proximity to the AuI atom. However, the resulting intra­molecular Au···S2 inter­action is long at 3.1538 (8) Å, consistent with a monodentate mode of coordination for the di­thio­carbamate ligand. The pattern of C1—S1, S2 bond lengths supports this conclusion in that the strongly bound S1 atom forms a longer, i.e. weaker, C1—S1 bond [1.757 (3) Å] cf. with C1—S2 of 1.689 (3) Å. Nevertheless, the close approach of the S2 atom to the AuI centre is correlated with the deviation from the ideal linear geometry, i.e. S1—Au—P1 is 169.35 (3)°. Similar features are noted in related structures as outlined below in the Database survey. The pyrrolidine ring is twisted about the C2—C3 bond. Owing to being located on a centre of inversion, the FeII atom is equidistant from the ring centroids of the Cp rings [Fe···Cg, Cgi = 1.6566 (13) Å] and the Cg—Fe—Cgi angle is constrained by symmetry to be 180°; symmetry operation (i): 1 - x, -y, 2 - z. Again, from symmetry, the Cp rings have a staggered relationship.

Supra­molecular features top

In the crystal packing, the most prominent inter­actions are of the type C—H···S. Data for the phenyl-C—H···S(thione) inter­actions are collected in Table 1. These inter­actions, involving the bifurcated S2 atom, serve to assemble molecules into supra­molecular layers in the bc plane, Fig. 2. The thickness of each layer corresponds to the length of the a axis, i.e. 10.9635 (4) Å, and the layers stack along this axis with no directional inter­actions between them, Fig. 3.

Database survey top

It has been approximately 40 years since the first report of a structure related to (I), i.e. Ph3PAu(S2CNEt2), by Wijnhoven et al. (1972). This serves as the archetype for approximately 20 other neutral phosphanegold(I) di­thio­carbamate structures in the crystallographic literature (Groom & Allen, 2014), each having a linear P—Au—S arrangement. There are two structures containing the pyrrolinedi­thio­carbamate ligand, as in (I), but with phosphane ligands Ph3P [(II); Ho & Tiekink, 2004] and Cy3P [(III); Ho & Tiekink, 2002]. From the data collated for (I)–(III) in Table 2, it is evident that the basic structural features in all three compounds are similar. There is also a closely related dppf-type structure whereby a methyl­ene bridge has been inserted between one P atom and the Cp ring, i.e. (Ph2PCH2C5H4FeC5H4PPh2)[Au(S2CNEt2)]2·2CHCl3, [(IV); Štěpnička & Císařová, 2012]. In this analogue of (I), the FeII atom is in a general position. While the Au2P2 entity in (IV) remains approximately co-planar, as is crystallographically imposed in (I), i.e. the Au—P···P—Au pseudo torsion angle is 161.82 (5)°, the AuI atoms lie approximately to the same side of the molecule as opposed to the strictly anti conformation found in (I). As seen in Table 2, the selected geometric parameters in (I) and (IV) are comparable. Despite having the shortest intra­molecular Au···S2 contact in (IV), the deviation of the S—Au—P angle from linearity is not the greatest in this structure.

Synthesis and crystallization top

Two solutions were prepared. Firstly, a solution of the sodium salt of pyrrolidine di­thio­carbamate (Aldrich, 1.6 mmol) was prepared by dissolving this (0.2628 g) in methanol (25 ml). A second solution containing [1,1'-bis­(di­phenyl­phosphanyl)ferrocene]bis­[chloridogold(I)] (synthesized by the reduction of KAuCl4 by Na2SO3 followed by the addition of a stoichiometric amount of 1,1'-bis­(di­phenyl­phosphanyl)ferrocene; 0.8154 g, 0.8 mmol) was prepared by dissolution in di­chloro­methane (75 ml). The solution containing the di­thio­carbamate salt was added to the gold precursor solution. The resulting mixture was stirred for 3 h at room condition and then filtered. After a week of slow evaporation in a refrigerator, some dark-yellow blocks appeared that were characterized crystallographically. M. p. 378–379 K. IR (cm-1): 1435 s ν(C—N); 1152 m, 996 m ν(C—S).

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 3. Carbon-bound H-atoms were placed in calculated positions (C—H = 0.95–0.99 Å) and were included in the refinement in the riding-model approximation, with Uiso(H) set to 1.2Ueq(C). The maximum and minimum residual electron density peaks of 1.57 and 1.11 e Å-3, respectively, were located 0.92 and 0.79 Å from the Au atom.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2014); cell refinement: CrysAlis PRO (Agilent, 2014); data reduction: CrysAlis PRO (Agilent, 2014); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing the atom-labelling scheme and displacement ellipsoids at the 70% probability level. Unlabelled atoms are related by the symmetry operation (-x+1, -y, -z+2).
[Figure 2] Fig. 2. A view of the supramolecular layer in the bc plane sustained by phenyl–thione C—H···S interactions, shown as orange dashed lines. H atoms not involved in intermolecular interactions have been omitted for clarity.
[Figure 3] Fig. 3. Unit-cell contents shown in projection down the c axis, showing the stacking of supramolecular layers. The phenyl–thione C—H···S interactions are shown as orange dashed lines. One layer is shown in space-filling mode.
2-1,1'-Bis(diphenylphosphanyl)ferrocene-κ2P:P']bis[(pyrrolidine-1-carbodithioato-κS)gold(I)] top
Crystal data top
[Au2Fe(C5H8NS2)2(C34H28P2)]F(000) = 1200
Mr = 1240.77Dx = 1.980 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 10.9635 (4) ÅCell parameters from 10685 reflections
b = 14.9720 (5) Åθ = 3.5–30.2°
c = 13.0087 (4) ŵ = 7.69 mm1
β = 102.977 (3)°T = 100 K
V = 2080.78 (12) Å3Block, dark-yellow
Z = 20.20 × 0.20 × 0.20 mm
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
4777 independent reflections
Radiation source: SuperNova (Mo) X-ray Source4363 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.048
Detector resolution: 10.4041 pixels mm-1θmax = 27.5°, θmin = 3.1°
ω scanh = 1414
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2014)
k = 1919
Tmin = 0.294, Tmax = 1.000l = 1616
24384 measured reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.022H-atom parameters constrained
wR(F2) = 0.051 w = 1/[σ2(Fo2) + (0.0208P)2 + 0.4001P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.002
4777 reflectionsΔρmax = 1.57 e Å3
250 parametersΔρmin = 1.11 e Å3
Crystal data top
[Au2Fe(C5H8NS2)2(C34H28P2)]V = 2080.78 (12) Å3
Mr = 1240.77Z = 2
Monoclinic, P21/cMo Kα radiation
a = 10.9635 (4) ŵ = 7.69 mm1
b = 14.9720 (5) ÅT = 100 K
c = 13.0087 (4) Å0.20 × 0.20 × 0.20 mm
β = 102.977 (3)°
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
4777 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2014)
4363 reflections with I > 2σ(I)
Tmin = 0.294, Tmax = 1.000Rint = 0.048
24384 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0220 restraints
wR(F2) = 0.051H-atom parameters constrained
S = 1.06Δρmax = 1.57 e Å3
4777 reflectionsΔρmin = 1.11 e Å3
250 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Au0.81601 (2)0.02934 (2)0.87927 (2)0.01301 (5)
Fe0.50000.00001.00000.01445 (13)
S10.94626 (7)0.09602 (5)0.89801 (6)0.01689 (16)
S20.79416 (8)0.08799 (5)0.67459 (6)0.02172 (18)
P10.67514 (7)0.13829 (5)0.88458 (6)0.01219 (15)
N10.9156 (2)0.23029 (16)0.76400 (18)0.0145 (5)
C10.8858 (3)0.1454 (2)0.7746 (2)0.0139 (6)
C20.9848 (3)0.2871 (2)0.8506 (2)0.0203 (7)
H2A0.93820.29340.90720.024*
H2B1.06860.26190.88120.024*
C30.9954 (3)0.3769 (2)0.7971 (3)0.0232 (7)
H3A1.07460.38060.77270.028*
H3B0.99240.42700.84610.028*
C40.8842 (3)0.3795 (2)0.7050 (3)0.0245 (7)
H4A0.80840.40040.72730.029*
H4B0.90010.41940.64880.029*
C50.8690 (3)0.2827 (2)0.6669 (2)0.0206 (7)
H5A0.91930.27080.61400.025*
H5B0.78020.26880.63560.025*
C60.5997 (3)0.1135 (2)0.9904 (2)0.0141 (6)
C70.6606 (3)0.0625 (2)1.0801 (2)0.0211 (7)
H70.74320.03911.09240.025*
C80.5766 (4)0.0528 (2)1.1475 (2)0.0268 (8)
H80.59320.02201.21300.032*
C90.4649 (3)0.0963 (2)1.1010 (3)0.0254 (8)
H90.39260.09961.12960.030*
C100.4771 (3)0.1346 (2)1.0040 (2)0.0202 (7)
H100.41520.16820.95680.024*
C110.7323 (3)0.25218 (19)0.9075 (2)0.0131 (6)
C120.7027 (3)0.3055 (2)0.9856 (2)0.0187 (7)
H120.65180.28261.02980.022*
C130.7478 (3)0.3923 (2)0.9990 (3)0.0231 (7)
H130.72830.42861.05310.028*
C140.8207 (3)0.4265 (2)0.9344 (3)0.0241 (7)
H140.85130.48600.94420.029*
C150.8494 (3)0.3739 (2)0.8554 (3)0.0245 (7)
H150.89930.39720.81070.029*
C160.8048 (3)0.2874 (2)0.8419 (3)0.0205 (7)
H160.82380.25150.78740.025*
C170.5506 (3)0.1478 (2)0.7674 (2)0.0133 (6)
C180.4616 (3)0.2152 (2)0.7586 (2)0.0170 (6)
H180.46990.25950.81200.020*
C190.3606 (3)0.2183 (2)0.6723 (2)0.0191 (7)
H190.29800.26290.66800.023*
C200.3520 (3)0.1557 (2)0.5924 (2)0.0214 (7)
H200.28370.15790.53290.026*
C210.4414 (3)0.0906 (2)0.5986 (2)0.0222 (7)
H210.43550.04880.54280.027*
C220.5405 (3)0.0857 (2)0.6862 (2)0.0175 (6)
H220.60150.03990.69070.021*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Au0.01259 (7)0.00937 (7)0.01715 (7)0.00067 (4)0.00346 (5)0.00134 (4)
Fe0.0201 (3)0.0098 (3)0.0150 (3)0.0028 (3)0.0070 (2)0.0025 (2)
S10.0171 (4)0.0131 (4)0.0180 (4)0.0029 (3)0.0011 (3)0.0037 (3)
S20.0292 (5)0.0162 (4)0.0168 (4)0.0070 (3)0.0012 (3)0.0001 (3)
P10.0129 (4)0.0093 (4)0.0148 (3)0.0002 (3)0.0038 (3)0.0006 (3)
N10.0164 (13)0.0101 (13)0.0159 (12)0.0008 (10)0.0011 (10)0.0027 (10)
C10.0117 (15)0.0142 (16)0.0160 (14)0.0017 (12)0.0040 (11)0.0003 (12)
C20.0243 (18)0.0133 (16)0.0220 (16)0.0060 (14)0.0025 (13)0.0023 (13)
C30.032 (2)0.0107 (16)0.0297 (17)0.0047 (14)0.0126 (14)0.0027 (13)
C40.0259 (19)0.0113 (16)0.0380 (19)0.0026 (14)0.0111 (15)0.0110 (14)
C50.0192 (17)0.0177 (17)0.0247 (16)0.0033 (14)0.0043 (13)0.0101 (13)
C60.0175 (16)0.0097 (15)0.0159 (14)0.0034 (12)0.0056 (12)0.0016 (11)
C70.0257 (19)0.0187 (17)0.0166 (15)0.0066 (14)0.0001 (13)0.0019 (13)
C80.041 (2)0.0240 (18)0.0164 (16)0.0154 (17)0.0084 (15)0.0058 (14)
C90.035 (2)0.0177 (18)0.0297 (17)0.0134 (15)0.0205 (15)0.0107 (14)
C100.0226 (17)0.0105 (16)0.0306 (17)0.0002 (13)0.0124 (14)0.0038 (13)
C110.0111 (15)0.0078 (14)0.0189 (14)0.0008 (12)0.0002 (11)0.0008 (11)
C120.0199 (17)0.0158 (17)0.0211 (15)0.0014 (13)0.0061 (13)0.0016 (12)
C130.0233 (18)0.0165 (17)0.0302 (17)0.0005 (14)0.0076 (14)0.0072 (14)
C140.0231 (18)0.0093 (16)0.041 (2)0.0039 (14)0.0095 (15)0.0031 (14)
C150.0226 (18)0.0179 (18)0.0370 (19)0.0027 (14)0.0153 (15)0.0029 (14)
C160.0222 (18)0.0153 (17)0.0259 (16)0.0003 (14)0.0095 (13)0.0039 (13)
C170.0150 (15)0.0108 (15)0.0151 (13)0.0017 (12)0.0054 (11)0.0033 (11)
C180.0177 (16)0.0116 (16)0.0217 (15)0.0010 (12)0.0045 (12)0.0021 (12)
C190.0177 (17)0.0170 (17)0.0230 (16)0.0002 (13)0.0055 (13)0.0038 (13)
C200.0174 (17)0.0299 (19)0.0155 (14)0.0050 (15)0.0007 (12)0.0041 (13)
C210.0252 (18)0.0285 (19)0.0137 (14)0.0022 (15)0.0058 (13)0.0049 (13)
C220.0206 (17)0.0159 (16)0.0175 (14)0.0019 (13)0.0074 (12)0.0018 (12)
Geometric parameters (Å, º) top
Au—P12.2580 (8)C6—C71.430 (4)
Au—S12.3378 (8)C6—C101.430 (4)
Fe—C10i2.033 (3)C7—C81.414 (5)
Fe—C102.033 (3)C7—H70.9500
Fe—C6i2.039 (3)C8—C91.399 (5)
Fe—C62.039 (3)C8—H80.9500
Fe—C92.044 (3)C9—C101.420 (4)
Fe—C9i2.044 (3)C9—H90.9500
Fe—C7i2.059 (3)C10—H100.9500
Fe—C72.059 (3)C11—C121.386 (4)
Fe—C82.071 (3)C11—C161.395 (4)
Fe—C8i2.071 (3)C12—C131.388 (4)
S1—C11.757 (3)C12—H120.9500
S2—C11.689 (3)C13—C141.382 (5)
P1—C61.796 (3)C13—H130.9500
P1—C171.809 (3)C14—C151.386 (5)
P1—C111.818 (3)C14—H140.9500
N1—C11.327 (4)C15—C161.381 (5)
N1—C21.478 (4)C15—H150.9500
N1—C51.478 (4)C16—H160.9500
C2—C31.531 (4)C17—C181.390 (4)
C2—H2A0.9900C17—C221.394 (4)
C2—H2B0.9900C18—C191.389 (4)
C3—C41.506 (5)C18—H180.9500
C3—H3A0.9900C19—C201.387 (4)
C3—H3B0.9900C19—H190.9500
C4—C51.528 (5)C20—C211.371 (5)
C4—H4A0.9900C20—H200.9500
C4—H4B0.9900C21—C221.388 (4)
C5—H5A0.9900C21—H210.9500
C5—H5B0.9900C22—H220.9500
P1—Au—S1169.35 (3)C5—C4—H4B110.9
C10i—Fe—C10180.00 (19)H4A—C4—H4B109.0
C10i—Fe—C6i41.11 (12)N1—C5—C4103.6 (2)
C10—Fe—C6i138.89 (12)N1—C5—H5A111.0
C10i—Fe—C6138.89 (12)C4—C5—H5A111.0
C10—Fe—C641.11 (12)N1—C5—H5B111.0
C6i—Fe—C6180.0C4—C5—H5B111.0
C10i—Fe—C9139.24 (12)H5A—C5—H5B109.0
C10—Fe—C940.76 (12)C7—C6—C10107.3 (3)
C6i—Fe—C9111.54 (12)C7—C6—P1121.7 (2)
C6—Fe—C968.46 (12)C10—C6—P1131.0 (2)
C10i—Fe—C9i40.76 (12)C7—C6—Fe70.32 (18)
C10—Fe—C9i139.24 (13)C10—C6—Fe69.22 (17)
C6i—Fe—C9i68.46 (12)P1—C6—Fe124.38 (15)
C6—Fe—C9i111.54 (12)C8—C7—C6108.1 (3)
C9—Fe—C9i180.0C8—C7—Fe70.42 (19)
C10i—Fe—C7i68.50 (14)C6—C7—Fe68.85 (17)
C10—Fe—C7i111.50 (13)C8—C7—H7125.9
C6i—Fe—C7i40.83 (12)C6—C7—H7125.9
C6—Fe—C7i139.17 (12)Fe—C7—H7126.4
C9—Fe—C7i112.49 (14)C9—C8—C7108.2 (3)
C9i—Fe—C7i67.51 (14)C9—C8—Fe69.09 (18)
C10i—Fe—C7111.50 (13)C7—C8—Fe69.53 (18)
C10—Fe—C768.50 (14)C9—C8—H8125.9
C6i—Fe—C7139.17 (12)C7—C8—H8125.9
C6—Fe—C740.83 (12)Fe—C8—H8127.1
C9—Fe—C767.51 (14)C8—C9—C10109.0 (3)
C9i—Fe—C7112.49 (14)C8—C9—Fe71.15 (19)
C7i—Fe—C7180.0C10—C9—Fe69.22 (17)
C10i—Fe—C8112.02 (14)C8—C9—H9125.5
C10—Fe—C867.98 (14)C10—C9—H9125.5
C6i—Fe—C8111.87 (12)Fe—C9—H9125.7
C6—Fe—C868.13 (12)C9—C10—C6107.4 (3)
C9—Fe—C839.76 (15)C9—C10—Fe70.02 (18)
C9i—Fe—C8140.24 (15)C6—C10—Fe69.67 (18)
C7i—Fe—C8139.95 (13)C9—C10—H10126.3
C7—Fe—C840.05 (13)C6—C10—H10126.3
C10i—Fe—C8i67.98 (14)Fe—C10—H10125.6
C10—Fe—C8i112.02 (14)C12—C11—C16119.4 (3)
C6i—Fe—C8i68.13 (12)C12—C11—P1122.1 (2)
C6—Fe—C8i111.87 (12)C16—C11—P1118.5 (2)
C9—Fe—C8i140.24 (15)C11—C12—C13119.7 (3)
C9i—Fe—C8i39.76 (15)C11—C12—H12120.1
C7i—Fe—C8i40.05 (13)C13—C12—H12120.1
C7—Fe—C8i139.95 (13)C14—C13—C12120.6 (3)
C8—Fe—C8i180.0C14—C13—H13119.7
C1—S1—Au98.40 (10)C12—C13—H13119.7
C6—P1—C17105.75 (14)C13—C14—C15119.9 (3)
C6—P1—C11105.61 (14)C13—C14—H14120.0
C17—P1—C11103.37 (13)C15—C14—H14120.0
C6—P1—Au108.05 (10)C16—C15—C14119.6 (3)
C17—P1—Au115.04 (10)C16—C15—H15120.2
C11—P1—Au118.03 (10)C14—C15—H15120.2
C1—N1—C2124.6 (2)C15—C16—C11120.7 (3)
C1—N1—C5123.5 (2)C15—C16—H16119.6
C2—N1—C5111.5 (2)C11—C16—H16119.6
N1—C1—S2121.7 (2)C18—C17—C22119.1 (3)
N1—C1—S1116.5 (2)C18—C17—P1120.7 (2)
S2—C1—S1121.79 (18)C22—C17—P1120.2 (2)
N1—C2—C3103.7 (2)C19—C18—C17120.6 (3)
N1—C2—H2A111.0C19—C18—H18119.7
C3—C2—H2A111.0C17—C18—H18119.7
N1—C2—H2B111.0C20—C19—C18119.3 (3)
C3—C2—H2B111.0C20—C19—H19120.3
H2A—C2—H2B109.0C18—C19—H19120.3
C4—C3—C2104.7 (3)C21—C20—C19120.6 (3)
C4—C3—H3A110.8C21—C20—H20119.7
C2—C3—H3A110.8C19—C20—H20119.7
C4—C3—H3B110.8C20—C21—C22120.2 (3)
C2—C3—H3B110.8C20—C21—H21119.9
H3A—C3—H3B108.9C22—C21—H21119.9
C3—C4—C5104.1 (3)C21—C22—C17120.0 (3)
C3—C4—H4A110.9C21—C22—H22120.0
C5—C4—H4A110.9C17—C22—H22120.0
C3—C4—H4B110.9
C2—N1—C1—S2173.8 (2)C8—C9—C10—Fe60.3 (2)
C5—N1—C1—S22.2 (4)C7—C6—C10—C90.2 (3)
C2—N1—C1—S16.1 (4)P1—C6—C10—C9178.2 (2)
C5—N1—C1—S1177.7 (2)Fe—C6—C10—C960.1 (2)
Au—S1—C1—N1164.2 (2)C7—C6—C10—Fe60.3 (2)
Au—S1—C1—S215.7 (2)P1—C6—C10—Fe118.1 (3)
C1—N1—C2—C3179.5 (3)C6—P1—C11—C127.3 (3)
C5—N1—C2—C38.0 (3)C17—P1—C11—C12103.5 (3)
N1—C2—C3—C427.0 (3)Au—P1—C11—C12128.2 (2)
C2—C3—C4—C535.8 (3)C6—P1—C11—C16174.7 (2)
C1—N1—C5—C4158.8 (3)C17—P1—C11—C1674.4 (3)
C2—N1—C5—C413.8 (3)Au—P1—C11—C1653.8 (3)
C3—C4—C5—N130.3 (3)C16—C11—C12—C131.4 (5)
C17—P1—C6—C7150.6 (2)P1—C11—C12—C13179.3 (2)
C11—P1—C6—C7100.2 (3)C11—C12—C13—C140.7 (5)
Au—P1—C6—C727.0 (3)C12—C13—C14—C150.1 (5)
C17—P1—C6—C1027.5 (3)C13—C14—C15—C160.2 (5)
C11—P1—C6—C1081.6 (3)C14—C15—C16—C110.5 (5)
Au—P1—C6—C10151.2 (3)C12—C11—C16—C151.3 (5)
C17—P1—C6—Fe63.9 (2)P1—C11—C16—C15179.3 (2)
C11—P1—C6—Fe173.08 (17)C6—P1—C17—C1864.2 (3)
Au—P1—C6—Fe59.75 (19)C11—P1—C17—C1846.6 (3)
C10—C6—C7—C80.1 (4)Au—P1—C17—C18176.7 (2)
P1—C6—C7—C8178.6 (2)C6—P1—C17—C22113.7 (3)
Fe—C6—C7—C859.7 (2)C11—P1—C17—C22135.5 (2)
C10—C6—C7—Fe59.6 (2)Au—P1—C17—C225.4 (3)
P1—C6—C7—Fe118.9 (2)C22—C17—C18—C193.0 (4)
C6—C7—C8—C90.3 (4)P1—C17—C18—C19175.0 (2)
Fe—C7—C8—C958.4 (2)C17—C18—C19—C202.8 (5)
C6—C7—C8—Fe58.7 (2)C18—C19—C20—C210.7 (5)
C7—C8—C9—C100.4 (4)C19—C20—C21—C221.2 (5)
Fe—C8—C9—C1059.1 (2)C20—C21—C22—C171.0 (5)
C7—C8—C9—Fe58.7 (2)C18—C17—C22—C211.0 (4)
C8—C9—C10—C60.4 (4)P1—C17—C22—C21176.9 (2)
Fe—C9—C10—C659.9 (2)
Symmetry code: (i) x+1, y, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C13—H13···S2ii0.952.863.680 (3)144
C20—H20···S2iii0.952.843.628 (3)141
Symmetry codes: (ii) x, y+1/2, z+1/2; (iii) x+1, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C13—H13···S2i0.952.863.680 (3)144
C20—H20···S2ii0.952.843.628 (3)141
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x+1, y, z+1.
Geometric details (Å, °) for (I) and related literature structures top
StructureAu—SAu—PS—Au—PAu···S2CSD RefcodeaReference
(I)2.3378 (8)2.2580 (8)169.35 (3)3.1538 (8)this work
(II)2.3333 (11)2.2447 (10)173.82 (4)3.0440 (10)AYIYAIHo & Tiekink (2004)
(III)2.3256 (16)2.2547 (15)176.55 (5)3.1067 (17)XUMRIGHo & Tiekink (2002)
(IV)2.3365 (11)2.2495 (10)171.98 (3)3.0472 (10)GICZAVŠtěpnička & Císařová (2012)
2.3559 (8)2.2459 (8)172.12 (3)2.9178 (12)
Reference: (a) Groom & Allen (2014).

Experimental details

Crystal data
Chemical formula[Au2Fe(C5H8NS2)2(C34H28P2)]
Mr1240.77
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)10.9635 (4), 14.9720 (5), 13.0087 (4)
β (°) 102.977 (3)
V3)2080.78 (12)
Z2
Radiation typeMo Kα
µ (mm1)7.69
Crystal size (mm)0.20 × 0.20 × 0.20
Data collection
DiffractometerAgilent SuperNova Dual
diffractometer with an Atlas detector
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2014)
Tmin, Tmax0.294, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
24384, 4777, 4363
Rint0.048
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.022, 0.051, 1.06
No. of reflections4777
No. of parameters250
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.57, 1.11

Computer programs: CrysAlis PRO (Agilent, 2014), SHELXS97 (Sheldrick, 2008), SHELXL2014 (Sheldrick, 2015), ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

 

Acknowledgements

This research was supported by the Trans-disciplinary Research Grant Scheme (TR002-2014A) provided by the Ministry of Education, Malaysia.

References

First citationAgilent (2014). CrysAlis PRO. Agilent Technologies Inc., Santa Clara, CA, USA.  Google Scholar
First citationBraga, S. S. & Silva, A. M. S. (2013). Organometallics, 32, 5626–5639.  Web of Science CrossRef CAS Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671.  Web of Science CSD CrossRef CAS Google Scholar
First citationHo, S. Y. & Tiekink, E. R. T. (2002). Z. Kristallogr. New Cryst. Struct. 217, 359–360.  CAS Google Scholar
First citationHo, S. Y. & Tiekink, E. R. T. (2004). Z. Kristallogr. New Cryst. Struct. 219, 73–74.  CAS Google Scholar
First citationJamaludin, N. S., Goh, Z.-J., Cheah, Y. K., Ang, K.-P., Sim, J. H., Khoo, C. H., Fairuz, Z. A., Halim, S. N. B. A., Ng, S. W., Seng, H.-L. & Tiekink, E. R. T. (2013). Eur. J. Med. Chem. 67, 127–141.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationOrnelas, C. (2011). New J. Chem. 35, 1973–1985.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSim, J.-H., Jamaludin, N. S., Khoo, C.-H., Cheah, Y.-K., Halim, S. N. B. A., Seng, H.-L. & Tiekink, E. R. T. (2014). Gold Bull. 47, 225–236.  Web of Science CrossRef CAS Google Scholar
First citationŠtěpnička, P. & Císařová, I. (2012). J. Organomet. Chem. 716, 110–119.  Google Scholar
First citationVergara, E., Miranda, S., Mohr, F., Cerrada, E., Tiekink, E. R. T., Romero, P., Mendía, A. & Laguna, M. (2007). Eur. J. Inorg. Chem. pp. 2926–2933.  CSD CrossRef Google Scholar
First citationVos, D. de, Ho, S. Y. & Tiekink, E. R. T. (2004). Bioinorg. Chem. Appl. 2, 141–154.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWijnhoven, J. G., Bosman, W. P. J. H. & Beurskens, P. T. (1972). J. Cryst. Mol. Struct. 2, 7–15.  CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 10| October 2015| Pages 1143-1146
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds