metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 10| October 2015| Pages m181-m182

Crystal structure of di­chlorido­[2-(di­phenyl­phosphan­yl)-3,4,5,6-tetra­fluoro­benzene-1-thiol­ato-κ2P,S]gold(III)

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Fordham University, 441 East Fordham Road, Bronx, NY 10458, USA, and bDepartment of Chemistry, The Ohio State University, Columbus, Ohio 43210, USA
*Correspondence e-mail: pcorfield@fordham.edu

Edited by M. Weil, Vienna University of Technology, Austria (Received 25 August 2015; accepted 7 September 2015; online 17 September 2015)

The title compound, [Au(C18H10F4PS)Cl2], crystallizes as neutral mol­ecules, with the AuIII atom coordinated by two Cl atoms and by the P and S atoms of the bidentate phosphanyl thiol­ate ligand, in a slightly distorted square-planar environment. The mol­ecules are linked into centrosymmetric dimers via long axial Au—Cl bonds of 3.393 (4) Å. This axial Au—Cl distance is longer than is usually seen, although one other example has been given. Dimer formation may explain the unexpectedly low solubility of the compound in common polar solvents. There is also a separate inter­molecular Au—F contact of 3.561 (6) Å, but this distance seems too long to be regarded as a bond. Two putative C—H⋯F hydrogen bonds appear to link the dimers into sheets parallel to (110). There is a short inter­molecular F⋯F contact of 2.695 (10) Å between two dimers related by the twofold axis.

1. Related literature

For synthetic details, see: Eller (1971[Eller, P. G. (1971). PhD thesis, The Ohio State University, Columbus, Ohio.]); Eller & Meek (1970[Eller, P. G. & Meek, D. W. (1970). J. Organomet. Chem. 22, 631-636.]). Hollis & Lippard (1983[Hollis, L. S. & Lippard, S. J. (1983). J. Am. Chem. Soc. 105, 4293-4299.]) describe a similarly long axial Au—Cl bond in a mixed-valence gold compound, although other axial Au—Cl bonds in the literature are in the 3.0–3.1 Å range, as in Elder & Watkins (1986[Elder, R. G. & Watkins, J. W. II (1986). Inorg. Chem. 25, 223-226.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • [Au(C18H10F4PS)Cl2]

  • Mr = 633.16

  • Monoclinic, C 2/c

  • a = 18.90 (2) Å

  • b = 8.388 (12) Å

  • c = 24.15 (3) Å

  • β = 100.75 (3)°

  • V = 3761 (8) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 8.15 mm−1

  • T = 298 K

  • 0.22 × 0.16 × 0.13 mm

2.2. Data collection

  • Picker 4-circle diffractometer

  • Absorption correction: gaussian (Busing & Levy, 1957[Busing, W. R. & Levy, H. A. (1957). Acta Cryst. 10, 180-182.]) Tmin = 0.384, Tmax = 0.442

  • 4262 measured reflections

  • 4142 independent reflections

  • 3209 reflections with I > 2σ(I)

  • Rint = 0.025

  • 18 standard reflections every 500 reflections intensity decay: −1.0(3)

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.086

  • S = 1.03

  • 4142 reflections

  • 220 parameters

  • H-atom parameters constrained

  • Δρmax = 1.00 e Å−3

  • Δρmin = −0.87 e Å−3

Table 1
Selected geometric parameters (Å, °)

Au—S 2.273 (3)
Au—P 2.258 (3)
Au—Cl2 2.337 (3)
Au—Cl1 2.305 (3)
S—Au—P 90.22 (10)
S—Au—Cl2 87.51 (10)
P—Au—Cl2 177.69 (6)
S—Au—Cl1 176.59 (7)
P—Au—Cl1 88.36 (10)
Cl2—Au—Cl1 93.88 (11)
S—Au—Cl2i 88.12 (7)
P—Au—Cl2i 90.45 (9)
Cl2—Au—Cl2i 89.91 (9)
Cl1—Au—Cl2i 94.99 (7)
Symmetry code: (i) -x, -y, -z.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C12—H12⋯F3ii 0.93 2.60 3.444 (7) 151
C18—H18⋯F4iii 0.93 2.50 3.082 (7) 121
Symmetry codes: (ii) x, y-1, z; (iii) [x+{\script{1\over 2}}, y-{\script{1\over 2}}, z].

Data collection: Corfield (1972[Corfield, P. W. R. (1972). Local versions of standard programs, written at Ohio State University.]); cell refinement: Corfield (1972[Corfield, P. W. R. (1972). Local versions of standard programs, written at Ohio State University.]); data reduction: Corfield et al. (1973[Corfield, P. W. R., Dabrowiak, J. C. & Gore, E. S. (1973). Inorg. Chem. 12, 1734-1740.]); program(s) used to solve structure: Corfield (1972[Corfield, P. W. R. (1972). Local versions of standard programs, written at Ohio State University.]); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.]); software used to prepare material for publication: SHELXL2014.

Supporting information


Synthesis and crystallization top

The preparation of the compound is described by Eller (1971), and synthesis of the then novel ligand is given in Eller & Meek (1970).

Refinement top

To reduce the number of parameters varied, the phenyl groups C16—C21 and C22—C27 were constrained as rigid hexagons, with C—C distances of 1.385 Å. Aromatic H atoms were placed geometrically, with their Ueq values set 1.2 times the Uiso of their bonded C atoms.

Related literature top

For synthetic details, see: Eller (1971); Eller & Meek (1970). Hollis & Lippard (1983) describe a similarly long axial Au—Cl bond in a mixed-valence gold compound, although other axial Au—Cl bonds in the literature are in the 3.0–3.1 Å range, as in Elder & Watkins (1986).

Computing details top

Data collection: Corfield (1972); cell refinement: Corfield (1972); data reduction: Corfield et al. (1973); program(s) used to solve structure: Corfield (1972); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEPIII (Burnett & Johnson, 1996); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. Packing of the title complex, viewed along a direction near to the a axis. The centrosymmetric dimers are shown, as well as the proximity of F3(1,y - 1,z) to a sixth coordination site for the gold atom. Long Au—Cl bonds are gived as dashed lines.
Dichlorido[2-(diphenylphosphanyl)-3,4,5,6-tetrafluorobenzene-1-thiolato-κ2P,S]gold(III) top
Crystal data top
[Au(C18H10F4PS)Cl2]F(000) = 2384
Mr = 633.16Dx = 2.236 Mg m3
Dm = 2.181 (3) Mg m3
Dm measured by flotation in carbon tetrachloride/bromoforom mixture. Discrepancy may be due to an uncalibrated pycnometer.
Monoclinic, C2/cMo Kα radiation, λ = 0.7107 Å
a = 18.90 (2) ÅCell parameters from 24 reflections
b = 8.388 (12) Åθ = 4.2–25.1°
c = 24.15 (3) ŵ = 8.15 mm1
β = 100.75 (3)°T = 298 K
V = 3761 (8) Å3Irregular, red
Z = 80.22 × 0.16 × 0.13 mm
Data collection top
Picker 4-circle
diffractometer
3209 reflections with I > 2σ(I)
Radiation source: sealed X-ray tubeRint = 0.025
Oriented graphite 200 reflection monochromatorθmax = 27.5°, θmin = 2.5°
θ/2θ scansh = 024
Absorption correction: gaussian
(Busing & Levy, 1957)
k = 09
Tmin = 0.384, Tmax = 0.442l = 3130
4262 measured reflections18 standard reflections every 500 reflections
4142 independent reflections intensity decay: 1.0 (3)
Refinement top
Refinement on F2Primary atom site location: heavy-atom method
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.086H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2)]
where P = (Fo2 + 2Fc2)/3
4142 reflections(Δ/σ)max < 0.001
220 parametersΔρmax = 1.00 e Å3
0 restraintsΔρmin = 0.87 e Å3
Crystal data top
[Au(C18H10F4PS)Cl2]V = 3761 (8) Å3
Mr = 633.16Z = 8
Monoclinic, C2/cMo Kα radiation
a = 18.90 (2) ŵ = 8.15 mm1
b = 8.388 (12) ÅT = 298 K
c = 24.15 (3) Å0.22 × 0.16 × 0.13 mm
β = 100.75 (3)°
Data collection top
Picker 4-circle
diffractometer
3209 reflections with I > 2σ(I)
Absorption correction: gaussian
(Busing & Levy, 1957)
Rint = 0.025
Tmin = 0.384, Tmax = 0.44218 standard reflections every 500 reflections
4262 measured reflections intensity decay: 1.0 (3)
4142 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0320 restraints
wR(F2) = 0.086H-atom parameters constrained
S = 1.02Δρmax = 1.00 e Å3
4142 reflectionsΔρmin = 0.87 e Å3
220 parameters
Special details top

Experimental. Data reduction followed procedures in Corfield et al. (1973), with programs written by Corfield and by Graeme Gainsford.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. To reduce the number of parameters varied, the phenyl groups C16—C21 and C22—C27 were constrained as rigid hexagons, with C—C distances of 1.385 Å. Ueq values for the aromatic H atoms were set 1.2 times the Uiso of their bonded C atoms.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Au0.03240 (2)0.02779 (3)0.08580 (2)0.03238 (9)
Cl10.14260 (10)0.0955 (2)0.09200 (9)0.0544 (5)
Cl20.03221 (10)0.1909 (2)0.04280 (8)0.0503 (4)
S0.07524 (9)0.1492 (2)0.08537 (8)0.0438 (4)
P0.09063 (8)0.2433 (2)0.12802 (7)0.0309 (3)
F20.1031 (2)0.5694 (5)0.1812 (2)0.0572 (12)
F30.0040 (3)0.7682 (6)0.1937 (2)0.0681 (13)
F40.1413 (3)0.6750 (6)0.1616 (2)0.0757 (15)
F50.1734 (2)0.3959 (6)0.1090 (2)0.0622 (12)
C10.0205 (3)0.3780 (8)0.1371 (3)0.0343 (14)
C20.0351 (4)0.5243 (9)0.1633 (3)0.0431 (16)
C30.0190 (4)0.6241 (9)0.1708 (3)0.0479 (18)
C40.0886 (4)0.5795 (9)0.1527 (3)0.0488 (18)
C50.1042 (3)0.4341 (10)0.1269 (3)0.0461 (18)
C60.0507 (3)0.3312 (8)0.1186 (3)0.0363 (14)
C70.1393 (2)0.1964 (5)0.19702 (13)0.0336 (14)
C80.2018 (2)0.2774 (5)0.21989 (18)0.0490 (18)
H80.22150.35070.19810.059*
C90.2350 (2)0.2494 (6)0.27517 (19)0.058 (2)
H90.27690.30380.29050.070*
C100.2057 (3)0.1403 (6)0.30757 (14)0.055 (2)
H100.22790.12150.34470.066*
C110.1432 (3)0.0592 (6)0.28470 (17)0.060 (2)
H110.12350.01400.30650.072*
C120.1100 (2)0.0873 (5)0.22942 (18)0.0462 (17)
H120.06810.03290.21410.055*
C130.1473 (2)0.3410 (5)0.08744 (17)0.0352 (14)
C140.12320 (19)0.4760 (5)0.05659 (18)0.0400 (15)
H140.07710.51460.05660.048*
C150.1678 (3)0.5534 (4)0.02581 (18)0.0487 (18)
H150.15160.64410.00510.058*
C160.2365 (2)0.4959 (6)0.0259 (2)0.051 (2)
H160.26640.54800.00520.062*
C170.26061 (18)0.3610 (6)0.0567 (2)0.0527 (19)
H170.30680.32240.05680.063*
C180.2160 (2)0.2835 (5)0.08750 (19)0.0433 (16)
H180.23230.19290.10820.052*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Au0.03286 (13)0.03025 (15)0.03249 (12)0.00327 (11)0.00210 (8)0.00023 (11)
Cl10.0446 (10)0.0441 (11)0.0717 (13)0.0115 (8)0.0038 (9)0.0094 (9)
Cl20.0572 (11)0.0408 (10)0.0499 (10)0.0166 (8)0.0022 (8)0.0058 (8)
S0.0279 (8)0.0472 (11)0.0541 (10)0.0065 (7)0.0017 (7)0.0028 (8)
P0.0258 (7)0.0295 (9)0.0361 (8)0.0005 (6)0.0022 (6)0.0001 (6)
F20.048 (2)0.046 (3)0.074 (3)0.006 (2)0.000 (2)0.019 (2)
F30.082 (3)0.051 (3)0.071 (3)0.010 (3)0.012 (3)0.023 (2)
F40.066 (3)0.073 (4)0.088 (4)0.037 (3)0.015 (3)0.013 (3)
F50.034 (2)0.072 (3)0.080 (3)0.009 (2)0.008 (2)0.005 (3)
C10.030 (3)0.031 (4)0.041 (3)0.004 (3)0.005 (3)0.001 (3)
C20.047 (4)0.038 (4)0.043 (4)0.005 (3)0.004 (3)0.008 (3)
C30.060 (5)0.034 (4)0.049 (4)0.013 (3)0.007 (4)0.003 (3)
C40.051 (4)0.045 (5)0.052 (4)0.021 (4)0.015 (3)0.002 (3)
C50.025 (3)0.065 (5)0.048 (4)0.010 (3)0.005 (3)0.013 (4)
C60.036 (3)0.041 (4)0.032 (3)0.003 (3)0.005 (3)0.007 (3)
C70.037 (3)0.031 (4)0.031 (3)0.004 (3)0.001 (3)0.001 (3)
C80.047 (4)0.048 (5)0.046 (4)0.011 (3)0.006 (3)0.006 (3)
C90.050 (4)0.065 (6)0.051 (4)0.001 (4)0.012 (4)0.011 (4)
C100.068 (5)0.054 (5)0.040 (4)0.016 (4)0.001 (4)0.002 (4)
C110.089 (6)0.053 (5)0.039 (4)0.003 (5)0.014 (4)0.012 (3)
C120.054 (4)0.040 (4)0.044 (4)0.008 (3)0.008 (3)0.000 (3)
C130.031 (3)0.036 (4)0.038 (3)0.000 (3)0.003 (3)0.000 (3)
C140.042 (4)0.039 (4)0.040 (3)0.001 (3)0.009 (3)0.002 (3)
C150.070 (5)0.031 (4)0.047 (4)0.007 (4)0.017 (4)0.004 (3)
C160.059 (5)0.051 (5)0.047 (4)0.017 (4)0.017 (4)0.003 (3)
C170.041 (4)0.062 (5)0.057 (5)0.006 (4)0.016 (3)0.002 (4)
C180.034 (3)0.045 (4)0.051 (4)0.001 (3)0.006 (3)0.001 (3)
Geometric parameters (Å, º) top
Au—S2.273 (3)C7—C121.3850
Au—P2.258 (3)C8—C91.3850
Au—Cl22.337 (3)C8—H80.9300
Au—Cl12.305 (3)C9—C101.3850
Au—Cl2i3.393 (4)C9—H90.9300
Au—F3ii3.560 (6)C10—C111.3850
S—C61.747 (7)C10—H100.9300
P—C11.787 (6)C11—C121.3850
P—C71.791 (4)C11—H110.9300
P—C131.781 (4)C12—H120.9300
F2—C21.331 (8)C13—C141.3850
F3—C31.337 (9)C13—C181.3850
F4—C41.328 (8)C14—C151.3850
F5—C51.338 (8)C14—H140.9300
C1—C61.393 (8)C15—C161.3850
C1—C21.385 (10)C15—H150.9300
C2—C31.360 (10)C16—C171.3850
C3—C41.358 (10)C16—H160.9300
C4—C51.375 (11)C17—C181.3850
C5—C61.372 (9)C17—H170.9300
C7—C81.3850C18—H180.9300
S—Au—P90.22 (10)C5—C6—S118.5 (5)
S—Au—Cl287.51 (10)C1—C6—S123.4 (5)
P—Au—Cl2177.69 (6)C8—C7—C12120.0
S—Au—Cl1176.59 (7)C8—C7—P121.0 (3)
P—Au—Cl188.36 (10)C12—C7—P118.7 (3)
Cl2—Au—Cl193.88 (11)C7—C8—C9120.0
S—Au—Cl2i88.12 (7)C7—C8—H8120.0
P—Au—Cl2i90.45 (9)C9—C8—H8120.0
Cl2—Au—Cl2i89.91 (9)C10—C9—C8120.0
Cl1—Au—Cl2i94.99 (7)C10—C9—H9120.0
S—Au—F3ii88.98 (11)C8—C9—H9120.0
P—Au—F3ii107.67 (12)C11—C10—C9120.0
Cl2—Au—F3ii71.87 (12)C11—C10—H10120.0
Cl1—Au—F3ii88.50 (11)C9—C10—H10120.0
Cl2i—Au—F3ii161.66 (8)C10—C11—C12120.0
C6—S—Au103.2 (2)C10—C11—H11120.0
C1—P—C7106.8 (3)C12—C11—H11120.0
C1—P—C13108.2 (3)C11—C12—C7120.0
C7—P—C13110.8 (2)C11—C12—H12120.0
C1—P—Au104.6 (2)C7—C12—H12120.0
C7—P—Au111.53 (17)C14—C13—C18120.0
C13—P—Au114.36 (18)C14—C13—P120.0 (2)
C6—C1—C2119.7 (6)C18—C13—P120.0 (2)
C6—C1—P118.5 (5)C15—C14—C13120.0
C2—C1—P121.8 (5)C15—C14—H14120.0
F2—C2—C3119.1 (6)C13—C14—H14120.0
F2—C2—C1119.9 (6)C16—C15—C14120.0
C3—C2—C1121.0 (7)C16—C15—H15120.0
C4—C3—C2119.7 (7)C14—C15—H15120.0
C4—C3—F3120.0 (7)C17—C16—C15120.0
C2—C3—F3120.3 (7)C17—C16—H16120.0
F4—C4—C3119.5 (7)C15—C16—H16120.0
F4—C4—C5120.2 (7)C16—C17—C18120.0
C3—C4—C5120.2 (6)C16—C17—H17120.0
C6—C5—F5120.3 (7)C18—C17—H17120.0
C6—C5—C4121.4 (6)C17—C18—C13120.0
F5—C5—C4118.3 (6)C17—C18—H18120.0
C5—C6—C1118.0 (6)C13—C18—H18120.0
Symmetry codes: (i) x, y, z; (ii) x, y1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H12···F3ii0.932.603.444 (7)151
C18—H18···F4iii0.932.503.082 (7)121
Symmetry codes: (ii) x, y1, z; (iii) x+1/2, y1/2, z.
Selected geometric parameters (Å, º) top
Au—S2.273 (3)Au—Cl22.337 (3)
Au—P2.258 (3)Au—Cl12.305 (3)
S—Au—P90.22 (10)Cl2—Au—Cl193.88 (11)
S—Au—Cl287.51 (10)S—Au—Cl2i88.12 (7)
P—Au—Cl2177.69 (6)P—Au—Cl2i90.45 (9)
S—Au—Cl1176.59 (7)Cl2—Au—Cl2i89.91 (9)
P—Au—Cl188.36 (10)Cl1—Au—Cl2i94.99 (7)
Symmetry code: (i) x, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H12···F3ii0.932.603.444 (7)150.6
C18—H18···F4iii0.932.503.082 (7)120.9
Symmetry codes: (ii) x, y1, z; (iii) x+1/2, y1/2, z.
 

Acknowledgements

We are grateful for the provision of a crystalline sample by Gary P. Eller and Devon W. Meek, as well as support from the National Science Foundation through equipment grant GP8534 awarded to the Ohio State University where the experimental work was carried out.

References

First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationBusing, W. R. & Levy, H. A. (1957). Acta Cryst. 10, 180–182.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationCorfield, P. W. R. (1972). Local versions of standard programs, written at Ohio State University.  Google Scholar
First citationCorfield, P. W. R., Dabrowiak, J. C. & Gore, E. S. (1973). Inorg. Chem. 12, 1734–1740.  CSD CrossRef CAS Web of Science Google Scholar
First citationElder, R. G. & Watkins, J. W. II (1986). Inorg. Chem. 25, 223–226.  CSD CrossRef CAS Google Scholar
First citationEller, P. G. (1971). PhD thesis, The Ohio State University, Columbus, Ohio.  Google Scholar
First citationEller, P. G. & Meek, D. W. (1970). J. Organomet. Chem. 22, 631–636.  CrossRef CAS Google Scholar
First citationHollis, L. S. & Lippard, S. J. (1983). J. Am. Chem. Soc. 105, 4293–4299.  CSD CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 10| October 2015| Pages m181-m182
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds