organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 1-fluoro-1,3-di­hydro­benzo[c]thio­phene 2,2-dioxide

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, 333 Longteng Road, Shanghai, People's Republic of China
*Correspondence e-mail: ya.li@sues.edu.cn

Edited by M. Weil, Vienna University of Technology, Austria (Received 14 August 2015; accepted 2 September 2015; online 12 September 2015)

In the title compound, C8H7FO2S, the thio­phene ring has an envelope conformation, with the S atom bearing the two O atoms being the flap. In the crystal, mol­ecules are linked by C—H⋯O and C—H⋯F inter­actions, generating a three-dimensional network structure.

1. Related literature

For the use of of α-fluoro sulfones in organic synthesis, see: Fukuzumi et al. (2006[Fukuzumi, T., Shibata, N., Sugiura, M., Yasui, H., Nakamura, S. & Toru, T. (2006). Angew. Chem. Int. Ed. 45, 4973-4977.]); Li et al. (2006[Li, Y., Ni, C., Liu, J., Zhang, L., Zheng, J., Zhu, L. & Hu, J. (2006). Org. Lett. 8, 1693-1696.]); Prakash et al. (2003[Prakash, G. K. S., Hu, J., Mathew, T. & Olah, G. A. (2003). Angew. Chem. Int. Ed. 42, 5216-5219.]); Zhao et al. (2013[Zhao, Y., Ni, C., Jiang, F., Gao, B., Shen, X. & Hu, J. (2013). ACS Catal. 3, 631-634.]). For their synthesis, see: Jiang et al. (2014[Jiang, F., Zhao, Y. & Hu, J. (2014). Org. Chem. Front. 1, 625-629.]); Ni et al. (2008[Ni, C., Zhang, L. & Hu, J. (2008). J. Org. Chem. 73, 5699-5713.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C8H7FO2S

  • Mr = 186.20

  • Monoclinic, P 21 /c

  • a = 5.7772 (5) Å

  • b = 8.3886 (6) Å

  • c = 16.8717 (12) Å

  • β = 99.742 (6)°

  • V = 805.86 (11) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 3.38 mm−1

  • T = 296 K

  • 0.05 × 0.03 × 0.02 mm

2.2. Data collection

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.418, Tmax = 0.753

  • 6724 measured reflections

  • 1475 independent reflections

  • 1206 reflections with I > 2σ(I)

  • Rint = 0.080

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.068

  • wR(F2) = 0.205

  • S = 1.13

  • 1475 reflections

  • 109 parameters

  • H-atom parameters constrained

  • Δρmax = 0.58 e Å−3

  • Δρmin = −0.98 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯O1i 0.93 2.95 3.687 (6) 138
C1—H1⋯O1ii 0.98 2.47 3.266 (5) 139
C1—H1⋯O2ii 0.98 3.48 4.331 (6) 147
C4—H4⋯O2iii 0.93 2.54 3.371 (5) 148
C5—H5⋯F1iv 0.93 2.81 3.640 (5) 150
C8—H8B⋯O2v 0.97 2.50 3.406 (5) 156
Symmetry codes: (i) x-1, y, z; (ii) -x+1, -y+2, -z+2; (iii) [x-1, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (iv) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (v) -x+1, -y+1, -z+2.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]); molecular graphics: OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]) and Mercury (Macrae, 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: OLEX2.

Supporting information


Synthesis and crystallization top

Lithium bis­(tri­methyl­silyl)amide (LiHMDS; 2.2 ml, 1.0 M in THF, 2.2 mmol, 2.2 equiv) and anhydrous ZnCl2 (341 mg, 2.5 mmol, 2.5 equiv) were dissolved in 12 ml THF. 10 minutes later, 1,3-di­hydro­benzo[c]thio­phene-2,2-dioxide (168 mg, 1.0 mmol, 1.0 equiv) was added into the mixture under N2 atmosphere. The reaction was stirred for one hour. Then N-fluoro­benzene­sulfonimide (NFSI; 2.0 equiv, 632 mg, 2.0 mmol) was added into the mixture in a flash. The reaction was allowed at room temperature for half an hour and quenched by addition of H2O. After extraction with ethyl acetate, the organic layer was dried over anhydrous Na2SO4, filtered and removed under vacuum. The crude product was purified by flash column chromatography on silica gel with ethyl acetate/hexane (1:3) to provide the title compound (97 mg, 52%). The obtained powder was recrystallized from di­chloro­methane/hexane (1:10) solution to give colourless crystals.

1H NMR (400 MHz, CDCl3) δ = 7.64-7.66 (d, J = 8.0 Hz, 1H), 7.56-7.59 (m, 1H), 7.48-7.52 (m, 1H), 7.36-7.38 (d, J = 8.0 Hz, 1H), 6.03 (d, J = 56.4 Hz, 1H), 4.40 (dd, J = 60.0, 16.0 Hz, 2H). 19F NMR (376 MHz, CDCl3) δ = -153.70 (d, J = 56.4 Hz). 13C NMR (101 MHz, CDCl3) δ = 128.6 (d, J = 4.0 Hz), 126.1, 125.5 (d, J = 4.0 Hz), 124.8, 122.5, 122.1, 94.2 (d, J = 86.4 Hz), 49.9. MS (EI) m/z: 168 [M + H - 19]+. HRMS (EI) m/z: calcd for C8H8O2S [M + H - 19]+ 168.0245, found 168.0251.

Refinement top

All H atoms of the phenyl groups were placed at calculated positions and treated as riding on their parent atoms, with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C). The methyl­ene H atoms were found from a difference map. Their positions were refined with C—H = 0.97 Å and Uiso(H) = 1.2Ueq(C).

Results and discussion top

Related literature top

For the use of of α-fluoro sulfones in organic synthesis, see: Fukuzumi et al. (2006); Li et al. (2006); Prakash et al. (2003); Zhao et al. (2013). For their synthesis, see: Jiang et al. (2014); Ni et al. (2008).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: OLEX2 (Dolomanov et al., 2009) and Mercury (Macrae, 2006); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Packing of the molecules in the unit cell in a view approximately along [010].
1-Fluoro-1,3-dihydrobenzo[c]thiophene 2,2-dioxide top
Crystal data top
C8H7FO2SF(000) = 384
Mr = 186.20Dx = 1.535 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54178 Å
a = 5.7772 (5) ÅCell parameters from 1262 reflections
b = 8.3886 (6) Åθ = 5.3–66.3°
c = 16.8717 (12) ŵ = 3.38 mm1
β = 99.742 (6)°T = 296 K
V = 805.86 (11) Å3Block, colourless
Z = 40.05 × 0.03 × 0.02 mm
Data collection top
Bruker APEXII CCD
diffractometer
1206 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.080
φ and ω scansθmax = 69.6°, θmin = 5.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 66
Tmin = 0.418, Tmax = 0.753k = 109
6724 measured reflectionsl = 1917
1475 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.068H-atom parameters constrained
wR(F2) = 0.205 w = 1/[σ2(Fo2) + (0.1242P)2 + 0.3031P]
where P = (Fo2 + 2Fc2)/3
S = 1.13(Δ/σ)max < 0.001
1475 reflectionsΔρmax = 0.58 e Å3
109 parametersΔρmin = 0.98 e Å3
0 restraints
Crystal data top
C8H7FO2SV = 805.86 (11) Å3
Mr = 186.20Z = 4
Monoclinic, P21/cCu Kα radiation
a = 5.7772 (5) ŵ = 3.38 mm1
b = 8.3886 (6) ÅT = 296 K
c = 16.8717 (12) Å0.05 × 0.03 × 0.02 mm
β = 99.742 (6)°
Data collection top
Bruker APEXII CCD
diffractometer
1475 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
1206 reflections with I > 2σ(I)
Tmin = 0.418, Tmax = 0.753Rint = 0.080
6724 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0680 restraints
wR(F2) = 0.205H-atom parameters constrained
S = 1.13Δρmax = 0.58 e Å3
1475 reflectionsΔρmin = 0.98 e Å3
109 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.58177 (16)0.76462 (12)0.95887 (5)0.0438 (4)
F10.1554 (5)0.6784 (4)0.96561 (16)0.0686 (8)
O10.6976 (5)0.9083 (4)0.94354 (18)0.0593 (9)
O20.6325 (6)0.6952 (5)1.03759 (17)0.0675 (10)
C10.2672 (7)0.7960 (5)0.9290 (2)0.0442 (9)
H10.21940.90300.94310.053*
C20.2387 (7)0.7727 (4)0.8397 (2)0.0381 (8)
C30.0537 (8)0.8364 (5)0.7852 (3)0.0521 (10)
H30.06320.89640.80270.063*
C40.0492 (10)0.8075 (6)0.7037 (3)0.0633 (13)
H40.07340.84770.66610.076*
C50.2237 (10)0.7203 (6)0.6781 (3)0.0638 (13)
H50.21780.70290.62330.077*
C60.4093 (8)0.6576 (5)0.7325 (2)0.0512 (10)
H60.52760.59940.71470.061*
C70.4136 (6)0.6840 (4)0.8142 (2)0.0373 (8)
C80.6028 (7)0.6252 (5)0.8808 (2)0.0442 (9)
H8A0.75640.62860.86490.053*
H8B0.57110.51750.89690.053*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0448 (6)0.0535 (7)0.0294 (6)0.0075 (4)0.0046 (4)0.0040 (3)
F10.0590 (15)0.098 (2)0.0493 (15)0.0118 (15)0.0102 (11)0.0065 (13)
O10.0623 (18)0.0629 (19)0.0519 (16)0.0229 (15)0.0075 (13)0.0147 (14)
O20.068 (2)0.095 (2)0.0328 (16)0.0078 (18)0.0109 (14)0.0109 (15)
C10.047 (2)0.054 (2)0.0302 (19)0.0005 (17)0.0026 (14)0.0082 (15)
C20.045 (2)0.0384 (19)0.0283 (18)0.0040 (15)0.0003 (14)0.0037 (13)
C30.053 (2)0.051 (2)0.047 (2)0.0017 (18)0.0075 (17)0.0000 (17)
C40.078 (3)0.063 (3)0.038 (2)0.013 (2)0.019 (2)0.0103 (19)
C50.092 (4)0.069 (3)0.027 (2)0.021 (3)0.001 (2)0.0043 (18)
C60.068 (3)0.052 (2)0.0358 (19)0.0143 (19)0.0140 (17)0.0135 (16)
C70.0453 (19)0.0335 (18)0.0313 (17)0.0072 (14)0.0011 (14)0.0070 (13)
C80.0427 (19)0.043 (2)0.045 (2)0.0018 (16)0.0020 (15)0.0037 (16)
Geometric parameters (Å, º) top
S1—O11.423 (3)C3—C41.392 (6)
S1—O21.434 (3)C4—H40.9300
S1—C11.821 (4)C4—C51.373 (8)
S1—C81.781 (4)C5—H50.9300
F1—C11.381 (5)C5—C61.391 (7)
C1—H10.9800C6—H60.9300
C1—C21.502 (5)C6—C71.392 (5)
C2—C31.393 (5)C7—C81.512 (5)
C2—C71.381 (5)C8—H8A0.9700
C3—H30.9300C8—H8B0.9700
O1—S1—O2118.9 (2)C3—C4—H4119.6
O1—S1—C1107.8 (2)C5—C4—C3120.7 (4)
O1—S1—C8109.19 (19)C5—C4—H4119.6
O2—S1—C1110.6 (2)C4—C5—H5119.4
O2—S1—C8112.9 (2)C4—C5—C6121.3 (4)
C8—S1—C194.61 (18)C6—C5—H5119.4
S1—C1—H1112.0C5—C6—H6120.8
F1—C1—S1107.1 (3)C5—C6—C7118.4 (4)
F1—C1—H1112.0C7—C6—H6120.8
F1—C1—C2112.1 (3)C2—C7—C6120.2 (4)
C2—C1—S1101.1 (3)C2—C7—C8114.8 (3)
C2—C1—H1112.0C6—C7—C8125.0 (4)
C3—C2—C1123.6 (4)S1—C8—H8A111.4
C7—C2—C1114.9 (3)S1—C8—H8B111.4
C7—C2—C3121.4 (4)C7—C8—S1101.8 (2)
C2—C3—H3121.0C7—C8—H8A111.4
C4—C3—C2118.0 (4)C7—C8—H8B111.4
C4—C3—H3121.0H8A—C8—H8B109.3
S1—C1—C2—C3156.5 (3)C1—C2—C7—C80.2 (5)
S1—C1—C2—C722.5 (4)C2—C3—C4—C50.7 (7)
F1—C1—C2—C389.7 (5)C2—C7—C8—S123.5 (4)
F1—C1—C2—C791.2 (4)C3—C2—C7—C60.7 (6)
O1—S1—C1—F1162.2 (2)C3—C2—C7—C8179.3 (4)
O1—S1—C1—C280.4 (3)C3—C4—C5—C60.3 (8)
O1—S1—C8—C779.0 (3)C4—C5—C6—C70.6 (7)
O2—S1—C1—F130.6 (3)C5—C6—C7—C21.0 (6)
O2—S1—C1—C2148.1 (3)C5—C6—C7—C8179.6 (4)
O2—S1—C8—C7146.3 (3)C6—C7—C8—S1155.1 (3)
C1—S1—C8—C731.6 (3)C7—C2—C3—C40.2 (6)
C1—C2—C3—C4179.3 (4)C8—S1—C1—F186.0 (3)
C1—C2—C7—C6178.4 (3)C8—S1—C1—C231.5 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O1i0.932.953.687 (6)138
C1—H1···O1ii0.982.473.266 (5)139
C1—H1···O2ii0.983.484.331 (6)147
C4—H4···O2iii0.932.543.371 (5)148
C5—H5···F1iv0.932.813.640 (5)150
C8—H8B···O2v0.972.503.406 (5)156
Symmetry codes: (i) x1, y, z; (ii) x+1, y+2, z+2; (iii) x1, y+3/2, z1/2; (iv) x, y+3/2, z1/2; (v) x+1, y+1, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O1i0.932.953.687 (6)137.7
C1—H1···O1ii0.982.473.266 (5)138.5
C1—H1···O2ii0.983.484.331 (6)146.7
C4—H4···O2iii0.932.543.371 (5)148.3
C5—H5···F1iv0.932.813.640 (5)149.6
C8—H8B···O2v0.972.503.406 (5)156.3
Symmetry codes: (i) x1, y, z; (ii) x+1, y+2, z+2; (iii) x1, y+3/2, z1/2; (iv) x, y+3/2, z1/2; (v) x+1, y+1, z+2.
 

Acknowledgements

Financial support by the Innovation Program of Shanghai University Students (cx1404008 and cs1404015) is gratefully acknowledged.

References

First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFukuzumi, T., Shibata, N., Sugiura, M., Yasui, H., Nakamura, S. & Toru, T. (2006). Angew. Chem. Int. Ed. 45, 4973–4977.  CSD CrossRef CAS Google Scholar
First citationJiang, F., Zhao, Y. & Hu, J. (2014). Org. Chem. Front. 1, 625–629.  CrossRef CAS Google Scholar
First citationLi, Y., Ni, C., Liu, J., Zhang, L., Zheng, J., Zhu, L. & Hu, J. (2006). Org. Lett. 8, 1693–1696.  CrossRef PubMed Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationNi, C., Zhang, L. & Hu, J. (2008). J. Org. Chem. 73, 5699–5713.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationPrakash, G. K. S., Hu, J., Mathew, T. & Olah, G. A. (2003). Angew. Chem. Int. Ed. 42, 5216–5219.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationZhao, Y., Ni, C., Jiang, F., Gao, B., Shen, X. & Hu, J. (2013). ACS Catal. 3, 631–634.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds