research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 10| October 2015| Pages 1262-1265

Crystal structure of an unknown tetra­hydro­furan solvate of tetra­kis­(μ3-cyanato-κ3N:N:N)tetra­kis­[(tri­phenyl­phosphane-κP)­silver(I)]

CROSSMARK_Color_square_no_text.svg

aTechnische Universität Chemnitz, Faculty of Natural Sciences, Institute of Chemistry, Inorganic Chemistry, 09107 Chemnitz, Germany, and bUniversity of Regensburg, Institute of Organic Chemistry, Universitätsstrasse 31, 93040 Regensburg, Germany
*Correspondence e-mail: heinrich.lang@chemie.tu-chemnitz.de

Edited by M. Weil, Vienna University of Technology, Austria (Received 5 August 2015; accepted 20 September 2015; online 30 September 2015)

In the title compound, [{[(C6H5)3P]Ag}4{NCO}4], a distorted Ag4N4-heterocubane core is set up by four AgI ions being coordinated by the N atoms of the cyanato anions in a μ3-bridging mode. In addition, a tri­phenyl­phosphine ligand is datively bonded to each of the AgI ions. Intra­molecular Ag⋯Ag distances as short as 3.133 (9) Å suggest the presence of argentophilic (d10d10) inter­actions. Five moderate-to-weak C—H⋯O hydrogen-bonding inter­actions are observed in the crystal structure, spanning a three-dimensional network. A region of electron density was treated with the SQUEEZE procedure in PLATON [Spek (2015). Acta Cryst. C71, 9–18] following unsuccessful attempts to model it as being part of disordered tetra­hydro­furan solvent mol­ecules. The given chemical formula and other crystal data do not take into account these solvent mol­ecules.

1. Chemical context

A large number of studies about silver precursors, for instance silver(I) carboxyl­ates, silver(I) di­thio­carbamates or silver(I) β-diketonates have been reported, due to their suitability in manifold application methods such as CCVD (combustion chemical vapour deposition) or CVD (chemical vapour deposition) processes (Struppert et al., 2010[Struppert, T., Jakob, A., Heft, A., Grünler, B. & Lang, H. (2010). Thin Solid Films, 518, 5741-5744.]; Schmidt et al., 2005[Schmidt, H., Jakob, A., Haase, T., Kohse-Höinghaus, K., Schulz, S. E., Wächtler, T., Gessner, T. & Lang, H. (2005). Z. Anorg. Allg. Chem. 631, 2786-2791.]; Haase et al., 2005a[Haase, T., Bahlawane, N., Strong, J. T., Jakob, A., Shen, Y., Lang, H. & Kohse-Höeinghaus, K. (2005a). Proc. Electrochem. Soc. pp. 276-283.],b[Haase, T., Kohse-Höinghaus, K., Bahlawane, N., Djiele, P., Jakob, A. & Lang, H. (2005b). Chem. Vap. Deposition, 11, 195-205.]; Lang & Buschbeck, 2009[Lang, H. & Buschbeck, R. (2009). Deposition of metals and metal oxides by means of metal enolates, in The Chemistry of Metal Enolates, edited by J. Zabicky, pp. 929-1017. Chichester: Wiley.]; Lang, 2011[Lang, H. (2011). Jordan J. Chem. 6, 231-245.]; Lang & Dietrich, 2013[Lang, H. & Dietrich, S. (2013). 4.10 - Metals - Gas-Phase Deposition and Applications, in Comprehensive Inorganic Chemistry II (Second Edition), edited by J. Reedijk & K. Poeppelmeier, pp. 211-269. Amsterdam: Elsevier.]; Jakob et al., 2006[Jakob, A., Schmidt, H., Djiele, P., Shen, Y. & Lang, H. (2006). Microchim. Acta, 156, 77-81.]; Chi et al., 1996[Chi, K. M., Chen, K. H., Peng, S. M. & Lee, G. H. (1996). Organometallics, 15, 2575-2578.]; Chi & Lu, 2001[Chi, K. M. & Lu, Y. H. (2001). Chem. Vap. Deposition, 7, 117-120.]), inkjet printing (Jahn et al., 2010[Jahn, S. F., Blaudeck, T., Baumann, R. R., Jakob, A., Ecorchard, P., Rüffer, T., Lang, H. & Schmidt, P. (2010). Chem. Mater. 22, 3067-3071.]), joining processes (Oestreicher et al., 2013[Oestreicher, A., Röhrich, T., Wilden, J., Lerch, M., Jakob, A. & Lang, H. (2013). Appl. Surf. Sci. 265, 239-244.]), their use as single-source precursors for Ag2S formation (Mothes et al., 2015a[Mothes, R., Petzold, H., Jakob, A., Rüffer, T. & Lang, H. (2015a). Inorg. Chim. Acta 429, 227-236.],b[Mothes, R., Jakob, A., Waechtler, T., Schulz, S. E., Gessner, T. & Lang, H. (2015b). Eur. J. Inorg. Chem. 10, 1726-1733.]), catalysis (Steffan et al., 2009[Steffan, M., Jakob, A., Claus, P. & Lang, H. (2009). Catal. Commun. 10, 437-441.]) and self-assembly of silver nanoparticles (Bokhonov et al., 2014[Bokhonov, B. B., Sharafutdinov, M. R., Whitcomb, D. R. & Burleva, L. P. (2014). J. Phys. Chem. C118, 11980-11989.]).

[Scheme 1]

In contrast, hardly any research has been done on compounds such as metal alkyl allophanates. Despite the inter­esting features of this type of compounds, only few research groups have so far been involved in the synthesis (Clusius & Endtinger, 1960[Clusius, K. & Endtinger, F. (1960). Helv. Chim. Acta, 43, 2063-2066.]; Becker & Eisenschmidt, 1973[Becker, H. G. O. & Eisenschmidt, V. (1973). J. Prakt. Chem. 315, 640-648.]; Dains & Wertheim, 1920[Dains, F. B. & Wertheim, E. (1920). J. Am. Chem. Soc. 42, 2303-2309.]) and further modification of this family of compounds (Kawakubo et al., 2015[Kawakubo, H., Suzuki, T., Nishino, K., Hara, F., Takano, T., Takebayashi, Y., Onodera, M., Mitsui, A., Yahagi, H., Takayama, H., Kuroboshi, M. & Tanaka, H. (2015). Synth. Commun. 45, 1068-1072.]; Potts et al., 1990[Potts, K. T., O'Brien, J. J. & Tham, F. S. (1990). Inorg. Chim. Acta, 177, 13-24.]; Bachmann & Maxwell, 1950[Bachmann, W. E. & Maxwell, C. E. III (1950). J. Am. Chem. Soc. 72, 2880.]; Murray & Dains, 1934[Murray, J. A. & Dains, F. B. (1934). J. Am. Chem. Soc. 56, 144-146.]; Biltz & Jeltsch, 1923[Biltz, H. & Jeltsch, A. (1923). Ber. Dtsch. Chem. Ges. A/B, 56, 1914-1926.]). To the best of our knowledge, two synthetic approaches for the preparation of potassium and silver salts of ethyl allophanate have been described in the literature (Blair, 1926[Blair, J. S. (1926). J. Am. Chem. Soc. 48, 96-103.]; Dains et al., 1919[Dains, F. B., Greider, H. W. & Kidwell, C. H. (1919). J. Am. Chem. Soc. 41, 1004-1013.]). The identity of metal allophanates has been confirmed by elemental analysis. For the application of these precursors, full characterization and the investigation of their thermal behaviour is required. In the context of precursor design for MOD (metal organic deposition) inks, we are inter­ested in the synthesis, characterization and application of such complexes for inkjet printing.

To get access to a large range of metal allophanates (e.g. Cu, Ni or Zn), a modified synthetic procedure with respect to the method reported by Dains et al. (1919[Dains, F. B., Greider, H. W. & Kidwell, C. H. (1919). J. Am. Chem. Soc. 41, 1004-1013.]) was applied for the synthesis of silver allophanates among others. The initial step involved conversion of ethyl allophanate with sodium ethano­late for use of the resulting solid in a further reaction to form the respective silver complex. To analyse the sparingly soluble compound, IR spectroscopy has been applied. A comparison of the measured spectrum with that of ethyl allophanate showed the absence of the carbonyl band at 1701 cm−1 and the appearance of a new band at 2170 cm−1 of high intensity, indicating the formation of silver iso­cyanate (Ellestad et al., 1972[Ellestad, O. H., Klaeboe, P., Tucker, E. E. & Songstad, J. (1972). Acta Chem. Scand. 26, 3579-3592.]). To confirm the assumption of the formation of silver iso­cyanate, the respective solid was treated with tri­phenyl­phosphine (PPh3) in tetra­hydro­furan (THF) and subsequently crystallized. The characterization of the crystals obtained by X-ray diffraction, NMR and IR spectroscopy is in accordance with the formation of the title compound, [{((C6H5)3P)Ag}4{NCO}4], (I)[link].

2. Structural commentary

The title compound consists of a Ag4N4-heterocubane core formed by κN-coordination of four cyanate anions towards four AgI cations in a μ3-bridging mode (Fig. 1[link]). Each AgI cation is additionally coordinated by a PPh3 ligand. Disorder is observed in the crystal structure of (I)[link] affecting the Ag3 and Ag4 sites, together with their bonded PPh3 moieties. However, the respective components of both disordered Ag(PPh3) units share one phenyl ring (C41–C46 and C59–C64). The Ag4N4-heterocubane is distorted which is reflected by the variation of the Ag—N distances in the range 2.273 (13)–2.605 (12) Å. Likewise, the Ag—N—Ag [78.7 (3) – 98.5 (3)°] and N—Ag—N [80.9 (3) – 98.5 (3)°] angles significantly deviate from 90°. The Ag2N2-faces of the Ag4N4-core are not planar [r.m.s. deviations in the range 0.0293 (Ag1, Ag4, N2, N3) to 0.1947 Å (Ag3, Ag4′, N3, N4)], however, the opposing least-squares planes are almost parallel [angles between planes: 0.40 (3) and 3.2 (3)°]. Opposing planes are twisted by some degrees relative to each other, which is reflected by the Ag—N—Ag—N and N—Ag—N—Ag torsion angles ranging from 2.8 (3)–19.4 (3)°. As a result of the distortion of the Ag4N4-core, the Ag⋯Ag and N⋯N separations differ significantly. The shortest distances are observed between Ag1 and Ag2 as well as Ag3/Ag3′ and Ag4/Ag4′ (Table 1[link]). Considering the contact radius of silver (1.72 Å; Bondi, 1964[Bondi, A. (1964). J. Phys. Chem. 68, 441-451.]) a weak argentophilic inter­action between these pairs of atoms is most likely (Schmidbaur & Schier, 2015[Schmidbaur, H. & Schier, A. (2015). Angew. Chem. Int. Ed. 54, 746-784.]). The Ag—P separations [2.336 (15)–2.39 (2) Å] are characteristic for an AgI(PPh3) fragment. The scattering contributions of two severely disordered THF solvent mol­ecules were treated with the SQUEEZE procedure in PLATON (Spek, 2015[Spek, A. L. (2015). Acta Cryst. C71, 9-18.]). The calculated electron count of 350 electrons per unit cell is in good agreement with the composition of (I)·2THF. In contrast, NMR analysis of the crystals after deca­ntation of the supernatant solvent and drying in vacuo reveals a composition of (I)·0.25THF. This discrepancy may be due to a facile evaporation of the co-crystallized solvent under reduced pressure.

Table 1
Ag⋯Ag and N⋯N separations (Å)

Ag3′⋯Ag4′ 3.133 (9) Ag1⋯Ag3 3.605 (8)
Ag3⋯Ag4′ 3.156 (8) Ag2⋯Ag4 3.615 (8)
Ag1⋯Ag2 3.1906 (10) Ag1⋯Ag4′ 3.616 (9)
Ag3′⋯Ag4 3.215 (8) N1⋯N3 3.210 (10)
Ag3⋯Ag4 3.250 (9) N2⋯N3 3.213 (9)
Ag2⋯Ag4′ 3.428 (10) N1⋯N4 3.220 (9)
Ag1⋯Ag4 3.461 (8) N2⋯N4 3.247 (10)
Ag1⋯Ag3′ 3.494 (8) N1⋯N2 3.572 (11)
Ag2⋯Ag3′ 3.523 (6) N3⋯N4 3.599 (14)
Ag2⋯Ag3 3.545 (5)    
[Figure 1]
Figure 1
The mol­ecular structure of (I)[link] with displacement ellipsoids drawn at the 30% probability level. Hydrogen atoms and the minor parts of the disordered atoms are omitted for clarity.

3. Supra­molecular features

Five moderate-to-weak C—H⋯O hydrogen bonds (Steiner, 2002[Steiner, T. (2002). Angew. Chem. Int. Ed. 41, 48-76.]) are observed in the crystal structure of (I)[link] (Table 2[link]). Four of those participate in the formation of a three-dimensional network. No obvious ππ-stacking inter­actions between the phenyl rings are present.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C9—H9⋯O2i 0.93 2.37 3.177 (12) 145
C16′—H16′⋯O2 0.93 2.59 3.324 (17) 136
C25—H25⋯O1ii 0.93 2.48 3.358 (12) 157
C51—H51⋯O4iii 0.93 2.22 3.07 (2) 151
C67—H67⋯O3iv 0.93 2.19 3.01 (2) 147
Symmetry codes: (i) -y+1, x, -z+2; (ii) -y+1, x-1, -z+2; (iii) y+1, -x+1, -z+1; (iv) y, -x+1, -z+1.

4. Database survey

There are 75 structures of Ag4E4-heterocubanes (E = N, O, Cl, Br, I) in the CSD database (Groom & Allen, 2014[Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662-671.]; CSD Version 5.36); in 35 of these complexes, silver is coordinated by phospho­rus. Ag4N4-heterocubanes are relatively rare as there are only three examples known so far (Bowmaker et al., 1998[Bowmaker, G. A., Effendy Junk, P. C. & White, A. H. (1998). J. Chem. Soc. Dalton Trans. pp. 2131-2138.]; Partyka & Deligonul, 2009[Partyka, D. V. & Deligonul, N. (2009). Inorg. Chem. 48, 9463-9475.]). These include the tri­cyclo­hexyl­arsine analogue of (I)[link] as well as its pyridine solvate (Bowmaker et al., 1998[Bowmaker, G. A., Effendy Junk, P. C. & White, A. H. (1998). J. Chem. Soc. Dalton Trans. pp. 2131-2138.]). All reported Ag4N4-heterocubanes are less distorted than (I)[link], which is reflected in a much less pronounced deviation of the Ag⋯Ag distances in the heterocubane. A μ3-κN coordination of the cyanate anions towards AgI has been described for five compounds only (Bowmaker et al., 1998[Bowmaker, G. A., Effendy Junk, P. C. & White, A. H. (1998). J. Chem. Soc. Dalton Trans. pp. 2131-2138.]; Di Nicola et al., 2005[Di Nicola, C., Effendy, Fazaroh, F., Pettinari, C., Skelton, B. W., Somers, N. & White, A. H. (2005). Inorg. Chim. Acta, 358, 720-734.], 2006[Di Nicola, C., Effendy, Pettinari, C., Skelton, B. W., Somers, N. & White, A. H. (2006). Inorg. Chim. Acta, 359, 53-63.]). The average Ag—N distance in these compounds (2.433 Å) is in good agreement with the corresponding value of 2.408 Å in (I)[link].

5. Synthesis and crystallization

To a solution of sodium ethano­late in ethanol, generated in situ by dissolving sodium (349 mg, 15.2 mmol) in anhydrous ethanol (40 ml), was added at 273 K ethyl allophanate (1.92 g, 14.5 mmol). The reaction was heated to reflux overnight. The colourless precipitate formed was filtered off, washed thrice with ethanol (each 20 ml) and dried under vacuum (yield: 850 mg). The resulting solid material (407 mg) was dissolved in water (20 ml) and was added dropwise to a solution of silver nitrate (449 mg, 2.64 mmol) in water (15 ml). The suspension obtained was stirred at ambient temperature overnight. Filtration afforded a colourless solid, which was washed with cold water (20 ml) and dried under vacuum (yield: 250 mg). A suspension of this solid (120 mg) in anhydrous THF (20 ml) was treated with PPh3 (265 mg, 1.01 mmol) at 273 K. After stirring overnight at this temperature, the reaction mixture was filtered through a pad of celite. Removal of all volatiles under reduced pressure afforded a pale purple solid (yield: 313 mg, 0.189 mmol, 95% based on [AgNCO]). Colourless crystals of (I)[link] were obtained by slow diffusion of diethyl ether into a THF solution of (I)[link] at ambient temperature.

M.p. 458 K (decomp.). 1H NMR (500 MHz, CDCl3, 298 K, ppm): δ = 7.40–7.28 (m, 60H, C6H5). 13C{1H} NMR (126 MHz, CDCl3, 298 K, p.p.m.): δ = 134.0 (d, 2C, 2JPC = 16.5 Hz, C6H5), 132.1 (d, 1C, 1JPC = 27.3 Hz, C6H5), 130.4 (d, 1C, 4JPC = 1.5 Hz, C6H5), 129.1 (d, 2C, 3JPC = 9.8 Hz, C6H5). The resonance signal of the cyanate carbon atom is not observed under the measurement conditions applied. 31P{1H} NMR (203 MHz, CDCl3, 298 K, p.p.m.): δ = 9.0 (s). IR (KBr, cm−1): ν = 3449 (w), 3356 (w), 2170 (vs, N=C=O), 1603 (w), 1429 (w), 1388 (w), 1300 (m), 1206 (m), 638 (m).

6. Refinement details

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. In the final refinement of (I)[link] thirteen reflections, viz. (240), ([\overline{2}]60), (040), ([\overline{4}]42), (032), (302), ([\overline{2}]40), (222), (250), ([\overline{2}]22), ([\overline{3}]11), (340), and ([\overline{3}]21), were omitted owing to poor agreements between observed and calculated intensities. C-bonded H atoms were placed in calculated positions and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C) and a C—H distance of 0.93 Å. Atoms Ag3 and Ag4 and two of the four P atoms of the PPh3 moieties with attached phenyl rings are disordered over two sets of sites, with occupancy ratios of 0.54 (4):0.46 (4) and 0.55 (2):0.45 (2), respectively. A phenyl ring of another PPh3 moiety is likewise disordered over two sets of sites in a 0.67 (5):0.33 (5) ratio. The disordered phenyl rings were treated by rigid-group refinements. If necessary, the respective C—P distances were restrained to 1.85 (2) Å. Anisotropic displacement parameters of all atoms were restrained using enhanced rigid-bond restraints (RIGU command, esds 0.004 Å2; Thorn et al., 2012[Thorn, A., Dittrich, B. & Sheldrick, G. M. (2012). Acta Cryst. A68, 448-451.]). Solvent contributions to the scattering have been removed using the SQUEEZE procedure (Spek, 2015[Spek, A. L. (2015). Acta Cryst. C71, 9-18.]) in PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]). SQUEEZE calculated a void volume of approximately 2494 Å3 occupied by 350 electrons per unit cell which points to the presence of two THF mol­ecules per formula unit. Fig. 2[link] shows the positions of the voids within the unit cell.

Table 3
Experimental details

Crystal data
Chemical formula [Ag4(CNO)4(C18H15P)4]
Mr 1648.64
Crystal system, space group Tetragonal, P[\overline{4}]
Temperature (K) 110
a, c (Å) 24.0846 (3), 15.2037 (3)
V3) 8819.2 (3)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.99
Crystal size (mm) 0.35 × 0.30 × 0.20
 
Data collection
Diffractometer Oxford Gemini S diffractometer
Absorption correction Multi-scan (CrysAlis RED; Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.])
Tmin, Tmax 0.912, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 105239, 20082, 12667
Rint 0.048
(sin θ/λ)max−1) 0.674
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.131, 1.01
No. of reflections 20082
No. of parameters 1018
No. of restraints 1206
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.68, −1.88
Absolute structure Flack x determined using 5170 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons & Flack, 2004[Parsons, S. & Flack, H. (2004). Acta Cryst. A60, s61.])
Absolute structure parameter −0.023 (9)
Computer programs: CrysAlis CCD and CrysAlis RED (Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]), SHELXS2013 and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2013 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows and WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]), SQUEEZE (Spek, 2015[Spek, A. L. (2015). Acta Cryst. C71, 9-18.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).
[Figure 2]
Figure 2
Packing diagram of (I)[link] viewed along [001]. Voids in the structure are represented by red spheres (drawn using the CAVITYPLOT routine in PLATON; Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]). Hydrogen atoms were omitted for clarity. Dashed lines represent coordinative bonds. Colour code: black (C), red (O), yellow (P), green (Ag).

Supporting information


Chemical context top

A large number of studies about silver precursors, for instance silver(I) carboxyl­ates, silver(I) di­thio­carbamates or silver(I) β-diketonates have been reported, due to their suitability in manifold application methods such as CCVD (combustion chemical vapour deposition) or CVD (chemical vapour deposition) processes (Struppert et al., 2010; Schmidt et al., 2005; Haase et al., 2005a,b; Lang & Buschbeck, 2009; Lang, 2011; Lang & Dietrich, 2013; Jakob et al., 2006; Chi et al., 1996; Chi & Lu, 2001), inkjet printing (Jahn et al., 2010), joining processes (Oestreicher et al., 2013), their use as single-source precursors for Ag2S formation (Mothes et al., 2015a,b), catalysis (Steffan et al., 2009) and self-assembly of silver nanoparticles (Bokhonov et al., 2014).

In contrast, hardly any research has been done on compounds such as metal alkyl allophanates. Despite the inter­esting features of this type of compounds, only few research groups have so far been involved in the synthesis (Clusius & Endtinger, 1960; Becker & Eisenschmidt, 1973; Dains & Wertheim, 1920) and further modification of this family of compounds (Kawakubo et al., 2015; Potts et al., 1990; Bachmann & Maxwell, 1950; Murray & Dains, 1934; Biltz & Jeltsch, 1923). To the best of our knowledge, two synthetic approaches for the preparation of potassium and silver salts of ethyl allophanate have been described in the literature (Blair, 1926; Dains et al., 1919). The identity of metal allophanates has been confirmed by elemental analysis. For the application of these precursors, full characterization and the investigation of their thermal behaviour is required. In the context of precursor design for MOD (metal organic deposition) inks, we are inter­ested in the synthesis, characterization and application of such complexes for inkjet printing.

To get access to a large range of metal allophanates (e.g. Cu, Ni or Zn), a modified synthetic procedure with respect to the method reported by Dains et al. (1919) was applied for the synthesis of silver allophanates among others. The initial step involved conversion of ethyl allophanate with sodium ethano­late for use of the resulting solid in a further reaction to form the respective silver complex. To analyse the sparingly soluble compound, IR spectroscopy has been applied. A comparison of the measured spectrum with that of ethyl allophanate showed the absence of the carbonyl band at 1701 cm–1 and the appearance of a new band at 2170 cm–1 of high intensity, indicating the formation of silver iso­cyanate (Ellestad et al., 1972). To confirm the assumption of the formation of silver iso­cyanate, the respective solid was treated with tri­phenyl­phosphine (PPh3) in tetra­hydro­furan (THF) and subsequently crystallized. The characterization of the crystals obtained by X-ray diffraction, NMR and IR spectroscopy is in accordance with the formation of the title compound, [{((C6H5)3P)Ag}4{NCO}4], (I).

Structural commentary top

The title compound consists of a Ag4N4-heterocubane core formed by κN-coordination of four cyanate anions towards four AgI cations in a µ3-bridging mode (Fig. 1). Each AgI cation is additionally coordinated by a PPh3 ligand. Disorder is observed in the crystal structure of (I) affecting the Ag3 and Ag4 sites, together with their bonded PPh3 moieties. However, the respective components of both disordered Ag(PPh3) units share one phenyl ring (C41–C46 and C59–C64). The Ag4N4-heterocubane is distorted which is reflected by the variation of the Ag—N distances in the range 2.273 (13)–2.605 (12) Å. Likewise, the Ag—N—Ag [78.7 (3) – 98.5 (3)°] and N—Ag—N [80.9 (3) – 98.5 (3)°] angles significantly deviate from 90°. The Ag2N2-faces of the Ag4N4-core are not planar [r.m.s. deviations in the range 0.0293 (Ag1, Ag4, N2, N3) to 0.1947 Å (Ag3, Ag4', N3, N4)], however, the opposing least-squares planes are almost parallel [angles between planes: 0.40 (3) and 3.2 (4)°]. Opposing planes are twisted by some degrees relative to each other, which is reflected by the Ag—N—Ag—N and N—Ag—N—Ag torsion angles ranging from 2.8 (3)–19.4 (3)°. As a result of the distortion of the Ag4N4-core, the Ag···Ag and N···N separations differ significantly. The shortest distances are observed between Ag1 and Ag2 as well as Ag3/Ag3' and Ag4/Ag4' (Table 1). Considering the contact radius of silver (1.72 Å; Bondi, 1964) a weak argentophilic inter­action between these pairs of atoms is most likely (Schmidbaur & Schier, 2015). The Ag—P separations [2.336 (15)–2.39 (2) Å] are characteristic for an AgI(PPh3) fragment. The scattering contributions of two severely disordered THF solvent molecules were treated with the SQUEEZE procedure in PLATON (Spek, 2015). The calculated electron count of 350 electrons per unit cell is in good agreement with the composition of (I)·2THF. In contrast, NMR analysis of the crystals after decantation of the supernatant solvent and drying in vacuo reveals a composition of (I)·0.25THF. This discrepancy may be due to a facile evaporation of the co-crystallized solvent under reduced pressure.

Supra­molecular features top

Five moderate-to-weak C—H···O hydrogen bonds (Steiner, 2002) are observed in the crystal structure of (I) (Table 2). Four of those participate in the formation of a three-dimensional network. No obvious ππ-stacking inter­actions between the phenyl rings are present.

Database survey top

There are 75 structures of Ag4E4-heterocubanes (E = N, O, Cl, Br, I) in the CSD database (Groom & Allen, 2014; CSD Version 5.36); in 35 of these complexes, silver is coordinated by phospho­rus. Ag4N4-heterocubanes are relatively rare as there are only three examples known so far (Bowmaker et al., 1998; Partyka & Deligonul, 2009). These include the tri­cyclo­hexyl­arsine analogue of (I) as well as its pyridine solvate (Bowmaker et al., 1998). All reported Ag4N4-heterocubanes are less distorted than (I), which is reflected in a much less pronounced deviation of the Ag···Ag distances in the heterocubane. A µ3-κN coordination of the cyanate anions towards AgI has been described for five compounds only (Bowmaker et al., 1998; Di Nicola et al., 2005, 2006). The average Ag—N distance in these compounds (2.433 Å) is in good agreement with the corresponding value of 2.408 Å in (I).

Synthesis and crystallization top

To a solution of sodium ethano­late in ethanol, generated in situ by dissolving sodium (349 mg, 15.2 mmol) in anhydrous ethanol (40 ml), was added at 273 K ethyl allophanate (1.92 g, 14.5 mmol). The reaction was heated to reflux overnight. The colourless precipitate formed was filtered off, washed twice [OK? or thrice?] with ethanol (each 20 ml) and dried under vacuum (yield: 850 mg). The resulting solid material (407 mg) was dissolved in water (20 ml) and was added dropwise to a solution of silver nitrate (449 mg, 2.64 mmol) in water (15 ml). The suspension obtained was stirred at ambient temperature overnight. Filtration afforded a colourless solid, which was washed with cold water (20 ml) and dried under vacuum (yield: 250 mg). A suspension of this solid (120 mg) in anhydrous THF (20 ml) was treated with PPh3 (265 mg, 1.01 mmol) at 273 K. After stirring overnight at this temperature, the reaction mixture was filtered through a pad of celite. Removal of all volatiles under reduced pressure afforded a pale purple solid (313 mg, 0.189 mmol, 95% based on [AgNCO]). Colourless crystals of (I) were obtained by slow diffusion of di­ethyl ether into a THF solution of (I) at ambient temperature.

M.p. 458 K (decomp.). 1H NMR (500 MHz, CDCl3, 298 K, ppm): δ = 7.40–7.28 (m, 60H, C6H5). 13C{1H} NMR (126 MHz, CDCl3, 298 K, p.p.m.): δ = 134.0 (d, 2C, 2JPC = 16.5 Hz, C6H5), 132.1 (d, 1C, 1JPC = 27.3 Hz, C6H5), 130.4 (d, 1C, 4JPC = 1.5 Hz, C6H5), 129.1 (d, 2C, 3JPC = 9.8 Hz, C6H5). The resonance signal of the cyanate carbon atom is not observed under the measurement conditions applied. 31P{1H} NMR (203 MHz, CDCl3, 298 K, p.p.m.): δ = 9.0 (s). IR (KBr, cm–1): ν = 3449 (w), 3356 (w), 2170 (vs, NCO), 1603 (w), 1429 (w), 1388 (w), 1300 (m), 1206 (m), 638 (m).

Refinement details top

Crystal data, data collection and structure refinement details are summarized in Table 3. In the final refinement of (I) thirteen reflections, viz. (240), (260), (040), (442), (032), (302), (240), (222), (250), (222), (311), (340), and (321), were omitted owing to poor agreements between observed and calculated intensities. C-bonded H atoms were placed in calculated positions and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C) and a C—H distance of 0.93 Å. Two of the four P atoms of the PPh3 moieties with attached phenyl rings are disordered over two sets of sites, with occupancy ratios of 0.54 (4):0.46 (4) and 0.55 (2):0.45 (2), respectively. A phenyl ring of another PPh3 moiety is likewise disordered over two sets of sites in a 0.67 (5):0.33 (5) ratio. The disordered phenyl rings were treated by rigid-group refinements. If necessary, the respective C—P distances were restrained to 1.85 (2) Å. Anisotropic displacement parameters of all atoms were restrained using enhanced rigid-bond restraints (RIGU command, esds 0.004 Å2; Thorn et al., 2012). Solvent contributions to the scattering have been removed using the SQUEEZE procedure (Spek, 2015) in PLATON (Spek, 2009). SQUEEZE calculated a void volume of approximately 2494 Å3 occupied by 350 electrons per unit cell which points to the presence of two THF molecules per formula unit. Fig. 2 shows the positions of the voids within the unit cell.

Related literature top

For related literature, see: Bachmann & Maxwell (1950); Becker & Eisenschmidt (1973); Biltz & Jeltsch (1923); Blair (1926); Bokhonov et al. (2014); Bondi (1964); Bowmaker et al. (1998); Chi & Lu (2001); Clusius & Endtinger (1960); Dains & Wertheim (1920); Dains et al. (1919); Di Nicola, Effendy, Fazaroh, Pettinari, Skelton, Somers & White (2005); Ellestad et al. (1972); Groom & Allen (2014); Haase et al. (2005a); Jahn et al. (2010); Kawakubo et al. (2015); Lang (2011); Lang & Buschbeck (2009); Lang & Dietrich (2013); Mothes et al. (2015a); Murray & Dains (1934); Oestreicher et al. (2013); Partyka & Deligonul (2009); Potts et al. (1990); Schmidbaur & Schier (2015); Schmidt et al. (2005); Spek (2009); Steffan et al. (2009); Steiner (2002); Struppert et al. (2010); Thorn et al. (2012).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2006); cell refinement: CrysAlis RED (Oxford Diffraction, 2006); data reduction: CrysAlis RED (Oxford Diffraction, 2006); program(s) used to solve structure: SHELXS2013 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012), SHELXTL (Sheldrick, 2008), PLATON (Spek, 2009), SQUEEZE (Spek, 2015); software used to prepare material for publication: WinGX (Farrugia, 2012), publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with displacement ellipsoids drawn at the 30% probability level. Hydrogen atoms and the minor parts of the disordered atoms are omitted for clarity.
[Figure 2] Fig. 2. Packing diagram of (I) viewed along [001]. Voids in the structure are represented by red spheres (drawn using the CAVITYPLOT routine in PLATON; Spek, 2009). Hydrogen atoms were omitted for clarity. Colour code: black (C), red (O), yellow (P), green (Ag).
Tetrakis(µ3-cyanato-κ3N)tetrakis[(triphenylphosphane-κP)silver(I)] top
Crystal data top
[Ag4(CNO)4(C18H15P)4]Dx = 1.242 Mg m3
Mr = 1648.64Mo Kα radiation, λ = 0.71073 Å
Tetragonal, P4Cell parameters from 20599 reflections
a = 24.0846 (3) Åθ = 3.3–28.0°
c = 15.2037 (3) ŵ = 0.99 mm1
V = 8819.2 (3) Å3T = 110 K
Z = 4Block, colourless
F(000) = 32960.35 × 0.30 × 0.20 mm
Data collection top
Oxford Gemini S
diffractometer
Rint = 0.048
ω scansθmax = 28.6°, θmin = 2.9°
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2006)
h = 3031
Tmin = 0.912, Tmax = 1.000k = 3032
105239 measured reflectionsl = 1918
20082 independent reflections50 standard reflections every 10 reflections
12667 reflections with I > 2σ(I) intensity decay: none
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.045 w = 1/[σ2(Fo2) + (0.0659P)2 + 1.5343P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.131(Δ/σ)max = 0.001
S = 1.01Δρmax = 0.68 e Å3
20082 reflectionsΔρmin = 1.88 e Å3
1018 parametersAbsolute structure: Flack x determined using 5170 quotients [(I+)–(I)]/[(I+)+(I)] (Parsons & Flack, 2004)
1206 restraintsAbsolute structure parameter: 0.023 (9)
Crystal data top
[Ag4(CNO)4(C18H15P)4]Z = 4
Mr = 1648.64Mo Kα radiation
Tetragonal, P4µ = 0.99 mm1
a = 24.0846 (3) ÅT = 110 K
c = 15.2037 (3) Å0.35 × 0.30 × 0.20 mm
V = 8819.2 (3) Å3
Data collection top
Oxford Gemini S
diffractometer
12667 reflections with I > 2σ(I)
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2006)
Rint = 0.048
Tmin = 0.912, Tmax = 1.00050 standard reflections every 10 reflections
105239 measured reflections intensity decay: none
20082 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.045H-atom parameters constrained
wR(F2) = 0.131Δρmax = 0.68 e Å3
S = 1.01Δρmin = 1.88 e Å3
20082 reflectionsAbsolute structure: Flack x determined using 5170 quotients [(I+)–(I)]/[(I+)+(I)] (Parsons & Flack, 2004)
1018 parametersAbsolute structure parameter: 0.023 (9)
1206 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.8673 (3)0.2938 (3)0.8383 (5)0.0409 (17)
C20.6448 (4)0.2228 (4)0.8500 (6)0.048 (2)
C30.7169 (4)0.3662 (5)0.6559 (7)0.061 (3)
C40.7899 (5)0.1428 (4)0.6584 (7)0.065 (3)
C50.7782 (4)0.4052 (3)1.0092 (5)0.0429 (19)
C60.8231 (4)0.3700 (4)1.0184 (6)0.051 (2)
H60.81970.33321.00090.061*
C70.8731 (4)0.3883 (4)1.0532 (7)0.068 (3)
H70.90330.36431.05750.081*
C80.8776 (4)0.4425 (4)1.0812 (7)0.066 (3)
H80.91040.45481.10690.079*
C90.8330 (4)0.4789 (4)1.0712 (6)0.062 (2)
H90.83650.51591.08820.074*
C100.7845 (4)0.4604 (3)1.0366 (6)0.047 (2)
H100.75480.48481.03090.056*
C110.6863 (14)0.3427 (13)1.0519 (15)0.051 (8)0.33 (5)
C120.7139 (17)0.3339 (14)1.1310 (18)0.069 (10)0.33 (5)
H120.74900.34891.13990.082*0.33 (5)
C130.689 (2)0.3025 (19)1.1968 (17)0.091 (14)0.33 (5)
H130.70730.29661.24980.109*0.33 (5)
C140.636 (2)0.2801 (14)1.1835 (17)0.082 (12)0.33 (5)
H140.61970.25911.22750.098*0.33 (5)
C150.6089 (13)0.2889 (13)1.104 (2)0.061 (10)0.33 (5)
H150.57380.27391.09540.073*0.33 (5)
C160.6339 (14)0.3202 (17)1.0385 (19)0.047 (8)0.33 (5)
H160.61550.32620.98560.056*0.33 (5)
C11'0.6779 (6)0.3423 (6)1.0508 (6)0.037 (4)0.67 (5)
C12'0.6908 (9)0.3538 (9)1.1381 (7)0.071 (7)0.67 (5)
H12'0.72050.37691.15150.085*0.67 (5)
C13'0.6592 (11)0.3306 (12)1.2053 (6)0.091 (9)0.67 (5)
H13'0.66780.33831.26360.109*0.67 (5)
C14'0.6148 (8)0.2960 (8)1.1852 (8)0.077 (6)0.67 (5)
H14'0.59370.28051.23010.093*0.67 (5)
C15'0.6020 (5)0.2845 (6)1.0979 (9)0.055 (5)0.67 (5)
H15'0.57230.26131.08440.066*0.67 (5)
C16'0.6336 (6)0.3076 (7)1.0307 (7)0.033 (3)0.67 (5)
H16'0.62500.29990.97230.039*0.67 (5)
C170.6705 (4)0.4354 (3)0.9358 (6)0.0424 (19)
C180.6422 (4)0.4652 (4)1.0020 (7)0.047 (2)
H180.64780.45701.06110.056*
C190.6053 (4)0.5077 (4)0.9767 (8)0.055 (3)
H190.58580.52701.01970.066*
C200.5976 (5)0.5213 (5)0.8902 (8)0.070 (3)
H200.57280.54930.87500.085*
C210.6264 (6)0.4937 (5)0.8258 (9)0.082 (4)
H210.62190.50360.76710.098*
C220.6627 (5)0.4504 (4)0.8490 (7)0.059 (3)
H220.68180.43140.80500.071*
C230.7351 (4)0.1150 (3)1.0213 (5)0.0449 (19)
C240.7267 (4)0.0618 (3)1.0496 (5)0.045 (2)
H240.75370.03471.04040.054*
C250.6774 (4)0.0486 (4)1.0922 (6)0.059 (2)
H250.67150.01231.11100.071*
C260.6381 (4)0.0873 (4)1.1067 (6)0.069 (3)
H260.60550.07771.13580.083*
C270.6461 (5)0.1411 (4)1.0785 (6)0.077 (3)
H270.61920.16801.08890.092*
C280.6937 (4)0.1545 (3)1.0353 (6)0.061 (3)
H280.69870.19061.01480.073*
C290.8381 (4)0.1725 (3)1.0490 (6)0.049 (2)
C300.8807 (4)0.2079 (3)1.0226 (6)0.0452 (19)
H300.88760.21280.96290.054*
C310.9129 (4)0.2356 (4)1.0827 (6)0.053 (2)
H310.94110.25911.06380.063*
C320.9033 (5)0.2286 (4)1.1700 (6)0.077 (3)
H320.92550.24671.21110.093*
C330.8608 (6)0.1950 (7)1.1974 (7)0.118 (6)
H330.85300.19161.25710.141*
C340.8299 (5)0.1662 (5)1.1369 (6)0.082 (3)
H340.80270.14171.15650.099*
C350.8372 (4)0.0753 (3)0.9380 (6)0.044 (2)
C360.8414 (4)0.0592 (4)0.8511 (7)0.055 (2)
H360.82410.07970.80720.066*
C370.8715 (5)0.0124 (4)0.8297 (8)0.069 (3)
H370.87380.00140.77120.083*
C380.8979 (5)0.0180 (4)0.8922 (8)0.061 (3)
H380.91920.04870.87670.073*
C390.8925 (4)0.0025 (4)0.9785 (7)0.049 (2)
H390.90980.02331.02210.058*
C400.8621 (4)0.0431 (4)1.0013 (7)0.046 (2)
H400.85820.05251.06030.055*
C410.9331 (4)0.3342 (4)0.5584 (5)0.0397 (19)
C420.9634 (4)0.3624 (4)0.4946 (6)0.044 (2)
H420.95310.35950.43580.053*
C431.0084 (4)0.3948 (4)0.5177 (6)0.044 (2)
H431.02760.41410.47450.052*
C441.0250 (4)0.3986 (4)0.6035 (6)0.050 (2)
H441.05510.42080.61880.060*
C450.9962 (3)0.3688 (4)0.6677 (6)0.053 (2)
H451.00770.37000.72600.064*
C460.9502 (4)0.3371 (4)0.6440 (6)0.049 (2)
H460.93080.31770.68700.058*
C470.9041 (9)0.2240 (7)0.4851 (14)0.040 (4)0.54 (4)
C480.8678 (8)0.1797 (8)0.4749 (13)0.048 (5)0.54 (4)
H480.83060.18360.49040.058*0.54 (4)
C490.8870 (10)0.1294 (7)0.4417 (14)0.058 (6)0.54 (4)
H490.86260.09980.43490.070*0.54 (4)
C500.9425 (11)0.1236 (7)0.4186 (15)0.063 (6)0.54 (4)
H500.95530.09000.39640.076*0.54 (4)
C510.9788 (9)0.1679 (8)0.4288 (17)0.074 (8)0.54 (4)
H511.01600.16400.41330.089*0.54 (4)
C520.9597 (9)0.2182 (7)0.4620 (17)0.060 (7)0.54 (4)
H520.98400.24790.46880.073*0.54 (4)
C530.8431 (9)0.3244 (9)0.4421 (9)0.043 (4)0.54 (4)
C540.8090 (10)0.3693 (8)0.4617 (9)0.049 (5)0.54 (4)
H540.80130.37810.52000.059*0.54 (4)
C550.7865 (9)0.4011 (7)0.3943 (11)0.050 (5)0.54 (4)
H550.76370.43120.40740.061*0.54 (4)
C560.7981 (10)0.3880 (9)0.3071 (10)0.056 (6)0.54 (4)
H560.78300.40920.26200.067*0.54 (4)
C570.8321 (9)0.3430 (10)0.2875 (8)0.071 (7)0.54 (4)
H570.83980.33420.22920.085*0.54 (4)
C580.8546 (8)0.3113 (10)0.3550 (10)0.061 (6)0.54 (4)
H580.87740.28120.34180.073*0.54 (4)
C47'0.8901 (10)0.2357 (9)0.4762 (16)0.042 (5)0.46 (4)
C48'0.8503 (10)0.1945 (11)0.4651 (17)0.057 (7)0.46 (4)
H48'0.81410.20040.48430.069*0.46 (4)
C49'0.8645 (11)0.1445 (10)0.4255 (18)0.065 (8)0.46 (4)
H49'0.83790.11690.41810.078*0.46 (4)
C50'0.9186 (12)0.1357 (9)0.3968 (17)0.064 (8)0.46 (4)
H50'0.92820.10220.37030.077*0.46 (4)
C51'0.9584 (10)0.1768 (9)0.4079 (17)0.058 (7)0.46 (4)
H51'0.99460.17090.38870.070*0.46 (4)
C52'0.9442 (10)0.2268 (8)0.4476 (17)0.047 (6)0.46 (4)
H52'0.97080.25440.45500.056*0.46 (4)
C53'0.8337 (10)0.3409 (11)0.4448 (10)0.038 (5)0.46 (4)
C54'0.7969 (11)0.3816 (11)0.4729 (10)0.051 (6)0.46 (4)
H54'0.79080.38710.53270.061*0.46 (4)
C55'0.7692 (11)0.4143 (10)0.4116 (13)0.050 (6)0.46 (4)
H55'0.74460.44160.43030.060*0.46 (4)
C56'0.7783 (11)0.4062 (11)0.3222 (12)0.058 (6)0.46 (4)
H56'0.75980.42810.28120.070*0.46 (4)
C57'0.8151 (11)0.3654 (12)0.2942 (9)0.068 (8)0.46 (4)
H57'0.82130.36000.23440.081*0.46 (4)
C58'0.8428 (9)0.3328 (12)0.3555 (11)0.057 (6)0.46 (4)
H58'0.86750.30550.33670.068*0.46 (4)
C590.5735 (4)0.1679 (5)0.5686 (7)0.056 (2)
C600.5604 (4)0.1575 (5)0.6566 (7)0.065 (3)
H600.58150.17390.70080.079*
C610.5168 (4)0.1233 (5)0.6788 (8)0.074 (3)
H610.50790.11710.73750.089*
C620.4865 (4)0.0984 (5)0.6125 (9)0.070 (3)
H620.45750.07450.62670.083*
C630.4990 (4)0.1087 (4)0.5248 (8)0.057 (3)
H630.47800.09230.48060.069*
C640.5421 (4)0.1430 (4)0.5033 (8)0.054 (2)
H640.55030.14970.44450.064*
C650.5990 (8)0.2824 (7)0.4929 (13)0.060 (5)0.55 (2)
C660.5440 (8)0.2869 (7)0.4663 (15)0.075 (7)0.55 (2)
H660.52010.25680.47230.090*0.55 (2)
C670.5246 (8)0.3364 (9)0.4307 (15)0.099 (9)0.55 (2)
H670.48780.33940.41290.118*0.55 (2)
C680.5603 (10)0.3814 (8)0.4218 (14)0.098 (9)0.55 (2)
H680.54740.41460.39800.117*0.55 (2)
C690.6153 (9)0.3769 (7)0.4484 (14)0.090 (8)0.55 (2)
H690.63920.40700.44240.107*0.55 (2)
C700.6347 (7)0.3274 (8)0.4840 (13)0.077 (7)0.55 (2)
H700.67150.32440.50180.093*0.55 (2)
C710.6663 (6)0.1856 (7)0.4556 (8)0.055 (4)0.55 (2)
C720.6701 (7)0.2088 (9)0.3721 (9)0.086 (7)0.55 (2)
H720.65370.24310.36070.103*0.55 (2)
C730.6984 (8)0.1809 (10)0.3058 (8)0.132 (12)0.55 (2)
H730.70100.19650.25000.158*0.55 (2)
C740.7229 (8)0.1298 (9)0.3230 (9)0.090 (7)0.55 (2)
H740.74180.11110.27870.109*0.55 (2)
C750.7190 (7)0.1066 (7)0.4065 (11)0.058 (5)0.55 (2)
H750.73540.07240.41800.070*0.55 (2)
C760.6907 (7)0.1345 (7)0.4728 (8)0.054 (5)0.55 (2)
H760.68820.11890.52860.065*0.55 (2)
C65'0.6148 (8)0.2653 (8)0.4851 (14)0.052 (5)0.45 (2)
C66'0.5606 (7)0.2743 (7)0.4572 (14)0.045 (5)0.45 (2)
H66'0.53330.24810.46890.054*0.45 (2)
C67'0.5473 (7)0.3226 (8)0.4117 (13)0.059 (6)0.45 (2)
H67'0.51100.32870.39300.070*0.45 (2)
C68'0.5882 (9)0.3618 (8)0.3942 (13)0.079 (8)0.45 (2)
H68'0.57920.39410.36380.095*0.45 (2)
C69'0.6424 (9)0.3528 (10)0.4221 (14)0.075 (8)0.45 (2)
H69'0.66970.37900.41040.090*0.45 (2)
C70'0.6557 (7)0.3045 (10)0.4675 (14)0.085 (9)0.45 (2)
H70'0.69200.29840.48620.101*0.45 (2)
C71'0.6754 (7)0.1621 (9)0.4575 (9)0.047 (5)0.45 (2)
C72'0.6701 (7)0.1719 (11)0.3677 (10)0.085 (9)0.45 (2)
H72'0.64650.19970.34760.102*0.45 (2)
C73'0.7001 (8)0.1401 (13)0.3081 (8)0.088 (10)0.45 (2)
H73'0.69660.14660.24800.106*0.45 (2)
C74'0.7354 (7)0.0985 (10)0.3381 (9)0.067 (6)0.45 (2)
H74'0.75550.07730.29820.080*0.45 (2)
C75'0.7407 (8)0.0888 (7)0.4279 (10)0.054 (5)0.45 (2)
H75'0.76420.06100.44800.065*0.45 (2)
C76'0.7106 (8)0.1206 (8)0.4875 (8)0.043 (5)0.45 (2)
H76'0.71420.11410.54760.051*0.45 (2)
N10.8257 (3)0.2813 (3)0.8112 (4)0.0341 (14)
N20.6857 (3)0.2327 (3)0.8197 (4)0.0393 (15)
N30.7290 (3)0.3253 (3)0.6838 (5)0.0459 (17)
N40.7788 (3)0.1844 (3)0.6855 (5)0.0451 (17)
O10.9122 (3)0.3084 (3)0.8681 (4)0.0664 (19)
O20.5992 (3)0.2124 (4)0.8821 (5)0.092 (3)
O30.7042 (5)0.4113 (4)0.6237 (6)0.103 (3)
O40.8006 (5)0.0971 (3)0.6279 (6)0.115 (4)
P10.71594 (10)0.37703 (9)0.96044 (15)0.0383 (5)
P20.79767 (11)0.13798 (9)0.96362 (15)0.0415 (6)
Ag10.73407 (3)0.31900 (2)0.83917 (5)0.03668 (17)
Ag20.77858 (3)0.19423 (2)0.84006 (5)0.03938 (19)
Ag30.8158 (2)0.2743 (2)0.6536 (4)0.0437 (11)0.54 (4)
P30.8762 (8)0.2884 (8)0.5344 (13)0.040 (3)0.54 (4)
P40.6275 (5)0.2197 (6)0.5440 (9)0.053 (2)0.55 (2)
Ag40.6860 (3)0.2386 (3)0.6666 (5)0.0439 (9)0.55 (2)
P3'0.8671 (9)0.2982 (10)0.5300 (14)0.037 (3)0.46 (4)
Ag3'0.8134 (2)0.2778 (3)0.6582 (5)0.0420 (12)0.46 (4)
P4'0.6390 (6)0.2041 (7)0.5432 (10)0.045 (2)0.45 (2)
Ag4'0.6947 (3)0.2250 (4)0.6646 (6)0.0417 (11)0.45 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.048 (4)0.049 (4)0.026 (4)0.005 (3)0.006 (3)0.002 (3)
C20.059 (4)0.061 (5)0.025 (4)0.023 (4)0.001 (3)0.004 (4)
C30.072 (6)0.070 (5)0.041 (5)0.002 (4)0.009 (5)0.014 (4)
C40.100 (7)0.055 (4)0.040 (5)0.023 (4)0.011 (5)0.005 (4)
C50.059 (4)0.032 (4)0.037 (4)0.001 (3)0.006 (3)0.002 (3)
C60.064 (5)0.041 (4)0.047 (5)0.008 (3)0.013 (4)0.011 (4)
C70.071 (5)0.052 (5)0.080 (7)0.017 (4)0.016 (5)0.026 (5)
C80.058 (5)0.056 (5)0.083 (7)0.005 (4)0.013 (5)0.021 (5)
C90.065 (5)0.040 (5)0.079 (7)0.002 (4)0.001 (4)0.015 (4)
C100.056 (5)0.031 (4)0.052 (5)0.002 (3)0.004 (4)0.003 (3)
C110.075 (12)0.040 (15)0.037 (9)0.005 (10)0.002 (8)0.000 (9)
C120.093 (16)0.07 (2)0.041 (10)0.005 (15)0.006 (11)0.009 (11)
C130.11 (2)0.11 (3)0.057 (13)0.02 (2)0.003 (13)0.026 (16)
C140.10 (2)0.08 (2)0.059 (14)0.005 (17)0.007 (12)0.010 (13)
C150.091 (18)0.036 (18)0.055 (14)0.005 (15)0.011 (11)0.002 (11)
C160.069 (12)0.027 (16)0.045 (12)0.008 (10)0.008 (9)0.005 (9)
C11'0.042 (7)0.037 (8)0.033 (6)0.008 (6)0.001 (4)0.004 (5)
C12'0.078 (12)0.100 (14)0.035 (6)0.039 (11)0.003 (6)0.007 (6)
C13'0.102 (16)0.135 (19)0.036 (7)0.054 (15)0.001 (7)0.021 (7)
C14'0.070 (12)0.101 (14)0.061 (8)0.026 (10)0.007 (6)0.028 (7)
C15'0.036 (7)0.067 (13)0.063 (8)0.003 (8)0.001 (6)0.022 (7)
C16'0.032 (6)0.025 (7)0.042 (7)0.009 (5)0.002 (5)0.002 (5)
C170.049 (4)0.031 (4)0.048 (4)0.005 (3)0.007 (3)0.003 (3)
C180.043 (5)0.040 (4)0.057 (5)0.008 (3)0.011 (4)0.001 (4)
C190.040 (5)0.048 (5)0.076 (6)0.003 (4)0.011 (4)0.006 (4)
C200.082 (8)0.052 (6)0.077 (6)0.016 (5)0.006 (5)0.002 (5)
C210.120 (9)0.059 (6)0.067 (7)0.035 (6)0.009 (6)0.008 (5)
C220.089 (7)0.039 (4)0.049 (5)0.017 (4)0.008 (5)0.005 (4)
C230.078 (5)0.030 (4)0.026 (4)0.005 (3)0.005 (4)0.007 (3)
C240.065 (5)0.031 (4)0.040 (4)0.008 (3)0.003 (4)0.009 (3)
C250.077 (6)0.040 (4)0.059 (6)0.003 (4)0.012 (4)0.017 (4)
C260.089 (6)0.058 (5)0.061 (6)0.024 (5)0.033 (5)0.025 (5)
C270.107 (7)0.057 (5)0.067 (7)0.029 (5)0.051 (6)0.028 (5)
C280.101 (6)0.032 (4)0.049 (5)0.014 (4)0.032 (5)0.012 (4)
C290.071 (5)0.033 (4)0.043 (4)0.004 (4)0.001 (4)0.010 (3)
C300.059 (5)0.032 (4)0.044 (4)0.011 (3)0.002 (3)0.005 (3)
C310.054 (5)0.049 (5)0.055 (5)0.004 (4)0.000 (4)0.019 (4)
C320.103 (8)0.079 (7)0.050 (5)0.015 (5)0.003 (5)0.024 (5)
C330.157 (12)0.157 (12)0.040 (6)0.074 (10)0.016 (6)0.035 (6)
C340.122 (9)0.090 (7)0.035 (4)0.044 (6)0.007 (5)0.013 (4)
C350.055 (5)0.032 (4)0.045 (4)0.006 (3)0.004 (3)0.007 (3)
C360.087 (6)0.042 (4)0.037 (4)0.004 (4)0.006 (4)0.005 (4)
C370.099 (7)0.055 (5)0.054 (6)0.016 (5)0.002 (5)0.009 (4)
C380.073 (7)0.040 (5)0.068 (6)0.005 (4)0.001 (5)0.006 (4)
C390.052 (5)0.041 (5)0.053 (5)0.003 (4)0.002 (4)0.003 (4)
C400.048 (5)0.039 (4)0.050 (5)0.006 (3)0.008 (4)0.002 (3)
C410.045 (4)0.046 (4)0.029 (4)0.008 (3)0.010 (3)0.002 (3)
C420.051 (5)0.043 (5)0.038 (4)0.005 (4)0.006 (3)0.003 (3)
C430.041 (4)0.044 (5)0.045 (4)0.007 (3)0.007 (4)0.003 (4)
C440.029 (4)0.066 (6)0.054 (5)0.004 (4)0.004 (3)0.011 (4)
C450.043 (4)0.075 (5)0.041 (4)0.002 (4)0.004 (4)0.016 (4)
C460.048 (4)0.068 (5)0.029 (4)0.011 (4)0.006 (3)0.003 (4)
C470.048 (9)0.047 (7)0.024 (8)0.015 (6)0.003 (7)0.001 (6)
C480.054 (10)0.038 (8)0.052 (11)0.013 (7)0.012 (8)0.008 (7)
C490.069 (12)0.048 (9)0.058 (13)0.009 (7)0.010 (10)0.019 (8)
C500.070 (12)0.052 (9)0.067 (15)0.002 (8)0.016 (10)0.014 (9)
C510.070 (12)0.068 (10)0.085 (19)0.010 (8)0.020 (11)0.017 (10)
C520.057 (10)0.062 (10)0.062 (16)0.012 (7)0.018 (9)0.007 (9)
C530.064 (10)0.040 (9)0.026 (6)0.012 (7)0.002 (5)0.002 (5)
C540.074 (13)0.046 (9)0.028 (8)0.008 (8)0.007 (7)0.004 (6)
C550.066 (12)0.044 (10)0.041 (8)0.015 (8)0.001 (8)0.003 (7)
C560.072 (14)0.069 (13)0.028 (8)0.008 (10)0.008 (7)0.000 (7)
C570.098 (15)0.091 (14)0.023 (7)0.032 (12)0.003 (7)0.005 (7)
C580.081 (12)0.077 (12)0.025 (6)0.023 (10)0.001 (6)0.000 (7)
C47'0.054 (10)0.052 (8)0.021 (9)0.009 (6)0.013 (8)0.002 (7)
C48'0.058 (12)0.057 (11)0.057 (15)0.008 (8)0.013 (10)0.011 (10)
C49'0.062 (13)0.060 (11)0.072 (18)0.009 (9)0.018 (11)0.014 (11)
C50'0.061 (13)0.056 (11)0.075 (19)0.009 (9)0.016 (11)0.022 (11)
C51'0.059 (12)0.060 (10)0.055 (15)0.012 (8)0.034 (11)0.020 (9)
C52'0.054 (11)0.053 (10)0.034 (11)0.011 (7)0.014 (9)0.010 (8)
C53'0.044 (10)0.048 (11)0.022 (7)0.016 (8)0.000 (6)0.003 (7)
C54'0.055 (12)0.059 (12)0.038 (9)0.013 (9)0.006 (7)0.003 (7)
C55'0.055 (13)0.058 (12)0.038 (9)0.012 (9)0.006 (8)0.001 (8)
C56'0.065 (14)0.075 (14)0.035 (9)0.002 (10)0.003 (8)0.008 (8)
C57'0.099 (17)0.089 (17)0.016 (8)0.025 (13)0.009 (8)0.003 (8)
C58'0.064 (12)0.080 (14)0.026 (7)0.003 (10)0.001 (7)0.005 (8)
C590.040 (4)0.075 (6)0.052 (5)0.010 (4)0.005 (3)0.012 (4)
C600.044 (4)0.099 (7)0.054 (5)0.013 (4)0.001 (4)0.001 (5)
C610.044 (5)0.108 (8)0.070 (6)0.008 (5)0.001 (4)0.008 (5)
C620.039 (5)0.076 (7)0.094 (7)0.007 (4)0.002 (4)0.002 (5)
C630.036 (4)0.058 (6)0.077 (6)0.007 (4)0.013 (4)0.008 (5)
C640.041 (4)0.055 (5)0.065 (6)0.003 (4)0.009 (4)0.021 (4)
C650.065 (10)0.077 (9)0.038 (9)0.007 (6)0.007 (8)0.006 (7)
C660.068 (11)0.088 (12)0.067 (15)0.001 (8)0.015 (10)0.016 (10)
C670.095 (14)0.099 (13)0.10 (2)0.002 (9)0.023 (13)0.002 (13)
C680.101 (14)0.101 (13)0.09 (2)0.002 (10)0.034 (13)0.014 (12)
C690.096 (14)0.086 (11)0.087 (18)0.008 (9)0.033 (12)0.021 (11)
C700.074 (12)0.087 (10)0.070 (14)0.016 (8)0.033 (10)0.019 (10)
C710.042 (8)0.085 (11)0.039 (6)0.016 (7)0.002 (6)0.022 (6)
C720.108 (16)0.116 (14)0.034 (7)0.010 (12)0.008 (7)0.012 (8)
C730.19 (3)0.153 (18)0.055 (10)0.055 (19)0.040 (12)0.001 (11)
C740.096 (17)0.126 (16)0.049 (9)0.006 (13)0.022 (9)0.016 (9)
C750.040 (10)0.087 (12)0.047 (9)0.028 (8)0.005 (7)0.029 (8)
C760.043 (11)0.082 (11)0.037 (8)0.020 (8)0.001 (7)0.017 (7)
C65'0.044 (9)0.079 (10)0.034 (10)0.013 (7)0.010 (7)0.005 (8)
C66'0.040 (9)0.064 (10)0.031 (10)0.013 (7)0.011 (8)0.006 (8)
C67'0.066 (12)0.069 (11)0.041 (11)0.012 (8)0.017 (9)0.008 (8)
C68'0.083 (13)0.092 (14)0.063 (16)0.031 (10)0.028 (11)0.021 (12)
C69'0.080 (13)0.103 (14)0.042 (13)0.032 (10)0.025 (10)0.020 (12)
C70'0.065 (11)0.110 (14)0.08 (2)0.036 (10)0.029 (11)0.033 (14)
C71'0.035 (9)0.073 (12)0.031 (7)0.015 (8)0.006 (6)0.009 (7)
C72'0.088 (16)0.14 (2)0.029 (8)0.032 (16)0.004 (7)0.000 (8)
C73'0.091 (18)0.14 (2)0.035 (9)0.024 (15)0.003 (9)0.002 (9)
C74'0.051 (11)0.106 (16)0.044 (9)0.011 (10)0.002 (7)0.003 (8)
C75'0.049 (11)0.076 (12)0.038 (8)0.014 (9)0.005 (7)0.006 (7)
C76'0.032 (10)0.065 (10)0.032 (8)0.020 (7)0.009 (6)0.005 (7)
N10.048 (3)0.033 (3)0.021 (3)0.004 (3)0.002 (2)0.002 (2)
N20.053 (4)0.037 (3)0.028 (3)0.011 (3)0.002 (3)0.005 (2)
N30.048 (4)0.059 (4)0.031 (4)0.014 (3)0.002 (3)0.000 (3)
N40.060 (4)0.052 (4)0.024 (3)0.019 (3)0.003 (3)0.001 (3)
O10.047 (3)0.113 (5)0.039 (3)0.029 (3)0.001 (3)0.003 (3)
O20.064 (4)0.148 (7)0.063 (5)0.050 (4)0.017 (4)0.006 (5)
O30.160 (9)0.076 (5)0.073 (6)0.014 (5)0.005 (6)0.026 (4)
O40.220 (11)0.050 (4)0.075 (6)0.008 (5)0.038 (7)0.022 (4)
P10.0541 (13)0.0287 (10)0.0320 (11)0.0015 (9)0.0029 (9)0.0003 (9)
P20.0661 (15)0.0279 (10)0.0304 (11)0.0005 (10)0.0016 (10)0.0020 (9)
Ag10.0482 (4)0.0319 (3)0.0299 (4)0.0017 (2)0.0001 (4)0.0009 (3)
Ag20.0587 (4)0.0303 (3)0.0291 (4)0.0039 (2)0.0038 (3)0.0004 (3)
Ag30.070 (3)0.0413 (17)0.0194 (13)0.0175 (12)0.0076 (12)0.0076 (12)
P30.049 (6)0.045 (5)0.025 (3)0.014 (4)0.001 (3)0.006 (3)
P40.043 (4)0.077 (6)0.038 (3)0.008 (3)0.004 (3)0.010 (4)
Ag40.0490 (16)0.056 (2)0.0271 (11)0.0101 (13)0.0026 (11)0.0058 (15)
P3'0.039 (5)0.052 (7)0.019 (4)0.011 (4)0.009 (3)0.000 (4)
Ag3'0.027 (2)0.070 (3)0.0293 (18)0.0199 (13)0.0096 (13)0.0093 (18)
P4'0.037 (5)0.071 (6)0.027 (3)0.009 (4)0.009 (3)0.013 (4)
Ag4'0.0395 (18)0.057 (3)0.0284 (11)0.0175 (16)0.0047 (14)0.0126 (18)
Geometric parameters (Å, º) top
C1—N11.123 (10)C54—H540.9300
C1—O11.225 (10)C55—C561.3900
C2—N21.114 (10)C55—H550.9300
C2—O21.227 (10)C56—C571.3900
C3—N31.111 (12)C56—H560.9300
C3—O31.231 (13)C57—C581.3900
C4—N41.115 (12)C57—H570.9300
C4—O41.222 (12)C58—H580.9300
C5—C61.380 (11)C47'—C48'1.3900
C5—C101.401 (10)C47'—C52'1.3900
C5—P11.805 (9)C47'—P3'1.80 (2)
C6—C71.389 (12)C48'—C49'1.3900
C6—H60.9300C48'—H48'0.9300
C7—C81.376 (12)C49'—C50'1.3900
C7—H70.9300C49'—H49'0.9300
C8—C91.395 (12)C50'—C51'1.3900
C8—H80.9300C50'—H50'0.9300
C9—C101.357 (12)C51'—C52'1.3900
C9—H90.9300C51'—H51'0.9300
C10—H100.9300C52'—H52'0.9300
C11—C121.3900C53'—C54'1.3900
C11—C161.3900C53'—C58'1.3900
C11—P11.767 (17)C53'—P3'1.84 (2)
C12—C131.3900C54'—C55'1.3900
C12—H120.9300C54'—H54'0.9300
C13—C141.3900C55'—C56'1.3900
C13—H130.9300C55'—H55'0.9300
C14—C151.3900C56'—C57'1.3900
C14—H140.9300C56'—H56'0.9300
C15—C161.3900C57'—C58'1.3900
C15—H150.9300C57'—H57'0.9300
C16—H160.9300C58'—H58'0.9300
C11'—C12'1.3900C59—C641.384 (12)
C11'—C16'1.3900C59—C601.397 (14)
C11'—P11.851 (9)C59—P41.841 (17)
C12'—C13'1.3900C59—P4'1.843 (18)
C12'—H12'0.9300C60—C611.377 (14)
C13'—C14'1.3900C60—H600.9300
C13'—H13'0.9300C61—C621.382 (15)
C14'—C15'1.3900C61—H610.9300
C14'—H14'0.9300C62—C631.390 (15)
C15'—C16'1.3900C62—H620.9300
C15'—H15'0.9300C63—C641.366 (14)
C16'—H16'0.9300C63—H630.9300
C17—C221.382 (13)C64—H640.9300
C17—C181.412 (12)C65—C661.3900
C17—P11.820 (9)C65—C701.3900
C18—C191.409 (14)C65—P41.832 (16)
C18—H180.9300C66—C671.3900
C19—C201.368 (15)C66—H660.9300
C19—H190.9300C67—C681.3900
C20—C211.370 (17)C67—H670.9300
C20—H200.9300C68—C691.3900
C21—C221.408 (13)C68—H680.9300
C21—H210.9300C69—C701.3900
C22—H220.9300C69—H690.9300
C23—C241.367 (10)C70—H700.9300
C23—C281.396 (12)C71—C721.3900
C23—P21.829 (9)C71—C761.3900
C24—C251.389 (12)C71—P41.831 (14)
C24—H240.9300C72—C731.3900
C25—C261.348 (12)C72—H720.9300
C25—H250.9300C73—C741.3900
C26—C271.380 (12)C73—H730.9300
C26—H260.9300C74—C751.3900
C27—C281.360 (13)C74—H740.9300
C27—H270.9300C75—C761.3900
C28—H280.9300C75—H750.9300
C29—C341.359 (12)C76—H760.9300
C29—C301.394 (12)C65'—C66'1.3900
C29—P21.822 (8)C65'—C70'1.3900
C30—C311.371 (11)C65'—P4'1.815 (17)
C30—H300.9300C66'—C67'1.3900
C31—C321.358 (12)C66'—H66'0.9300
C31—H310.9300C67'—C68'1.3900
C32—C331.370 (15)C67'—H67'0.9300
C32—H320.9300C68'—C69'1.3900
C33—C341.371 (14)C68'—H68'0.9300
C33—H330.9300C69'—C70'1.3900
C34—H340.9300C69'—H69'0.9300
C35—C401.373 (13)C70'—H70'0.9300
C35—C361.381 (12)C71'—C72'1.3900
C35—P21.826 (9)C71'—C76'1.3900
C36—C371.379 (13)C71'—P4'1.868 (17)
C36—H360.9300C72'—C73'1.3900
C37—C381.357 (15)C72'—H72'0.9300
C37—H370.9300C73'—C74'1.3900
C38—C391.371 (14)C73'—H73'0.9300
C38—H380.9300C74'—C75'1.3900
C39—C401.366 (13)C74'—H74'0.9300
C39—H390.9300C75'—C76'1.3900
C40—H400.9300C75'—H75'0.9300
C41—C461.367 (12)C76'—H76'0.9300
C41—C421.391 (11)N1—Ag3'2.346 (9)
C41—P31.80 (2)N1—Ag32.414 (8)
C41—P3'1.86 (2)N1—Ag12.424 (7)
C42—C431.381 (12)N1—Ag22.425 (6)
C42—H420.9300N2—Ag42.332 (10)
C43—C441.367 (13)N2—Ag4'2.376 (11)
C43—H430.9300N2—Ag12.401 (6)
C44—C451.398 (13)N2—Ag22.440 (8)
C44—H440.9300N3—Ag42.345 (10)
C45—C461.392 (12)N3—Ag3'2.366 (11)
C45—H450.9300N3—Ag12.371 (7)
C46—H460.9300N3—Ag32.469 (11)
C47—C481.3900N3—Ag4'2.570 (12)
C47—C521.3900N4—Ag4'2.273 (13)
C47—P31.848 (19)N4—Ag22.361 (7)
C48—C491.3900N4—Ag32.391 (8)
C48—H480.9300N4—Ag3'2.435 (9)
C49—C501.3900N4—Ag42.605 (12)
C49—H490.9300P1—Ag12.354 (2)
C50—C511.3900P2—Ag22.361 (2)
C50—H500.9300Ag1—Ag23.1906 (10)
C51—C521.3900Ag3—P32.35 (2)
C51—H510.9300Ag3—Ag43.250 (9)
C52—H520.9300P4—Ag42.381 (14)
C53—C541.3900P3'—Ag3'2.39 (2)
C53—C581.3900Ag3'—Ag4'3.133 (8)
C53—P31.832 (18)P4'—Ag4'2.336 (15)
C54—C551.3900
N1—C1—O1178.9 (10)C61—C60—C59120.9 (11)
N2—C2—O2178.8 (12)C61—C60—H60119.6
N3—C3—O3178.7 (13)C59—C60—H60119.6
N4—C4—O4178.4 (14)C60—C61—C62119.0 (11)
C6—C5—C10117.8 (8)C60—C61—H61120.5
C6—C5—P1117.5 (6)C62—C61—H61120.5
C10—C5—P1124.7 (7)C61—C62—C63120.4 (11)
C5—C6—C7121.6 (8)C61—C62—H62119.8
C5—C6—H6119.2C63—C62—H62119.8
C7—C6—H6119.2C64—C63—C62120.2 (11)
C8—C7—C6119.1 (9)C64—C63—H63119.9
C8—C7—H7120.5C62—C63—H63119.9
C6—C7—H7120.5C63—C64—C59120.3 (11)
C7—C8—C9120.2 (9)C63—C64—H64119.9
C7—C8—H8119.9C59—C64—H64119.9
C9—C8—H8119.9C66—C65—C70120.0
C10—C9—C8119.8 (8)C66—C65—P4123.0 (10)
C10—C9—H9120.1C70—C65—P4116.9 (10)
C8—C9—H9120.1C67—C66—C65120.0
C9—C10—C5121.4 (8)C67—C66—H66120.0
C9—C10—H10119.3C65—C66—H66120.0
C5—C10—H10119.3C66—C67—C68120.0
C12—C11—C16120.0C66—C67—H67120.0
C12—C11—P1124.1 (17)C68—C67—H67120.0
C16—C11—P1115.7 (17)C69—C68—C67120.0
C13—C12—C11120.0C69—C68—H68120.0
C13—C12—H12120.0C67—C68—H68120.0
C11—C12—H12120.0C70—C69—C68120.0
C14—C13—C12120.0C70—C69—H69120.0
C14—C13—H13120.0C68—C69—H69120.0
C12—C13—H13120.0C69—C70—C65120.0
C13—C14—C15120.0C69—C70—H70120.0
C13—C14—H14120.0C65—C70—H70120.0
C15—C14—H14120.0C72—C71—C76120.0
C16—C15—C14120.0C72—C71—P4121.6 (8)
C16—C15—H15120.0C76—C71—P4118.4 (8)
C14—C15—H15120.0C71—C72—C73120.0
C15—C16—C11120.0C71—C72—H72120.0
C15—C16—H16120.0C73—C72—H72120.0
C11—C16—H16120.0C74—C73—C72120.0
C12'—C11'—C16'120.0C74—C73—H73120.0
C12'—C11'—P1120.6 (7)C72—C73—H73120.0
C16'—C11'—P1119.2 (7)C75—C74—C73120.0
C13'—C12'—C11'120.0C75—C74—H74120.0
C13'—C12'—H12'120.0C73—C74—H74120.0
C11'—C12'—H12'120.0C76—C75—C74120.0
C12'—C13'—C14'120.0C76—C75—H75120.0
C12'—C13'—H13'120.0C74—C75—H75120.0
C14'—C13'—H13'120.0C75—C76—C71120.0
C15'—C14'—C13'120.0C75—C76—H76120.0
C15'—C14'—H14'120.0C71—C76—H76120.0
C13'—C14'—H14'120.0C66'—C65'—C70'120.0
C14'—C15'—C16'120.0C66'—C65'—P4'125.2 (10)
C14'—C15'—H15'120.0C70'—C65'—P4'114.7 (10)
C16'—C15'—H15'120.0C67'—C66'—C65'120.0
C15'—C16'—C11'120.0C67'—C66'—H66'120.0
C15'—C16'—H16'120.0C65'—C66'—H66'120.0
C11'—C16'—H16'120.0C66'—C67'—C68'120.0
C22—C17—C18118.9 (9)C66'—C67'—H67'120.0
C22—C17—P1118.7 (7)C68'—C67'—H67'120.0
C18—C17—P1122.5 (7)C69'—C68'—C67'120.0
C19—C18—C17118.7 (10)C69'—C68'—H68'120.0
C19—C18—H18120.7C67'—C68'—H68'120.0
C17—C18—H18120.7C68'—C69'—C70'120.0
C20—C19—C18121.4 (11)C68'—C69'—H69'120.0
C20—C19—H19119.3C70'—C69'—H69'120.0
C18—C19—H19119.3C69'—C70'—C65'120.0
C19—C20—C21120.2 (11)C69'—C70'—H70'120.0
C19—C20—H20119.9C65'—C70'—H70'120.0
C21—C20—H20119.9C72'—C71'—C76'120.0
C20—C21—C22119.7 (12)C72'—C71'—P4'123.4 (9)
C20—C21—H21120.1C76'—C71'—P4'116.5 (9)
C22—C21—H21120.1C73'—C72'—C71'120.0
C17—C22—C21121.1 (11)C73'—C72'—H72'120.0
C17—C22—H22119.4C71'—C72'—H72'120.0
C21—C22—H22119.4C74'—C73'—C72'120.0
C24—C23—C28119.1 (8)C74'—C73'—H73'120.0
C24—C23—P2123.8 (7)C72'—C73'—H73'120.0
C28—C23—P2117.1 (6)C75'—C74'—C73'120.0
C23—C24—C25119.2 (8)C75'—C74'—H74'120.0
C23—C24—H24120.4C73'—C74'—H74'120.0
C25—C24—H24120.4C74'—C75'—C76'120.0
C26—C25—C24121.3 (8)C74'—C75'—H75'120.0
C26—C25—H25119.3C76'—C75'—H75'120.0
C24—C25—H25119.3C75'—C76'—C71'120.0
C25—C26—C27120.1 (9)C75'—C76'—H76'120.0
C25—C26—H26120.0C71'—C76'—H76'120.0
C27—C26—H26120.0C1—N1—Ag3'119.1 (6)
C28—C27—C26119.4 (9)C1—N1—Ag3118.1 (6)
C28—C27—H27120.3C1—N1—Ag1130.2 (6)
C26—C27—H27120.3Ag3'—N1—Ag194.2 (3)
C27—C28—C23120.9 (8)Ag3—N1—Ag196.3 (3)
C27—C28—H28119.5C1—N1—Ag2125.7 (6)
C23—C28—H28119.5Ag3'—N1—Ag295.1 (3)
C34—C29—C30117.2 (8)Ag3—N1—Ag294.2 (2)
C34—C29—P2124.9 (7)Ag1—N1—Ag282.3 (2)
C30—C29—P2117.9 (7)C2—N2—Ag4115.3 (7)
C31—C30—C29121.5 (8)C2—N2—Ag4'118.3 (6)
C31—C30—H30119.3C2—N2—Ag1124.3 (6)
C29—C30—H30119.3Ag4—N2—Ag194.0 (3)
C32—C31—C30119.7 (9)Ag4'—N2—Ag198.4 (3)
C32—C31—H31120.1C2—N2—Ag2132.7 (7)
C30—C31—H31120.1Ag4—N2—Ag298.5 (3)
C31—C32—C33119.8 (10)Ag4'—N2—Ag290.8 (3)
C31—C32—H32120.1Ag1—N2—Ag282.5 (2)
C33—C32—H32120.1C3—N3—Ag4129.2 (8)
C32—C33—C34120.0 (10)C3—N3—Ag3'126.2 (8)
C32—C33—H33120.0C3—N3—Ag1116.7 (8)
C34—C33—H33120.0Ag4—N3—Ag194.4 (3)
C29—C34—C33121.7 (10)Ag3'—N3—Ag195.1 (3)
C29—C34—H34119.2C3—N3—Ag3126.3 (7)
C33—C34—H34119.2Ag4—N3—Ag384.9 (4)
C40—C35—C36118.6 (9)Ag1—N3—Ag396.3 (3)
C40—C35—P2123.0 (7)C3—N3—Ag4'134.9 (8)
C36—C35—P2118.4 (8)Ag3'—N3—Ag4'78.7 (3)
C37—C36—C35119.6 (10)Ag1—N3—Ag4'94.0 (3)
C37—C36—H36120.2C4—N4—Ag4'123.1 (8)
C35—C36—H36120.2C4—N4—Ag2117.3 (8)
C38—C37—C36121.5 (11)Ag4'—N4—Ag295.4 (4)
C38—C37—H37119.3C4—N4—Ag3130.5 (8)
C36—C37—H37119.3Ag2—N4—Ag396.5 (3)
C37—C38—C39118.6 (10)C4—N4—Ag3'133.3 (8)
C37—C38—H38120.7Ag4'—N4—Ag3'83.4 (4)
C39—C38—H38120.7Ag2—N4—Ag3'94.5 (3)
C40—C39—C38120.8 (10)C4—N4—Ag4127.8 (8)
C40—C39—H39119.6Ag2—N4—Ag493.3 (3)
C38—C39—H39119.6Ag3—N4—Ag481.0 (3)
C39—C40—C35120.7 (10)C11—P1—C5100.8 (12)
C39—C40—H40119.6C11—P1—C17106.3 (11)
C35—C40—H40119.6C5—P1—C17107.0 (4)
C46—C41—C42118.7 (8)C5—P1—C11'106.0 (5)
C46—C41—P3117.1 (9)C17—P1—C11'101.8 (6)
C42—C41—P3123.9 (9)C11—P1—Ag1114.4 (11)
C46—C41—P3'120.1 (9)C5—P1—Ag1113.0 (3)
C42—C41—P3'120.9 (9)C17—P1—Ag1114.1 (3)
C43—C42—C41120.7 (9)C11'—P1—Ag1113.9 (5)
C43—C42—H42119.7C29—P2—C35104.5 (4)
C41—C42—H42119.7C29—P2—C23103.6 (4)
C44—C43—C42120.8 (9)C35—P2—C23106.4 (4)
C44—C43—H43119.6C29—P2—Ag2114.1 (3)
C42—C43—H43119.6C35—P2—Ag2114.0 (3)
C43—C44—C45119.1 (9)C23—P2—Ag2113.3 (3)
C43—C44—H44120.5P1—Ag1—N3137.1 (2)
C45—C44—H44120.5P1—Ag1—N2121.37 (17)
C46—C45—C44119.8 (9)N3—Ag1—N284.7 (2)
C46—C45—H45120.1P1—Ag1—N1121.91 (16)
C44—C45—H45120.1N3—Ag1—N184.0 (2)
C41—C46—C45121.0 (9)N2—Ag1—N195.5 (2)
C41—C46—H46119.5P1—Ag1—Ag2128.18 (6)
C45—C46—H46119.5N3—Ag1—Ag294.7 (2)
C48—C47—C52120.0N2—Ag1—Ag249.31 (18)
C48—C47—P3117.4 (10)N1—Ag1—Ag248.87 (14)
C52—C47—P3122.5 (10)N4—Ag2—P2137.2 (2)
C47—C48—C49120.0N4—Ag2—N184.6 (2)
C47—C48—H48120.0P2—Ag2—N1123.30 (16)
C49—C48—H48120.0N4—Ag2—N285.1 (2)
C50—C49—C48120.0P2—Ag2—N2119.82 (16)
C50—C49—H49120.0N1—Ag2—N294.5 (2)
C48—C49—H49120.0N4—Ag2—Ag195.2 (2)
C49—C50—C51120.0P2—Ag2—Ag1127.53 (6)
C49—C50—H50120.0N1—Ag2—Ag148.85 (16)
C51—C50—H50120.0N2—Ag2—Ag148.24 (14)
C52—C51—C50120.0P3—Ag3—N4121.2 (6)
C52—C51—H51120.0P3—Ag3—N1134.0 (6)
C50—C51—H51120.0N4—Ag3—N184.2 (3)
C51—C52—C47120.0P3—Ag3—N3126.6 (5)
C51—C52—H52120.0N4—Ag3—N395.5 (3)
C47—C52—H52120.0N1—Ag3—N382.2 (3)
C54—C53—C58120.0P3—Ag3—Ag4132.9 (6)
C54—C53—P3117.5 (9)N4—Ag3—Ag452.4 (3)
C58—C53—P3122.3 (9)N1—Ag3—Ag493.0 (3)
C55—C54—C53120.0N3—Ag3—Ag446.0 (2)
C55—C54—H54120.0C41—P3—C53101.4 (11)
C53—C54—H54120.0C41—P3—C47108.6 (10)
C56—C55—C54120.0C53—P3—C47104.2 (12)
C56—C55—H55120.0C41—P3—Ag3113.8 (10)
C54—C55—H55120.0C53—P3—Ag3112.9 (9)
C55—C56—C57120.0C47—P3—Ag3114.7 (10)
C55—C56—H56120.0C71—P4—C65104.4 (10)
C57—C56—H56120.0C71—P4—C59101.9 (8)
C58—C57—C56120.0C65—P4—C59112.4 (8)
C58—C57—H57120.0C71—P4—Ag4111.0 (6)
C56—C57—H57120.0C65—P4—Ag4113.3 (8)
C57—C58—C53120.0C59—P4—Ag4112.9 (7)
C57—C58—H58120.0N2—Ag4—N386.8 (3)
C53—C58—H58120.0N2—Ag4—P4140.2 (5)
C48'—C47'—C52'120.0N3—Ag4—P4121.2 (5)
C48'—C47'—P3'116.0 (12)N2—Ag4—N482.1 (3)
C52'—C47'—P3'124.0 (12)N3—Ag4—N493.1 (3)
C47'—C48'—C49'120.0P4—Ag4—N4119.9 (3)
C47'—C48'—H48'120.0N2—Ag4—Ag394.6 (3)
C49'—C48'—H48'120.0N3—Ag4—Ag349.2 (3)
C48'—C49'—C50'120.0P4—Ag4—Ag3124.9 (4)
C48'—C49'—H49'120.0N4—Ag4—Ag346.6 (2)
C50'—C49'—H49'120.0C47'—P3'—C53'106.4 (14)
C51'—C50'—C49'120.0C47'—P3'—C41103.4 (11)
C51'—C50'—H50'120.0C53'—P3'—C41106.0 (13)
C49'—C50'—H50'120.0C47'—P3'—Ag3'111.5 (12)
C52'—C51'—C50'120.0C53'—P3'—Ag3'116.9 (10)
C52'—C51'—H51'120.0C41—P3'—Ag3'111.6 (11)
C50'—C51'—H51'120.0N1—Ag3'—N385.9 (4)
C51'—C52'—C47'120.0N1—Ag3'—P3'137.2 (6)
C51'—C52'—H52'120.0N3—Ag3'—P3'120.0 (6)
C47'—C52'—H52'120.0N1—Ag3'—N484.6 (3)
C54'—C53'—C58'120.0N3—Ag3'—N497.1 (3)
C54'—C53'—P3'117.2 (11)P3'—Ag3'—N4120.9 (6)
C58'—C53'—P3'122.7 (11)N1—Ag3'—Ag4'95.7 (3)
C55'—C54'—C53'120.0N3—Ag3'—Ag4'53.5 (3)
C55'—C54'—H54'120.0P3'—Ag3'—Ag4'127.0 (6)
C53'—C54'—H54'120.0N4—Ag3'—Ag4'46.1 (3)
C54'—C55'—C56'120.0C65'—P4'—C59102.3 (9)
C54'—C55'—H55'120.0C65'—P4'—C71'104.4 (11)
C56'—C55'—H55'120.0C59—P4'—C71'107.0 (9)
C55'—C56'—C57'120.0C65'—P4'—Ag4'113.2 (9)
C55'—C56'—H56'120.0C59—P4'—Ag4'115.3 (8)
C57'—C56'—H56'120.0C71'—P4'—Ag4'113.5 (7)
C58'—C57'—C56'120.0N4—Ag4'—P4'122.0 (4)
C58'—C57'—H57'120.0N4—Ag4'—N288.6 (4)
C56'—C57'—H57'120.0P4'—Ag4'—N2138.5 (5)
C57'—C58'—C53'120.0N4—Ag4'—N395.8 (3)
C57'—C58'—H58'120.0P4'—Ag4'—N3118.5 (5)
C53'—C58'—H58'120.0N2—Ag4'—N380.9 (3)
C64—C59—C60119.1 (10)N4—Ag4'—Ag3'50.5 (3)
C64—C59—P4122.2 (9)P4'—Ag4'—Ag3'126.0 (5)
C60—C59—P4118.3 (9)N2—Ag4'—Ag3'94.7 (3)
C64—C59—P4'121.5 (9)N3—Ag4'—Ag3'47.8 (3)
C60—C59—P4'118.5 (9)
C10—C5—C6—C70.3 (14)C74'—C75'—C76'—C71'0.0
P1—C5—C6—C7178.4 (8)C72'—C71'—C76'—C75'0.0
C5—C6—C7—C81.8 (16)P4'—C71'—C76'—C75'177.9 (13)
C6—C7—C8—C92.7 (17)C12—C11—P1—C511 (3)
C7—C8—C9—C102.3 (16)C16—C11—P1—C5174.1 (15)
C8—C9—C10—C50.9 (15)C12—C11—P1—C17122 (3)
C6—C5—C10—C90.1 (13)C16—C11—P1—C1762.6 (16)
P1—C5—C10—C9178.7 (7)C12—C11—P1—C11'163 (16)
C16—C11—C12—C130.0C16—C11—P1—C11'22 (14)
P1—C11—C12—C13175 (3)C12—C11—P1—Ag1111 (3)
C11—C12—C13—C140.0C16—C11—P1—Ag164.3 (17)
C12—C13—C14—C150.0C6—C5—P1—C1180.9 (13)
C13—C14—C15—C160.0C10—C5—P1—C11100.5 (13)
C14—C15—C16—C110.0C6—C5—P1—C17168.2 (7)
C12—C11—C16—C150.0C10—C5—P1—C1710.5 (9)
P1—C11—C16—C15175 (2)C6—C5—P1—C11'83.7 (9)
C16'—C11'—C12'—C13'0.0C10—C5—P1—C11'97.6 (9)
P1—C11'—C12'—C13'175.1 (10)C6—C5—P1—Ag141.7 (8)
C11'—C12'—C13'—C14'0.0C10—C5—P1—Ag1137.0 (7)
C12'—C13'—C14'—C15'0.0C22—C17—P1—C11144.3 (14)
C13'—C14'—C15'—C16'0.0C18—C17—P1—C1134.5 (14)
C14'—C15'—C16'—C11'0.0C22—C17—P1—C5108.6 (8)
C12'—C11'—C16'—C15'0.0C18—C17—P1—C572.7 (8)
P1—C11'—C16'—C15'175.2 (10)C22—C17—P1—C11'140.4 (8)
C22—C17—C18—C192.6 (13)C18—C17—P1—C11'38.4 (9)
P1—C17—C18—C19176.2 (7)C22—C17—P1—Ag117.3 (9)
C17—C18—C19—C201.7 (15)C18—C17—P1—Ag1161.5 (6)
C18—C19—C20—C210.5 (19)C12'—C11'—P1—C1145 (14)
C19—C20—C21—C222 (2)C16'—C11'—P1—C11140 (15)
C18—C17—C22—C211.4 (16)C12'—C11'—P1—C516.9 (12)
P1—C17—C22—C21177.5 (9)C16'—C11'—P1—C5167.9 (10)
C20—C21—C22—C170.8 (19)C12'—C11'—P1—C1794.9 (12)
C28—C23—C24—C250.7 (13)C16'—C11'—P1—C1780.3 (10)
P2—C23—C24—C25179.5 (7)C12'—C11'—P1—Ag1141.8 (12)
C23—C24—C25—C260.5 (15)C16'—C11'—P1—Ag143.0 (11)
C24—C25—C26—C270.5 (17)C34—C29—P2—C3593.6 (10)
C25—C26—C27—C280.6 (18)C30—C29—P2—C3586.1 (8)
C26—C27—C28—C231.8 (17)C34—C29—P2—C2317.7 (10)
C24—C23—C28—C271.8 (15)C30—C29—P2—C23162.6 (7)
P2—C23—C28—C27179.3 (8)C34—C29—P2—Ag2141.3 (9)
C34—C29—C30—C310.6 (13)C30—C29—P2—Ag239.0 (8)
P2—C29—C30—C31179.7 (7)C40—C35—P2—C2941.2 (9)
C29—C30—C31—C320.1 (13)C36—C35—P2—C29139.9 (8)
C30—C31—C32—C331.5 (17)C40—C35—P2—C2368.0 (9)
C31—C32—C33—C343 (2)C36—C35—P2—C23110.9 (8)
C30—C29—C34—C332.5 (18)C40—C35—P2—Ag2166.5 (7)
P2—C29—C34—C33177.8 (12)C36—C35—P2—Ag214.7 (9)
C32—C33—C34—C294 (2)C24—C23—P2—C29100.9 (8)
C40—C35—C36—C371.8 (15)C28—C23—P2—C2980.3 (8)
P2—C35—C36—C37179.3 (9)C24—C23—P2—C359.0 (9)
C35—C36—C37—C380.9 (18)C28—C23—P2—C35169.8 (7)
C36—C37—C38—C392.3 (18)C24—C23—P2—Ag2134.9 (7)
C37—C38—C39—C401.1 (17)C28—C23—P2—Ag243.9 (8)
C38—C39—C40—C351.6 (15)C46—C41—P3—C53148.6 (10)
C36—C35—C40—C393.0 (14)C42—C41—P3—C5337.2 (14)
P2—C35—C40—C39178.1 (7)P3'—C41—P3—C5339 (7)
C46—C41—C42—C432.7 (15)C46—C41—P3—C47102.0 (13)
P3—C41—C42—C43176.7 (10)C42—C41—P3—C4772.1 (14)
P3'—C41—C42—C43171.9 (11)P3'—C41—P3—C47148 (8)
C41—C42—C43—C441.6 (15)C46—C41—P3—Ag327.1 (13)
C42—C43—C44—C450.8 (15)C42—C41—P3—Ag3158.8 (8)
C43—C44—C45—C462.0 (14)P3'—C41—P3—Ag383 (7)
C42—C41—C46—C451.4 (15)C54—C53—P3—C4179.2 (13)
P3—C41—C46—C45175.9 (10)C58—C53—P3—C4195.2 (13)
P3'—C41—C46—C45173.1 (11)C54—C53—P3—C47168.0 (11)
C44—C45—C46—C410.9 (15)C58—C53—P3—C4717.5 (16)
C52—C47—C48—C490.0C54—C53—P3—Ag342.9 (15)
P3—C47—C48—C49177.3 (14)C58—C53—P3—Ag3142.6 (11)
C47—C48—C49—C500.0C48—C47—P3—C41169.8 (11)
C48—C49—C50—C510.0C52—C47—P3—C417.4 (16)
C49—C50—C51—C520.0C48—C47—P3—C5382.8 (14)
C50—C51—C52—C470.0C52—C47—P3—C53100.0 (13)
C48—C47—C52—C510.0C48—C47—P3—Ag341.2 (15)
P3—C47—C52—C51177.2 (15)C52—C47—P3—Ag3136.1 (10)
C58—C53—C54—C550.0C72—C71—P4—C651.4 (13)
P3—C53—C54—C55174.6 (15)C76—C71—P4—C65176.6 (10)
C53—C54—C55—C560.0C72—C71—P4—C59118.5 (11)
C54—C55—C56—C570.0C76—C71—P4—C5959.5 (11)
C55—C56—C57—C580.0C72—C71—P4—Ag4121.1 (10)
C56—C57—C58—C530.0C76—C71—P4—Ag460.9 (11)
C54—C53—C58—C570.0C66—C65—P4—C71102.2 (12)
P3—C53—C58—C57174.3 (16)C70—C65—P4—C7179.9 (12)
C52'—C47'—C48'—C49'0.0C66—C65—P4—C597.4 (14)
P3'—C47'—C48'—C49'179.0 (17)C70—C65—P4—C59170.4 (10)
C47'—C48'—C49'—C50'0.0C66—C65—P4—Ag4136.8 (10)
C48'—C49'—C50'—C51'0.0C70—C65—P4—Ag441.0 (12)
C49'—C50'—C51'—C52'0.0C64—C59—P4—C7148.3 (12)
C50'—C51'—C52'—C47'0.0C60—C59—P4—C71138.0 (10)
C48'—C47'—C52'—C51'0.0P4'—C59—P4—C7143 (3)
P3'—C47'—C52'—C51'178.9 (18)C64—C59—P4—C6562.9 (13)
C58'—C53'—C54'—C55'0.0C60—C59—P4—C65110.7 (12)
P3'—C53'—C54'—C55'178.3 (16)P4'—C59—P4—C65155 (4)
C53'—C54'—C55'—C56'0.0C64—C59—P4—Ag4167.4 (8)
C54'—C55'—C56'—C57'0.0C60—C59—P4—Ag418.9 (12)
C55'—C56'—C57'—C58'0.0P4'—C59—P4—Ag476 (3)
C56'—C57'—C58'—C53'0.0C48'—C47'—P3'—C53'82.6 (16)
C54'—C53'—C58'—C57'0.0C52'—C47'—P3'—C53'98.5 (16)
P3'—C53'—C58'—C57'178.2 (17)C48'—C47'—P3'—C41166.0 (12)
C64—C59—C60—C610.3 (18)C52'—C47'—P3'—C4113.0 (17)
P4—C59—C60—C61173.6 (10)C48'—C47'—P3'—Ag3'45.9 (16)
P4'—C59—C60—C61169.8 (10)C52'—C47'—P3'—Ag3'133.0 (12)
C59—C60—C61—C621.2 (18)C54'—C53'—P3'—C47'159.2 (12)
C60—C61—C62—C631.6 (17)C58'—C53'—P3'—C47'19.1 (19)
C61—C62—C63—C641.1 (17)C54'—C53'—P3'—C4191.3 (13)
C62—C63—C64—C590.2 (16)C58'—C53'—P3'—C4190.5 (16)
C60—C59—C64—C630.2 (16)C54'—C53'—P3'—Ag3'33.9 (17)
P4—C59—C64—C63173.9 (9)C58'—C53'—P3'—Ag3'144.3 (12)
P4'—C59—C64—C63169.0 (10)C46—C41—P3'—C47'108.6 (13)
C70—C65—C66—C670.0C42—C41—P3'—C47'77.0 (14)
P4—C65—C66—C67177.8 (14)P3—C41—P3'—C47'33 (7)
C65—C66—C67—C680.0C46—C41—P3'—C53'139.7 (12)
C66—C67—C68—C690.0C42—C41—P3'—C53'34.7 (15)
C67—C68—C69—C700.0P3—C41—P3'—C53'145 (8)
C68—C69—C70—C650.0C46—C41—P3'—Ag3'11.4 (15)
C66—C65—C70—C690.0C42—C41—P3'—Ag3'163.1 (8)
P4—C65—C70—C69177.9 (13)P3—C41—P3'—Ag3'87 (7)
C76—C71—C72—C730.0C66'—C65'—P4'—C599.1 (15)
P4—C71—C72—C73178.0 (12)C70'—C65'—P4'—C59172.0 (10)
C71—C72—C73—C740.0C66'—C65'—P4'—C71'102.3 (14)
C72—C73—C74—C750.0C70'—C65'—P4'—C71'76.6 (12)
C73—C74—C75—C760.0C66'—C65'—P4'—Ag4'133.8 (11)
C74—C75—C76—C710.0C70'—C65'—P4'—Ag4'47.3 (13)
C72—C71—C76—C750.0C64—C59—P4'—C65'70.0 (13)
P4—C71—C76—C75178.0 (12)C60—C59—P4'—C65'120.7 (12)
C70'—C65'—C66'—C67'0.0P4—C59—P4'—C65'27 (3)
P4'—C65'—C66'—C67'178.9 (16)C64—C59—P4'—C71'39.4 (13)
C65'—C66'—C67'—C68'0.0C60—C59—P4'—C71'129.8 (11)
C66'—C67'—C68'—C69'0.0P4—C59—P4'—C71'137 (4)
C67'—C68'—C69'—C70'0.0C64—C59—P4'—Ag4'166.7 (8)
C68'—C69'—C70'—C65'0.0C60—C59—P4'—Ag4'2.6 (13)
C66'—C65'—C70'—C69'0.0P4—C59—P4'—Ag4'96 (3)
P4'—C65'—C70'—C69'179.0 (15)C72'—C71'—P4'—C65'14.6 (14)
C76'—C71'—C72'—C73'0.0C76'—C71'—P4'—C65'163.2 (11)
P4'—C71'—C72'—C73'177.7 (14)C72'—C71'—P4'—C5993.3 (13)
C71'—C72'—C73'—C74'0.0C76'—C71'—P4'—C5988.8 (13)
C72'—C73'—C74'—C75'0.0C72'—C71'—P4'—Ag4'138.3 (11)
C73'—C74'—C75'—C76'0.0C76'—C71'—P4'—Ag4'39.5 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9···O2i0.932.373.177 (12)145
C16—H16···O20.932.593.324 (17)136
C25—H25···O1ii0.932.483.358 (12)157
C51—H51···O4iii0.932.223.07 (2)151
C67—H67···O3iv0.932.193.01 (2)147
Symmetry codes: (i) y+1, x, z+2; (ii) y+1, x1, z+2; (iii) y+1, x+1, z+1; (iv) y, x+1, z+1.
Ag···Ag and N···N separations (Å) top
Ag3'···Ag4'3.133 (9)Ag1···Ag33.605 (8)
Ag3···Ag4'3.156 (8)Ag2···Ag43.615 (8)
Ag1···Ag23.1906 (10)Ag1···Ag4'3.616 (9)
Ag3'···Ag43.215 (8)N1···N33.210 (10)
Ag3···Ag43.250 (9)N2···N33.213 (9)
Ag2···Ag4'3.428 (10)N1···N43.220 (9)
Ag1···Ag43.461 (8)N2···N43.247 (10)
Ag1···Ag3'3.494 (8)N1···N23.572 (11)
Ag2···Ag3'3.523 (6)N3···N43.599 (14)
Ag2···Ag33.545 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9···O2i0.932.373.177 (12)145
C16'—H16'···O20.932.593.324 (17)136
C25—H25···O1ii0.932.483.358 (12)157
C51—H51···O4iii0.932.223.07 (2)151
C67—H67···O3iv0.932.193.01 (2)147
Symmetry codes: (i) y+1, x, z+2; (ii) y+1, x1, z+2; (iii) y+1, x+1, z+1; (iv) y, x+1, z+1.

Experimental details

Crystal data
Chemical formula[Ag4(CNO)4(C18H15P)4]
Mr1648.64
Crystal system, space groupTetragonal, P4
Temperature (K)110
a, c (Å)24.0846 (3), 15.2037 (3)
V3)8819.2 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.99
Crystal size (mm)0.35 × 0.30 × 0.20
Data collection
DiffractometerOxford Gemini S
diffractometer
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2006)
Tmin, Tmax0.912, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
105239, 20082, 12667
Rint0.048
(sin θ/λ)max1)0.674
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.131, 1.01
No. of reflections20082
No. of parameters1018
No. of restraints1206
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.68, 1.88
Absolute structureFlack x determined using 5170 quotients [(I+)–(I)]/[(I+)+(I)] (Parsons & Flack, 2004)
Absolute structure parameter0.023 (9)

Computer programs: CrysAlis CCD (Oxford Diffraction, 2006), CrysAlis RED (Oxford Diffraction, 2006), SHELXS2013 (Sheldrick, 2008), SHELXL2013 (Sheldrick, 2015), ORTEP-3 for Windows (Farrugia, 2012), SHELXTL (Sheldrick, 2008), PLATON (Spek, 2009), SQUEEZE (Spek, 2015), WinGX (Farrugia, 2012), publCIF (Westrip, 2010).

 

Acknowledgements

Financial support from the Federal Cluster of Excellence EXC 1075 `MERGE Technologies for Multifunctional Lightweight Structures' is gratefully acknowledged. DS thanks the Fonds der Chemischen Industrie for a FCI PhD fellowship.

References

First citationBachmann, W. E. & Maxwell, C. E. III (1950). J. Am. Chem. Soc. 72, 2880.  CrossRef Google Scholar
First citationBecker, H. G. O. & Eisenschmidt, V. (1973). J. Prakt. Chem. 315, 640–648.  CrossRef CAS Google Scholar
First citationBiltz, H. & Jeltsch, A. (1923). Ber. Dtsch. Chem. Ges. A/B, 56, 1914–1926.  CrossRef Google Scholar
First citationBlair, J. S. (1926). J. Am. Chem. Soc. 48, 96–103.  CrossRef CAS Google Scholar
First citationBokhonov, B. B., Sharafutdinov, M. R., Whitcomb, D. R. & Burleva, L. P. (2014). J. Phys. Chem. C118, 11980–11989.  Google Scholar
First citationBondi, A. (1964). J. Phys. Chem. 68, 441–451.  CrossRef CAS Web of Science Google Scholar
First citationBowmaker, G. A., Effendy Junk, P. C. & White, A. H. (1998). J. Chem. Soc. Dalton Trans. pp. 2131–2138.  Google Scholar
First citationChi, K. M., Chen, K. H., Peng, S. M. & Lee, G. H. (1996). Organometallics, 15, 2575–2578.  CSD CrossRef CAS Web of Science Google Scholar
First citationChi, K. M. & Lu, Y. H. (2001). Chem. Vap. Deposition, 7, 117–120.  CrossRef CAS Google Scholar
First citationClusius, K. & Endtinger, F. (1960). Helv. Chim. Acta, 43, 2063–2066.  CrossRef CAS Google Scholar
First citationDains, F. B., Greider, H. W. & Kidwell, C. H. (1919). J. Am. Chem. Soc. 41, 1004–1013.  CrossRef CAS Google Scholar
First citationDains, F. B. & Wertheim, E. (1920). J. Am. Chem. Soc. 42, 2303–2309.  CrossRef CAS Google Scholar
First citationDi Nicola, C., Effendy, Fazaroh, F., Pettinari, C., Skelton, B. W., Somers, N. & White, A. H. (2005). Inorg. Chim. Acta, 358, 720–734.  Web of Science CSD CrossRef CAS Google Scholar
First citationDi Nicola, C., Effendy, Pettinari, C., Skelton, B. W., Somers, N. & White, A. H. (2006). Inorg. Chim. Acta, 359, 53–63.  Web of Science CSD CrossRef CAS Google Scholar
First citationEllestad, O. H., Klaeboe, P., Tucker, E. E. & Songstad, J. (1972). Acta Chem. Scand. 26, 3579–3592.  CrossRef CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671.  Web of Science CSD CrossRef CAS Google Scholar
First citationHaase, T., Bahlawane, N., Strong, J. T., Jakob, A., Shen, Y., Lang, H. & Kohse-Höeinghaus, K. (2005a). Proc. Electrochem. Soc. pp. 276–283.  Google Scholar
First citationHaase, T., Kohse-Höinghaus, K., Bahlawane, N., Djiele, P., Jakob, A. & Lang, H. (2005b). Chem. Vap. Deposition, 11, 195–205.  CrossRef CAS Google Scholar
First citationJahn, S. F., Blaudeck, T., Baumann, R. R., Jakob, A., Ecorchard, P., Rüffer, T., Lang, H. & Schmidt, P. (2010). Chem. Mater. 22, 3067–3071.  CrossRef CAS Google Scholar
First citationJakob, A., Schmidt, H., Djiele, P., Shen, Y. & Lang, H. (2006). Microchim. Acta, 156, 77–81.  CrossRef CAS Google Scholar
First citationKawakubo, H., Suzuki, T., Nishino, K., Hara, F., Takano, T., Takebayashi, Y., Onodera, M., Mitsui, A., Yahagi, H., Takayama, H., Kuroboshi, M. & Tanaka, H. (2015). Synth. Commun. 45, 1068–1072.  CrossRef CAS Google Scholar
First citationLang, H. (2011). Jordan J. Chem. 6, 231–245.  CAS Google Scholar
First citationLang, H. & Buschbeck, R. (2009). Deposition of metals and metal oxides by means of metal enolates, in The Chemistry of Metal Enolates, edited by J. Zabicky, pp. 929–1017. Chichester: Wiley.  Google Scholar
First citationLang, H. & Dietrich, S. (2013). 4.10 – Metals – Gas-Phase Deposition and Applications, in Comprehensive Inorganic Chemistry II (Second Edition), edited by J. Reedijk & K. Poeppelmeier, pp. 211–269. Amsterdam: Elsevier.  Google Scholar
First citationMothes, R., Jakob, A., Waechtler, T., Schulz, S. E., Gessner, T. & Lang, H. (2015b). Eur. J. Inorg. Chem. 10, 1726–1733.  CrossRef Google Scholar
First citationMothes, R., Petzold, H., Jakob, A., Rüffer, T. & Lang, H. (2015a). Inorg. Chim. Acta 429, 227–236.  CrossRef CAS Google Scholar
First citationMurray, J. A. & Dains, F. B. (1934). J. Am. Chem. Soc. 56, 144–146.  CrossRef CAS Google Scholar
First citationOestreicher, A., Röhrich, T., Wilden, J., Lerch, M., Jakob, A. & Lang, H. (2013). Appl. Surf. Sci. 265, 239–244.  CrossRef CAS Google Scholar
First citationOxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationParsons, S. & Flack, H. (2004). Acta Cryst. A60, s61.  CrossRef IUCr Journals Google Scholar
First citationPartyka, D. V. & Deligonul, N. (2009). Inorg. Chem. 48, 9463–9475.  Web of Science CrossRef PubMed CAS Google Scholar
First citationPotts, K. T., O'Brien, J. J. & Tham, F. S. (1990). Inorg. Chim. Acta, 177, 13–24.  CrossRef CAS Google Scholar
First citationSchmidbaur, H. & Schier, A. (2015). Angew. Chem. Int. Ed. 54, 746–784.  CrossRef CAS Google Scholar
First citationSchmidt, H., Jakob, A., Haase, T., Kohse-Höinghaus, K., Schulz, S. E., Wächtler, T., Gessner, T. & Lang, H. (2005). Z. Anorg. Allg. Chem. 631, 2786–2791.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2015). Acta Cryst. C71, 9–18.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSteffan, M., Jakob, A., Claus, P. & Lang, H. (2009). Catal. Commun. 10, 437–441.  Web of Science CrossRef CAS Google Scholar
First citationSteiner, T. (2002). Angew. Chem. Int. Ed. 41, 48–76.  Web of Science CrossRef CAS Google Scholar
First citationStruppert, T., Jakob, A., Heft, A., Grünler, B. & Lang, H. (2010). Thin Solid Films, 518, 5741–5744.  CrossRef CAS Google Scholar
First citationThorn, A., Dittrich, B. & Sheldrick, G. M. (2012). Acta Cryst. A68, 448–451.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 10| October 2015| Pages 1262-1265
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds