metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 10| October 2015| Pages m179-m180

Crystal structure of poly[(2,2′-bi­pyridine-κ2N,N′)tetra-μ2-cyanido-κ4C:N;κ4N:C-manganese(II)disilver(I)]

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Faculty of Science, Naresuan University, Muang, Phitsanulok, 65000, Thailand, and bDepartment of Physics, Faculty of Science and Technology, Thammasat University, Khlong Luang, Pathum Thani, 12120, Thailand
*Correspondence e-mail: kc@tu.ac.th

Edited by A. Van der Lee, Université de Montpellier II, France (Received 4 September 2015; accepted 8 September 2015; online 12 September 2015)

The title compound, [Ag2Mn(CN)4(C10H8N2)]n or Mn(bipy){Ag(CN)2}2 (bipy = 2,2′-bi­pyridine) is isostructural with Cd(bipy){Au(CN)2}2 [Guo et al. (2009[Guo, Y., Liu, Z.-Q., Zhao, B., Feng, Y.-H., Xu, G.-F., Yan, S.-P., Cheng, P., Wang, Q.-L. & Liao, D.-Z. (2009). CrystEngComm, 11, 61-66.]). CrystEngComm, 11, 61–66]. The MnII atom has crystallographically imposed twofold symmetry and a distorted octa­hedral coordination sphere consisting of six N atoms from one bi­pyridine ligand and four di­cyano­argentate(I) anions, [Ag(CN)2], while the AgI atom of the complex anion displays the expected linear geometry. Each [Ag(CN)2] unit connects to two neighbouring [Mn(bipy)]2+ cations to give an threefold inter­penetrating quartz-like three-dimensional framework. No directional inter­actions beyond van der Waals contacts are observed.

1. Related literature

For related crystal structures, see: Soma et al. (1994[Soma, T., Yuge, H. & Iwamoto, T. (1994). Angew. Chem. Int. Ed. Engl. 33, 1665-1666.]); Guo et al. (2009[Guo, Y., Liu, Z.-Q., Zhao, B., Feng, Y.-H., Xu, G.-F., Yan, S.-P., Cheng, P., Wang, Q.-L. & Liao, D.-Z. (2009). CrystEngComm, 11, 61-66.]). For the use of [Ag(CN)2] as a building block for the construction of cyanide-bridged silver(I)–iron(II) spin-crossover coordination polymers, see: Shorrock et al. (2002[Shorrock, C. J., Xue, B.-Y., Kim, P. B., Batchelor, R. J., Patrick, B. O. & Leznoff, D. B. (2002). Inorg. Chem. 41, 6743-6753.]); Galet et al. (2003[Galet, A., Niel, V., Muñoz, M. C. & Real, J. A. (2003). J. Am. Chem. Soc. 125, 14224-14225.]); Niel et al. (2003[Niel, V., Thompson, A. L., Muñoz, M. C., Galet, A., Goeta, A. E. & Real, J. A. (2003). Angew. Chem. Int. Ed. 42, 3760-3763.]); Muñoz et al. (2007[Muñoz, M. C., Gaspar, A. B., Galet, A. & Real, J. A. (2007). Inorg. Chem. 46, 8182-8192.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • [Ag2Mn(CN)4(C10H8N2)]

  • Mr = 530.94

  • Trigonal, P 31 12

  • a = 8.7215 (3) Å

  • c = 20.9874 (9) Å

  • V = 1382.52 (13) Å3

  • Z = 3

  • Mo Kα radiation

  • μ = 2.78 mm−1

  • T = 296 K

  • 0.36 × 0.22 × 0.22 mm

2.2. Data collection

  • Bruker D8 QUEST CMOS diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker,2014[Bruker (2014). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.484, Tmax = 0.542

  • 25845 measured reflections

  • 1874 independent reflections

  • 1856 reflections with I > 2σ(I)

  • Rint = 0.024

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.015

  • wR(F2) = 0.038

  • S = 1.07

  • 1874 reflections

  • 105 parameters

  • H-atom parameters constrained

  • Δρmax = 0.15 e Å−3

  • Δρmin = −0.28 e Å−3

  • Absolute structure: Flack x determined using 824 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])

  • Absolute structure parameter: 0.037 (6)

Data collection: APEX2 (Bruker, 2014[Bruker (2014). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2014[Bruker (2014). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]); molecular graphics: OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]) and enCIFer (Allen et al., 2004[Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335-338.]).

Supporting information


Synthesis and crystallization top

Mn(NO3)2·6H2O (62 mg, 0.5 mmol) and 2,2'-bi­pyridine (162 mg, 0.5 mmol) were dissolved in 4 ml of a mixture H2O/CH3OH (1:1) to form a bright yellow solution and this was pipetted into one side of the H-tube. K[Ag(CN)2] (250 mg, 2 mmol) was dissolved in 4 mL of a mixture H2O/CH3OH to give a colorless solution and this was pipetted into the other side arm of the H-tube. The H-tube was then carefully filled with a mixture H2O/CH3OH. Upon slow diffusion for 3 days, pale-yellow block shaped single crystals of the title compound were formed in the manganese(II)-containing side of the H-tube. Yield: 49 mg, 89% based on manganese source.

Refinement top

The C–bound hydrogen atoms were placed in geometrically idealized positions based on chemical coordinations and constrained to ride on their parent atom positions with a C—H distances of 0.93 Å and with Uiso(H) = 1.2Ueq(C) for the aromatic H atoms.

Related literature top

For related crystal structures, see: Soma et al. (1994); Guo et al. (2009). For the use of [Ag(CN)2]- as a building block for the construction of cyanide-bridged silver(I)–iron(II) spin-crossover coordination polymers, see: Shorrock et al. (2002); Galet et al. (2003); Niel et al. (2003); Muñoz et al. (2007).

Computing details top

Data collection: APEX2 (Bruker, 2014); cell refinement: SAINT (Bruker, 2014); data reduction: SAINT (Bruker, 2014); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: publCIF (Westrip, 2010) and enCIFer (Allen et al., 2004).

Figures top
[Figure 1] Fig. 1. Displacement ellipsoid plot at the 35% probability level of the immediate coordination geometry about the manganese(II) centre in the title compound. The asymmetric unit is labelled. [Symmetry codes: (i) x, -1 + xy, 2 – z; (ii) 1 – y, xy, 1/3 + z; (iii) 1 – y, –x, 5/3 – z].
[Figure 2] Fig. 2. Crystal packing of the title compound viewed along c axis.
Poly[(2,2'-bipyridine-κ2N,N')tetra-µ2-cyanido-κ4C:N;κ4N:C-manganese(II)disilver(I)] top
Crystal data top
[Ag2Mn(CN)4(C10H8N2)]Dx = 1.913 Mg m3
Mr = 530.94Mo Kα radiation, λ = 0.71073 Å
Trigonal, P3112Cell parameters from 720 reflections
a = 8.7215 (3) Åθ = 3.3–26.3°
c = 20.9874 (9) ŵ = 2.78 mm1
V = 1382.52 (13) Å3T = 296 K
Z = 3Block, light yellow
F(000) = 7590.36 × 0.22 × 0.22 mm
Data collection top
Bruker D8 QUEST CMOS
diffractometer
1874 independent reflections
Radiation source: microfocus sealed x-ray tube, Incoatec Iµus1856 reflections with I > 2σ(I)
GraphiteDouble Bounce Multilayer Mirror monochromatorRint = 0.024
Detector resolution: 10.5 pixels mm-1θmax = 26.3°, θmin = 3.3°
ω and φ scansh = 1010
Absorption correction: multi-scan
(SADABS; Bruker,2014)
k = 1010
Tmin = 0.484, Tmax = 0.542l = 2626
25845 measured reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.015 w = 1/[σ2(Fo2) + (0.0231P)2 + 0.1949P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.038(Δ/σ)max = 0.001
S = 1.07Δρmax = 0.15 e Å3
1874 reflectionsΔρmin = 0.28 e Å3
105 parametersAbsolute structure: Flack x determined using 824 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
0 restraintsAbsolute structure parameter: 0.037 (6)
Primary atom site location: structure-invariant direct methods
Crystal data top
[Ag2Mn(CN)4(C10H8N2)]Z = 3
Mr = 530.94Mo Kα radiation
Trigonal, P3112µ = 2.78 mm1
a = 8.7215 (3) ÅT = 296 K
c = 20.9874 (9) Å0.36 × 0.22 × 0.22 mm
V = 1382.52 (13) Å3
Data collection top
Bruker D8 QUEST CMOS
diffractometer
1874 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker,2014)
1856 reflections with I > 2σ(I)
Tmin = 0.484, Tmax = 0.542Rint = 0.024
25845 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.015H-atom parameters constrained
wR(F2) = 0.038Δρmax = 0.15 e Å3
S = 1.07Δρmin = 0.28 e Å3
1874 reflectionsAbsolute structure: Flack x determined using 824 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
105 parametersAbsolute structure parameter: 0.037 (6)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ag10.46725 (4)0.05832 (4)0.84789 (2)0.07435 (11)
Mn10.89941 (6)0.05030 (3)1.00000.03424 (11)
N20.2249 (4)0.0953 (4)0.74313 (13)0.0600 (6)
N31.1424 (3)0.1907 (3)0.96099 (11)0.0511 (5)
N10.7178 (3)0.0053 (4)0.94131 (11)0.0547 (6)
C71.3017 (3)0.2186 (3)0.97859 (12)0.0438 (5)
C41.2821 (5)0.4635 (6)0.9044 (3)0.0981 (17)
H41.27100.54680.88030.118*
C20.3101 (5)0.0826 (5)0.78142 (16)0.0638 (8)
C10.6284 (4)0.0198 (5)0.90861 (14)0.0612 (7)
C61.4560 (4)0.3673 (4)0.95830 (15)0.0599 (7)
H61.56580.38280.96980.072*
C31.1344 (5)0.3099 (6)0.9239 (2)0.0848 (13)
H31.02380.28870.91060.102*
C51.4453 (4)0.4911 (5)0.92118 (18)0.0807 (11)
H51.54740.59200.90770.097*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ag10.0916 (2)0.1011 (2)0.05771 (15)0.06867 (18)0.02819 (13)0.00888 (13)
Mn10.0307 (2)0.03718 (18)0.0327 (2)0.01535 (11)0.0000.00120 (16)
N20.0675 (15)0.0575 (14)0.0588 (14)0.0342 (13)0.0179 (12)0.0000 (12)
N30.0375 (11)0.0535 (13)0.0546 (12)0.0170 (9)0.0022 (9)0.0141 (10)
N10.0530 (13)0.0719 (16)0.0470 (12)0.0371 (12)0.0084 (10)0.0012 (12)
C70.0365 (11)0.0497 (13)0.0359 (11)0.0146 (10)0.0005 (9)0.0054 (9)
C40.063 (2)0.080 (3)0.124 (4)0.0157 (19)0.000 (2)0.056 (3)
C20.0752 (19)0.0685 (19)0.0578 (17)0.0435 (17)0.0227 (14)0.0033 (14)
C10.0654 (18)0.081 (2)0.0514 (15)0.0473 (18)0.0097 (13)0.0030 (14)
C60.0363 (13)0.0621 (17)0.0594 (16)0.0082 (12)0.0054 (11)0.0016 (13)
C30.0467 (17)0.082 (2)0.109 (3)0.0199 (17)0.0021 (18)0.050 (2)
C50.0511 (17)0.064 (2)0.088 (2)0.0001 (14)0.0002 (16)0.0260 (18)
Geometric parameters (Å, º) top
Ag1—C22.039 (3)N3—C31.328 (4)
Ag1—C12.046 (3)N1—C11.139 (4)
Mn1—N2i2.229 (3)C7—C7iii1.485 (5)
Mn1—N2ii2.229 (3)C7—C61.388 (4)
Mn1—N3iii2.264 (2)C4—H40.9300
Mn1—N32.264 (2)C4—C31.377 (5)
Mn1—N1iii2.192 (2)C4—C51.365 (6)
Mn1—N12.192 (2)C6—H60.9300
N2—Mn1iv2.229 (3)C6—C51.372 (5)
N2—C21.137 (4)C3—H30.9300
N3—C71.337 (3)C5—H50.9300
C2—Ag1—C1174.70 (14)C3—N3—C7118.4 (2)
N2i—Mn1—N2ii177.94 (15)C1—N1—Mn1177.0 (3)
N2ii—Mn1—N385.78 (10)N3—C7—C7iii115.84 (15)
N2ii—Mn1—N3iii92.55 (10)N3—C7—C6121.3 (3)
N2i—Mn1—N3iii85.78 (10)C6—C7—C7iii122.90 (17)
N2i—Mn1—N392.55 (10)C3—C4—H4120.6
N3iii—Mn1—N371.65 (12)C5—C4—H4120.6
N1iii—Mn1—N2i92.34 (11)C5—C4—C3118.7 (4)
N1—Mn1—N2i88.95 (10)N2—C2—Ag1178.2 (3)
N1—Mn1—N2ii92.34 (10)N1—C1—Ag1178.1 (3)
N1iii—Mn1—N2ii88.94 (10)C7—C6—H6120.2
N1—Mn1—N393.18 (10)C5—C6—C7119.6 (3)
N1iii—Mn1—N3163.66 (9)C5—C6—H6120.2
N1iii—Mn1—N3iii93.18 (10)N3—C3—C4123.1 (3)
N1—Mn1—N3iii163.66 (9)N3—C3—H3118.5
N1iii—Mn1—N1102.49 (15)C4—C3—H3118.5
C2—N2—Mn1iv176.1 (3)C4—C5—C6118.9 (3)
C7—N3—Mn1118.32 (18)C4—C5—H5120.6
C3—N3—Mn1123.2 (2)C6—C5—H5120.6
Mn1—N3—C7—C7iii1.5 (4)C7—C6—C5—C40.8 (7)
Mn1—N3—C7—C6177.6 (2)C3—N3—C7—C7iii178.4 (4)
Mn1—N3—C3—C4174.7 (5)C3—N3—C7—C60.7 (5)
N3—C7—C6—C52.2 (5)C3—C4—C5—C61.8 (9)
C7—N3—C3—C42.0 (7)C5—C4—C3—N33.3 (10)
C7iii—C7—C6—C5176.9 (4)
Symmetry codes: (i) y+1, x, z+5/3; (ii) y+1, xy, z+1/3; (iii) x, xy1, z+2; (iv) x+y+1, x+1, z1/3.

Experimental details

Crystal data
Chemical formula[Ag2Mn(CN)4(C10H8N2)]
Mr530.94
Crystal system, space groupTrigonal, P3112
Temperature (K)296
a, c (Å)8.7215 (3), 20.9874 (9)
V3)1382.52 (13)
Z3
Radiation typeMo Kα
µ (mm1)2.78
Crystal size (mm)0.36 × 0.22 × 0.22
Data collection
DiffractometerBruker D8 QUEST CMOS
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker,2014)
Tmin, Tmax0.484, 0.542
No. of measured, independent and
observed [I > 2σ(I)] reflections
25845, 1874, 1856
Rint0.024
(sin θ/λ)max1)0.624
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.015, 0.038, 1.07
No. of reflections1874
No. of parameters105
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.15, 0.28
Absolute structureFlack x determined using 824 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
Absolute structure parameter0.037 (6)

Computer programs: APEX2 (Bruker, 2014), SAINT (Bruker, 2014), SHELXT (Sheldrick, 2015a), SHELXL2014 (Sheldrick, 2015b), OLEX2 (Dolomanov et al., 2009), publCIF (Westrip, 2010) and enCIFer (Allen et al., 2004).

 

Acknowledgements

This research was supported financially by a research career development grant (No. RSA5780056) from the Thailand Research Fund.

References

First citationAllen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBruker (2014). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGalet, A., Niel, V., Muñoz, M. C. & Real, J. A. (2003). J. Am. Chem. Soc. 125, 14224–14225.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationGuo, Y., Liu, Z.-Q., Zhao, B., Feng, Y.-H., Xu, G.-F., Yan, S.-P., Cheng, P., Wang, Q.-L. & Liao, D.-Z. (2009). CrystEngComm, 11, 61–66.  CSD CrossRef CAS Google Scholar
First citationMuñoz, M. C., Gaspar, A. B., Galet, A. & Real, J. A. (2007). Inorg. Chem. 46, 8182–8192.  PubMed Google Scholar
First citationNiel, V., Thompson, A. L., Muñoz, M. C., Galet, A., Goeta, A. E. & Real, J. A. (2003). Angew. Chem. Int. Ed. 42, 3760–3763.  Web of Science CSD CrossRef CAS Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShorrock, C. J., Xue, B.-Y., Kim, P. B., Batchelor, R. J., Patrick, B. O. & Leznoff, D. B. (2002). Inorg. Chem. 41, 6743–6753.  CSD CrossRef PubMed CAS Google Scholar
First citationSoma, T., Yuge, H. & Iwamoto, T. (1994). Angew. Chem. Int. Ed. Engl. 33, 1665–1666.  CSD CrossRef Web of Science Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 10| October 2015| Pages m179-m180
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds