metal-organic compounds
κ2N,N′)tetra-μ2-cyanido-κ4C:N;κ4N:C-manganese(II)disilver(I)]
of poly[(2,2′-bipyridine-aDepartment of Chemistry, Faculty of Science, Naresuan University, Muang, Phitsanulok, 65000, Thailand, and bDepartment of Physics, Faculty of Science and Technology, Thammasat University, Khlong Luang, Pathum Thani, 12120, Thailand
*Correspondence e-mail: kc@tu.ac.th
The title compound, [Ag2Mn(CN)4(C10H8N2)]n or Mn(bipy){Ag(CN)2}2 (bipy = 2,2′-bipyridine) is isostructural with Cd(bipy){Au(CN)2}2 [Guo et al. (2009). CrystEngComm, 11, 61–66]. The MnII atom has crystallographically imposed twofold symmetry and a distorted octahedral coordination sphere consisting of six N atoms from one bipyridine ligand and four dicyanoargentate(I) anions, [Ag(CN)2]−, while the AgI atom of the complex anion displays the expected linear geometry. Each [Ag(CN)2]− unit connects to two neighbouring [Mn(bipy)]2+ cations to give an threefold interpenetrating quartz-like three-dimensional framework. No directional interactions beyond van der Waals contacts are observed.
CCDC reference: 1422937
1. Related literature
For related crystal structures, see: Soma et al. (1994); Guo et al. (2009). For the use of [Ag(CN)2]− as a building block for the construction of cyanide-bridged silver(I)–iron(II) spin-crossover coordination polymers, see: Shorrock et al. (2002); Galet et al. (2003); Niel et al. (2003); Muñoz et al. (2007).
2. Experimental
2.1. Crystal data
|
Data collection: APEX2 (Bruker, 2014); cell SAINT (Bruker, 2014); data reduction: SAINT; program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: publCIF (Westrip, 2010) and enCIFer (Allen et al., 2004).
Supporting information
CCDC reference: 1422937
10.1107/S205698901501676X/vn2098sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S205698901501676X/vn2098Isup2.hkl
Supporting information file. DOI: 10.1107/S205698901501676X/vn2098Isup3.cdx
Mn(NO3)2·6H2O (62 mg, 0.5 mmol) and 2,2'-bipyridine (162 mg, 0.5 mmol) were dissolved in 4 ml of a mixture H2O/CH3OH (1:1) to form a bright yellow solution and this was pipetted into one side of the H-tube. K[Ag(CN)2] (250 mg, 2 mmol) was dissolved in 4 mL of a mixture H2O/CH3OH to give a colorless solution and this was pipetted into the other side arm of the H-tube. The H-tube was then carefully filled with a mixture H2O/CH3OH. Upon slow diffusion for 3 days, pale-yellow block shaped single crystals of the title compound were formed in the manganese(II)-containing side of the H-tube. Yield: 49 mg, 89% based on manganese source.
Data collection: APEX2 (Bruker, 2014); cell
SAINT (Bruker, 2014); data reduction: SAINT (Bruker, 2014); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: publCIF (Westrip, 2010) and enCIFer (Allen et al., 2004).[Ag2Mn(CN)4(C10H8N2)] | Dx = 1.913 Mg m−3 |
Mr = 530.94 | Mo Kα radiation, λ = 0.71073 Å |
Trigonal, P3112 | Cell parameters from 720 reflections |
a = 8.7215 (3) Å | θ = 3.3–26.3° |
c = 20.9874 (9) Å | µ = 2.78 mm−1 |
V = 1382.52 (13) Å3 | T = 296 K |
Z = 3 | Block, light yellow |
F(000) = 759 | 0.36 × 0.22 × 0.22 mm |
Bruker D8 QUEST CMOS diffractometer | 1874 independent reflections |
Radiation source: microfocus sealed x-ray tube, Incoatec Iµus | 1856 reflections with I > 2σ(I) |
GraphiteDouble Bounce Multilayer Mirror monochromator | Rint = 0.024 |
Detector resolution: 10.5 pixels mm-1 | θmax = 26.3°, θmin = 3.3° |
ω and φ scans | h = −10→10 |
Absorption correction: multi-scan (SADABS; Bruker,2014) | k = −10→10 |
Tmin = 0.484, Tmax = 0.542 | l = −26→26 |
25845 measured reflections |
Refinement on F2 | Hydrogen site location: inferred from neighbouring sites |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.015 | w = 1/[σ2(Fo2) + (0.0231P)2 + 0.1949P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.038 | (Δ/σ)max = 0.001 |
S = 1.07 | Δρmax = 0.15 e Å−3 |
1874 reflections | Δρmin = −0.28 e Å−3 |
105 parameters | Absolute structure: Flack x determined using 824 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013) |
0 restraints | Absolute structure parameter: 0.037 (6) |
Primary atom site location: structure-invariant direct methods |
[Ag2Mn(CN)4(C10H8N2)] | Z = 3 |
Mr = 530.94 | Mo Kα radiation |
Trigonal, P3112 | µ = 2.78 mm−1 |
a = 8.7215 (3) Å | T = 296 K |
c = 20.9874 (9) Å | 0.36 × 0.22 × 0.22 mm |
V = 1382.52 (13) Å3 |
Bruker D8 QUEST CMOS diffractometer | 1874 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker,2014) | 1856 reflections with I > 2σ(I) |
Tmin = 0.484, Tmax = 0.542 | Rint = 0.024 |
25845 measured reflections |
R[F2 > 2σ(F2)] = 0.015 | H-atom parameters constrained |
wR(F2) = 0.038 | Δρmax = 0.15 e Å−3 |
S = 1.07 | Δρmin = −0.28 e Å−3 |
1874 reflections | Absolute structure: Flack x determined using 824 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013) |
105 parameters | Absolute structure parameter: 0.037 (6) |
0 restraints |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Ag1 | 0.46725 (4) | 0.05832 (4) | 0.84789 (2) | 0.07435 (11) | |
Mn1 | 0.89941 (6) | −0.05030 (3) | 1.0000 | 0.03424 (11) | |
N2 | 0.2249 (4) | 0.0953 (4) | 0.74313 (13) | 0.0600 (6) | |
N3 | 1.1424 (3) | 0.1907 (3) | 0.96099 (11) | 0.0511 (5) | |
N1 | 0.7178 (3) | −0.0053 (4) | 0.94131 (11) | 0.0547 (6) | |
C7 | 1.3017 (3) | 0.2186 (3) | 0.97859 (12) | 0.0438 (5) | |
C4 | 1.2821 (5) | 0.4635 (6) | 0.9044 (3) | 0.0981 (17) | |
H4 | 1.2710 | 0.5468 | 0.8803 | 0.118* | |
C2 | 0.3101 (5) | 0.0826 (5) | 0.78142 (16) | 0.0638 (8) | |
C1 | 0.6284 (4) | 0.0198 (5) | 0.90861 (14) | 0.0612 (7) | |
C6 | 1.4560 (4) | 0.3673 (4) | 0.95830 (15) | 0.0599 (7) | |
H6 | 1.5658 | 0.3828 | 0.9698 | 0.072* | |
C3 | 1.1344 (5) | 0.3099 (6) | 0.9239 (2) | 0.0848 (13) | |
H3 | 1.0238 | 0.2887 | 0.9106 | 0.102* | |
C5 | 1.4453 (4) | 0.4911 (5) | 0.92118 (18) | 0.0807 (11) | |
H5 | 1.5474 | 0.5920 | 0.9077 | 0.097* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ag1 | 0.0916 (2) | 0.1011 (2) | 0.05771 (15) | 0.06867 (18) | −0.02819 (13) | −0.00888 (13) |
Mn1 | 0.0307 (2) | 0.03718 (18) | 0.0327 (2) | 0.01535 (11) | 0.000 | −0.00120 (16) |
N2 | 0.0675 (15) | 0.0575 (14) | 0.0588 (14) | 0.0342 (13) | −0.0179 (12) | 0.0000 (12) |
N3 | 0.0375 (11) | 0.0535 (13) | 0.0546 (12) | 0.0170 (9) | 0.0022 (9) | 0.0141 (10) |
N1 | 0.0530 (13) | 0.0719 (16) | 0.0470 (12) | 0.0371 (12) | −0.0084 (10) | −0.0012 (12) |
C7 | 0.0365 (11) | 0.0497 (13) | 0.0359 (11) | 0.0146 (10) | 0.0005 (9) | −0.0054 (9) |
C4 | 0.063 (2) | 0.080 (3) | 0.124 (4) | 0.0157 (19) | 0.000 (2) | 0.056 (3) |
C2 | 0.0752 (19) | 0.0685 (19) | 0.0578 (17) | 0.0435 (17) | −0.0227 (14) | −0.0033 (14) |
C1 | 0.0654 (18) | 0.081 (2) | 0.0514 (15) | 0.0473 (18) | −0.0097 (13) | −0.0030 (14) |
C6 | 0.0363 (13) | 0.0621 (17) | 0.0594 (16) | 0.0082 (12) | −0.0054 (11) | 0.0016 (13) |
C3 | 0.0467 (17) | 0.082 (2) | 0.109 (3) | 0.0199 (17) | −0.0021 (18) | 0.050 (2) |
C5 | 0.0511 (17) | 0.064 (2) | 0.088 (2) | −0.0001 (14) | 0.0002 (16) | 0.0260 (18) |
Ag1—C2 | 2.039 (3) | N3—C3 | 1.328 (4) |
Ag1—C1 | 2.046 (3) | N1—C1 | 1.139 (4) |
Mn1—N2i | 2.229 (3) | C7—C7iii | 1.485 (5) |
Mn1—N2ii | 2.229 (3) | C7—C6 | 1.388 (4) |
Mn1—N3iii | 2.264 (2) | C4—H4 | 0.9300 |
Mn1—N3 | 2.264 (2) | C4—C3 | 1.377 (5) |
Mn1—N1iii | 2.192 (2) | C4—C5 | 1.365 (6) |
Mn1—N1 | 2.192 (2) | C6—H6 | 0.9300 |
N2—Mn1iv | 2.229 (3) | C6—C5 | 1.372 (5) |
N2—C2 | 1.137 (4) | C3—H3 | 0.9300 |
N3—C7 | 1.337 (3) | C5—H5 | 0.9300 |
C2—Ag1—C1 | 174.70 (14) | C3—N3—C7 | 118.4 (2) |
N2i—Mn1—N2ii | 177.94 (15) | C1—N1—Mn1 | 177.0 (3) |
N2ii—Mn1—N3 | 85.78 (10) | N3—C7—C7iii | 115.84 (15) |
N2ii—Mn1—N3iii | 92.55 (10) | N3—C7—C6 | 121.3 (3) |
N2i—Mn1—N3iii | 85.78 (10) | C6—C7—C7iii | 122.90 (17) |
N2i—Mn1—N3 | 92.55 (10) | C3—C4—H4 | 120.6 |
N3iii—Mn1—N3 | 71.65 (12) | C5—C4—H4 | 120.6 |
N1iii—Mn1—N2i | 92.34 (11) | C5—C4—C3 | 118.7 (4) |
N1—Mn1—N2i | 88.95 (10) | N2—C2—Ag1 | 178.2 (3) |
N1—Mn1—N2ii | 92.34 (10) | N1—C1—Ag1 | 178.1 (3) |
N1iii—Mn1—N2ii | 88.94 (10) | C7—C6—H6 | 120.2 |
N1—Mn1—N3 | 93.18 (10) | C5—C6—C7 | 119.6 (3) |
N1iii—Mn1—N3 | 163.66 (9) | C5—C6—H6 | 120.2 |
N1iii—Mn1—N3iii | 93.18 (10) | N3—C3—C4 | 123.1 (3) |
N1—Mn1—N3iii | 163.66 (9) | N3—C3—H3 | 118.5 |
N1iii—Mn1—N1 | 102.49 (15) | C4—C3—H3 | 118.5 |
C2—N2—Mn1iv | 176.1 (3) | C4—C5—C6 | 118.9 (3) |
C7—N3—Mn1 | 118.32 (18) | C4—C5—H5 | 120.6 |
C3—N3—Mn1 | 123.2 (2) | C6—C5—H5 | 120.6 |
Mn1—N3—C7—C7iii | 1.5 (4) | C7—C6—C5—C4 | −0.8 (7) |
Mn1—N3—C7—C6 | −177.6 (2) | C3—N3—C7—C7iii | 178.4 (4) |
Mn1—N3—C3—C4 | 174.7 (5) | C3—N3—C7—C6 | −0.7 (5) |
N3—C7—C6—C5 | 2.2 (5) | C3—C4—C5—C6 | −1.8 (9) |
C7—N3—C3—C4 | −2.0 (7) | C5—C4—C3—N3 | 3.3 (10) |
C7iii—C7—C6—C5 | −176.9 (4) |
Symmetry codes: (i) −y+1, −x, −z+5/3; (ii) −y+1, x−y, z+1/3; (iii) x, x−y−1, −z+2; (iv) −x+y+1, −x+1, z−1/3. |
Experimental details
Crystal data | |
Chemical formula | [Ag2Mn(CN)4(C10H8N2)] |
Mr | 530.94 |
Crystal system, space group | Trigonal, P3112 |
Temperature (K) | 296 |
a, c (Å) | 8.7215 (3), 20.9874 (9) |
V (Å3) | 1382.52 (13) |
Z | 3 |
Radiation type | Mo Kα |
µ (mm−1) | 2.78 |
Crystal size (mm) | 0.36 × 0.22 × 0.22 |
Data collection | |
Diffractometer | Bruker D8 QUEST CMOS diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker,2014) |
Tmin, Tmax | 0.484, 0.542 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 25845, 1874, 1856 |
Rint | 0.024 |
(sin θ/λ)max (Å−1) | 0.624 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.015, 0.038, 1.07 |
No. of reflections | 1874 |
No. of parameters | 105 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.15, −0.28 |
Absolute structure | Flack x determined using 824 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013) |
Absolute structure parameter | 0.037 (6) |
Computer programs: APEX2 (Bruker, 2014), SAINT (Bruker, 2014), SHELXT (Sheldrick, 2015a), SHELXL2014 (Sheldrick, 2015b), OLEX2 (Dolomanov et al., 2009), publCIF (Westrip, 2010) and enCIFer (Allen et al., 2004).
Acknowledgements
This research was supported financially by a research career development grant (No. RSA5780056) from the Thailand Research Fund.
References
Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Bruker (2014). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Galet, A., Niel, V., Muñoz, M. C. & Real, J. A. (2003). J. Am. Chem. Soc. 125, 14224–14225. Web of Science CSD CrossRef PubMed CAS Google Scholar
Guo, Y., Liu, Z.-Q., Zhao, B., Feng, Y.-H., Xu, G.-F., Yan, S.-P., Cheng, P., Wang, Q.-L. & Liao, D.-Z. (2009). CrystEngComm, 11, 61–66. CSD CrossRef CAS Google Scholar
Muñoz, M. C., Gaspar, A. B., Galet, A. & Real, J. A. (2007). Inorg. Chem. 46, 8182–8192. PubMed Google Scholar
Niel, V., Thompson, A. L., Muñoz, M. C., Galet, A., Goeta, A. E. & Real, J. A. (2003). Angew. Chem. Int. Ed. 42, 3760–3763. Web of Science CSD CrossRef CAS Google Scholar
Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Shorrock, C. J., Xue, B.-Y., Kim, P. B., Batchelor, R. J., Patrick, B. O. & Leznoff, D. B. (2002). Inorg. Chem. 41, 6743–6753. CSD CrossRef PubMed CAS Google Scholar
Soma, T., Yuge, H. & Iwamoto, T. (1994). Angew. Chem. Int. Ed. Engl. 33, 1665–1666. CSD CrossRef Web of Science Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.