research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 10| October 2015| Pages 1174-1176

Crystal structure of (μ-4-hy­dr­oxy­benzene­thiol­ato-κ2S:S)bis­­(μ-phenyl­methane­thiol­ato-κ2S:S)bis­­[(η6-1-iso­propyl-4-methyl­benzene)­ruthenium(II)] tetra­fluorido­borate

CROSSMARK_Color_square_no_text.svg

aInstitut de Chimie, Université de Neuchâtel, Avenue de Bellevaux 51, CH-2000 Neuchâtel, Switzerland
*Correspondence e-mail: bruno.therrien@unine.ch

Edited by M. Weil, Vienna University of Technology, Austria (Received 29 August 2015; accepted 10 September 2015; online 12 September 2015)

The crystal structure of the dinuclear arene ruthenium title complex, [Ru2(C6H5OS)(C7H7S)2(C10H14)2]BF4, shows the two RuII atoms to be bridged by two benzyl­thio­pheno­late units and one 4-hy­droxy­thio­pheno­late unit, with the remaining three coordination sites of each RuII atom being occupied by p-cymene ligands, completing the typical piano-stool coordination geometry. The BF4 counter-anion is surrounded by four cationic dinuclear complexes, showing an O—H⋯F hydrogen bond and several weak C—H⋯F inter­actions. This is the first example of an X-ray analysis of a mixed dinuclear tri­thiol­ate arene ruthenium(II) complex.

1. Chemical context

In the search for novel metal-based anti­cancer agents, several series of dinuclear tri­thiol­ate arene ruthenium complexes have been synthesized by our group (Gras et al., 2010[Gras, M., Therrien, B., Süss-Fink, G., Zava, O. & Dyson, P. J. (2010). Dalton Trans. 39, 10305-10313.]; Giannini et al., 2012[Giannini, F., Furrer, J., Ibao, A.-F., Süss-Fink, G., Therrien, B., Zava, O., Baquie, M., Dyson, P. J. & Štěpnička, P. (2012). J. Biol. Inorg. Chem. 17, 951-960.], 2013a[Giannini, F., Paul, L. E. H., Furrer, J., Therrien, B. & Süss-Fink, G. (2013a). New J. Chem. 37, 3503-3511.]). The biological studies in vitro showed the chloride salts of these complexes to have IC50 values regularly in the nanomolar range, making them some of the most active ruthenium complexes found to date. The recent discovery of di­thiol­ate complexes (Ibao et al., 2012[Ibao, A.-F., Gras, M., Therrien, B., Süss-Fink, G., Zava, O. & Dyson, P. J. (2012). Eur. J. Inorg. Chem. pp. 1531-1535.]) allowed us to synthesize the so-called mixed tri­thiol­ate complexes of the type [(p-MeC6H4iPr)2Ru2(SCH2R1)2(S-p-C6H4-R2]+ (R1 = C6H5, CH2C6H5, p-C6H4tBu; R2 = H, OH, F, Br, iPr, tBu). All of the complexes were found to be highly cytotoxic against ovarian cancer cell lines A2780 and A2780cisR as chloride salts, none of them could however be crystallized and analyzed by X-ray crystallography (Giannini et al., 2013b[Giannini, F., Furrer, J., Süss-Fink, G., Clavel, C. M. & Dyson, P. J. (2013b). J. Organomet. Chem. 744, 41-48.]). Herein we report the isolation and the crystal structure of the title compound, [(p-MeC6H4iPr)2Ru2(SCH2C6H5)2(S-p-C6H4OH)]BF4, (I)[link], the first reported structure of a mixed tri­thiol­ate complex.

[Scheme 1]

2. Structural commentary

The structures of the mol­ecular components of compound (I)[link] are presented in Fig. 1[link]. Both RuII atoms adopt the typical piano-stool geometry with the p-cymene ligand being bound facially, formally occupying three coordination sites; the other three positions are occupied by two benzyl­thio­pheno­late units and one 4-hy­droxy­thio­pheno­late unit. In agreement with the electron count, there is no metal–metal bond, the Ru⋯Ru distance being 3.3632 (4) Å. The inter­atomic distances between Ru1 and S1, S2 and S3 are 2.3878 (9), 2.4023 (9) and 2.3813 (8) Å, respectively, and between Ru2 and S1, S2 and S3 2.3992 (9), 2.3991 (8) and 2.3882 (8) Å, respectively, showing that the central diruthenium tri­thiol­ate unit is not symmetric. The presence of the two bent benzyl­thiol­ate ligands forces the dinuclear arene ruthenium unit to adopt a distorted geometry – the angle between the two p-cymene planes (C1–C6 and C11–C16) is 6.2 (2)°. The distances between the RuII atoms and the centroids of the associated rings are 1.708 and 1.709 Å.

[Figure 1]
Figure 1
The structure of the mol­ecular components of (I)[link]. Displacement ellipsoids are drawn at the 50% probability level.

3. Supra­molecular features

In the crystal packing of (I)[link], the BF4 anion inter­acts with the –OH group of the 4-hy­droxy­thio­pheno­late unit. In addition, weak C—H⋯F inter­actions are observed (Table 1[link]), thus creating around the BF4 anion a densely packed arrangement (Fig. 2[link]). No significant C—H⋯π or ππ stacking inter­actions are observed in the crystal structure.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯F1 0.82 1.99 2.773 (9) 161
C3—H3⋯F3i 0.93 2.52 3.340 (11) 148
C30—H30⋯F2i 0.93 2.60 3.472 (9) 156
C6—H6⋯F4ii 0.93 2.34 3.249 (10) 166
Symmetry codes: (i) [x+{\script{1\over 2}}, y-{\script{1\over 2}}, z]; (ii) [x, -y+1, z-{\script{1\over 2}}].
[Figure 2]
Figure 2
Surroundings of the BF4 anion in the crystal packing of (I)[link].

4. Synthesis and crystallization

Complex (I)[link] was obtained from the reaction of 0.127 mmol (100 mg) of the neutral di­thiol­ate precursor [(p-MeC6H4iPr)2Ru2(SCH2C6H5)2Cl2] (Ibao et al., 2012[Ibao, A.-F., Gras, M., Therrien, B., Süss-Fink, G., Zava, O. & Dyson, P. J. (2012). Eur. J. Inorg. Chem. pp. 1531-1535.]) with three equivalents of 4-hy­droxy­thio­phenol in refluxing ethanol. The product was isolated by column chromatography on silica gel, using the solvent mixture CH2Cl2/EtOH 7:1 (v/v) as eluent. The orange band was collected; the product was stirred overnight with ten equivalents of NaBF4 and isolated by filtration and evaporation of the solvent. X-ray quality crystals were obtained by slow diffusion of diethyl ether vapors into the solution of (I)[link] in di­chloro­methane.

Yield: 111 mg (94%). ESI–MS (MeOH/CH2Cl2): m/z = 842.3 [M]+. 1H NMR (400 MHz, CDCl3): δ = 7.41 (m, 10H, SCH2C6H5; 2H, S-p-C6H4OH), 7.00 (d, 3J = 8 Hz, 2H, S-p-C6H4OH) 5.06 [d, 3J = 6.0 Hz, 2H, p-CH3C6H4CH(CH3)2], 4.94 [d, 3J = 6.0 Hz, 2H, p-CH3C6H4CH(CH3)2], 4.71 [m, 4H, p-CH3C6H4CH(CH3)2], 3.62 (s, 2H, SCH2C6H5), 3.45 (s, 2H, SCH2C6H5), 2.04 [sept, 3J = 6.8 Hz, 2H, p-CH3C6H4CH(CH3)2], 1.73 (s, 6H, p-CH3C6H4CH(CH3)2), 1.05 [d, 3J = 6.8 Hz, 6H, p-CH3C6H4CH(CH3)2], 0.99 [d, 3J = 6.8 Hz, 6H, p-CH3C6H4CH(CH3)2] p.p.m. 13C{1H} NMR (100 MHz,CDCl3): δ = 159.9, 139.9, 139.7, 133.3, 129.5, 129.2, 128.8, 128.7, 128.2, 128.1, 124.0, 117.1, 107.5, 99.7, 84.1, 83.7, 83.2, 82.0, 39.9, 39.5, 31.0, 23.1, 22.7, 18.0 p.p.m.

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. All H atoms were included in calculated positions and treated as riding atoms, with C—H = 0.93 Å for Carom and 0.96 Å for CH3, and with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C) for methyl H atoms.

Table 2
Experimental details

Crystal data
Chemical formula [Ru2(C6H5OS)(C7H7S)2(C10H14)2]BF4
Mr 928.91
Crystal system, space group Monoclinic, Cc
Temperature (K) 173
a, b, c (Å) 15.4807 (10), 14.3435 (11), 17.7605 (10)
β (°) 99.435 (5)
V3) 3890.3 (4)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.99
Crystal size (mm) 0.22 × 0.20 × 0.18
 
Data collection
Diffractometer Stoe IPDS
No. of measured, independent and observed [I > 2σ(I)] reflections 34511, 10178, 8902
Rint 0.060
(sin θ/λ)max−1) 0.690
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.074, 0.95
No. of reflections 10178
No. of parameters 466
No. of restraints 2
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.52, −0.69
Absolute structure Flack x determined using 3741 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.]).
Absolute structure parameter −0.01 (2)
Computer programs: EXPOSE, CELL and INTEGRATE in IPDS Software (Stoe & Cie, 2000[Stoe & Cie (2000). IPDS Software. Stoe & Cie GmbH, Darmstadt, Germany.]), SHELXS97 and SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and ORTEP-32 (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Chemical context top

\ In the search for novel metal-based anti­cancer agents, several series of dinuclear tri­thiol­ate arene ruthenium complexes have been synthesized by our group (Gras et al., 2010; Giannini et al., 2012, 2013a). The biological studies in vitro showed the chloride salts of these complexes to have IC50 values regularly in the nanomolar range, making them some of the most active ruthenium complexes found to date. The recent discovery of di­thiol­ate complexes (Ibao et al., 2012) allowed us to synthesize the so-called mixed tri­thiol­ate complexes of the type [(p-MeC6H4iPr)2Ru2(SCH2R1)2(S-p-\ C6H4-R2]+ (R1 = C6H5, CH2C6H5, p-C6H4tBu; R2 = H, OH, F, Br, iPr, tBu). All of the complexes were found to be highly cytotoxic against ovarian cancer cell lines A2780 and A2780cisR as chloride salts, none of them could however be crystallized and analyzed by X-ray crystallography (Giannini et al., 2013b). Herein we report the isolation and the crystal structure of the title compound, [(p-MeC6H4iPr)2Ru2(SCH2C6H5)2(S-p-\ C6H4OH)]BF4, (I), the first reported structure of a mixed tri­thiol­ate complex.

Structural commentary top

The structure of the molecular components of compound (I) is presented in Fig. 1. Both RuII atoms adopt the typical piano-stool geometry with the p-cymene ligand being bound facially, formally occupying three coordination sites; the other three positions are occupied by two benzyl­thio­pheno­late units and one 4-hy­droxy­thio­pheno­late unit. In agreement with the electron count, there is no metal–metal bond, the Ru···Ru distance being 3.3632 (4) Å. The inter­atomic distances between Ru1 and S1, S2 and S3 are 2.3878 (9), 2.4023 (9) and 2.3813 (8) Å, respectively, and between Ru2 and S1, S2 and S3 2.3992 (9), 2.3991 (8) and 2.3882 (8) Å, respectively, showing that the central diruthenium tri­thiol­ate unit is not symmetric. The presence of the two bent benzyl­thiol­ate ligands forces the dinuclear arene ruthenium unit to adopt a distorted geometry – the angle between the two p-cymene planes (C1–C6 and C11–C16) is 6.2 (2)°. The distances between the RuII atoms and the centroid of the associated ring are 1.708 and 1.709 Å.

Supra­molecular features top

In the crystal packing of (I), the BF4- anion inter­acts with the –OH group of the 4-hy­droxy­thio­pheno­late unit. In addition, weak C—H···F inter­actions are observed (Table 1), thus creating around the BF4 anion a densely packed arrangement (Fig. 2). No significant C—H···π or ππ stacking inter­actions are observed in the crystal structure.

Synthesis and crystallization top

Complex (I) was obtained from the reaction of 0.127 mmol (100 mg) of the neutral di­thiol­ate precursor [(p-MeC6H4iPr)2Ru2(SCH2C6H5)2Cl2] (Ibao et al., 2012) with three equivalents of 4-hy­droxy­thio­phenol in refluxing ethanol. The product was isolated by column chromatography on silica gel, using the solvent mixture CH2Cl2/EtOH 7:1 (v/v) as eluent. The orange band was collected; the product was stirred overnight with ten equivalents of NaBF4 and isolated by filtration and evaporation of the solvent. X-ray quality crystals were obtained by slow diffusion of di­ethyl ether vapors into the solution of (I) in di­chloro­methane.

Yield: 111 mg (94%). ESI–MS (MeOH/CH2Cl2): m/z = 842.3 [M]+. 1H NMR (400 MHz, CDCl3): δ = 7.41 (m, 10H, SCH2C6H5; 2H, S-p-C6H4OH), 7.00 (d, 3J = 8 Hz, 2H, S-p-C6H4OH) 5.06 [d, 3J = 6.0 Hz, 2H, p-CH3C6H4CH(CH3)2], 4.94 [d, 3J = 6.0 Hz, 2H, p-CH3C6H4CH(CH3)2], 4.71 [m, 4H, p-CH3C6H4CH(CH3)2], 3.62 (s, 2H, SCH2C6H5), 3.45 (s, 2H, SCH2C6H5), 2.04 [sept, 3J = 6.8 Hz, 2H, p-CH3C6H4CH(CH3)2], 1.73 (s, 6H, p-CH3C6H4CH(CH3)2), 1.05 [d, 3J = 6.8 Hz, 6H, p-CH3C6H4CH(CH3)2], 0.99 [d, 3J = 6.8 Hz, 6H, p-CH3C6H4CH(CH3)2] p.p.m. 13C{1H} NMR (100 MHz,CDCl3): δ = 159.9, 139.9, 139.7, 133.3, 129.5, 129.2, 128.8, 128.7, 128.2, 128.1, 124.0, 117.1, 107.5, 99.7, 84.1, 83.7, 83.2, 82.0, 39.9, 39.5, 31.0, 23.1, 22.7, 18.0 ppm.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 2. All H atoms were included in calculated positions and treated as riding atoms, with C—H = 0.93 Å for Carom and 0.96 Å for CH3, and with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C) for methyl H atoms.

Computing details top

Data collection: EXPOSE in IPDS Software (Stoe & Cie, 2000); cell refinement: CELL in IPDS Software (Stoe & Cie, 2000); data reduction: INTEGRATE in IPDS Software (Stoe & Cie, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-32 (Farrugia, 2012); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the molecular components of (I). Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Surroundings of the BF4- anion in the crystal packing of (I).
(µ-4-Hydroxybenzenethiolato-κ2S:S)bis(µ-phenylmethanethiolato-κ2S:S)bis[(η6-1-isopropyl-4-methylbenzene)ruthenium(II)] tetrafluoridoborate top
Crystal data top
[Ru2(C6H5OS)(C7H7S)2(C10H14)2]BF4F(000) = 1888
Mr = 928.91Dx = 1.586 Mg m3
Monoclinic, CcMo Kα radiation, λ = 0.71073 Å
Hall symbol: C -2ycCell parameters from 8000 reflections
a = 15.4807 (10) Åθ = 2.1–28.7°
b = 14.3435 (11) ŵ = 0.99 mm1
c = 17.7605 (10) ÅT = 173 K
β = 99.435 (5)°Block, red
V = 3890.3 (4) Å30.22 × 0.20 × 0.18 mm
Z = 4
Data collection top
Stoe IPDS
diffractometer
8902 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.060
Graphite monochromatorθmax = 29.4°, θmin = 2.0°
Detector resolution: 0.81 pixels mm-1h = 2121
phi oscillation scansk = 1919
34511 measured reflectionsl = 2424
10178 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.032H-atom parameters constrained
wR(F2) = 0.074 w = 1/[σ2(Fo2) + (0.0431P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.95(Δ/σ)max = 0.001
10178 reflectionsΔρmax = 0.52 e Å3
466 parametersΔρmin = 0.69 e Å3
2 restraintsAbsolute structure: Flack x determined using 3741 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013).
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.01 (2)
Crystal data top
[Ru2(C6H5OS)(C7H7S)2(C10H14)2]BF4V = 3890.3 (4) Å3
Mr = 928.91Z = 4
Monoclinic, CcMo Kα radiation
a = 15.4807 (10) ŵ = 0.99 mm1
b = 14.3435 (11) ÅT = 173 K
c = 17.7605 (10) Å0.22 × 0.20 × 0.18 mm
β = 99.435 (5)°
Data collection top
Stoe IPDS
diffractometer
8902 reflections with I > 2σ(I)
34511 measured reflectionsRint = 0.060
10178 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.032H-atom parameters constrained
wR(F2) = 0.074Δρmax = 0.52 e Å3
S = 0.95Δρmin = 0.69 e Å3
10178 reflectionsAbsolute structure: Flack x determined using 3741 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013).
466 parametersAbsolute structure parameter: 0.01 (2)
2 restraints
Special details top

Experimental. A crystal was mounted at 173 K on a Stoe Image Plate Diffraction System (Stoe & Cie, 2000) using Mo Kα graphite monochromated radiation. Image plate distance 100 mm, φ oscillation scans 0 - 180°, step Δφ = 1.2°, 5 minutes per frame.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.3292 (2)0.1913 (3)0.0509 (2)0.0418 (9)
C20.3924 (2)0.1437 (2)0.0030 (2)0.0331 (8)
H20.42490.09570.01360.040*
C30.4066 (2)0.1680 (3)0.0807 (3)0.0374 (8)
H30.44900.13660.11460.045*
C40.3569 (3)0.2402 (3)0.1080 (3)0.0465 (10)
C50.2935 (3)0.2860 (3)0.0556 (3)0.0528 (13)
H50.26010.33300.07250.063*
C60.2797 (3)0.2620 (3)0.0221 (3)0.0539 (13)
H60.23690.29340.05550.065*
C70.3156 (3)0.1726 (5)0.1358 (3)0.0646 (15)
H70.25310.18060.15560.077*
C80.3413 (5)0.0761 (5)0.1566 (3)0.085 (2)
H8A0.40370.06910.14360.128*
H8B0.32380.06650.21040.128*
H8C0.31300.03100.12900.128*
C90.3654 (6)0.2436 (6)0.1742 (5)0.110 (3)
H9A0.42710.23230.16050.165*
H9B0.35200.30500.15810.165*
H9C0.34890.23860.22860.165*
C100.3719 (3)0.2648 (4)0.1917 (3)0.0667 (16)
H10A0.42220.30470.20300.100*
H10B0.38170.20880.22150.100*
H10C0.32130.29650.20380.100*
C110.0326 (3)0.0067 (3)0.0892 (3)0.0397 (10)
C120.0199 (3)0.0321 (3)0.1574 (3)0.0441 (10)
H120.01790.00320.20100.053*
C130.0767 (3)0.1107 (3)0.1620 (3)0.0466 (10)
H130.11050.12680.20840.056*
C140.0818 (3)0.1643 (3)0.0962 (3)0.0484 (11)
C150.0298 (3)0.1365 (3)0.0277 (3)0.0472 (10)
H150.03280.17010.01660.057*
C160.0262 (2)0.0602 (3)0.0242 (3)0.0419 (9)
H160.06010.04430.02220.050*
C170.0956 (3)0.0766 (3)0.0801 (3)0.0545 (12)
H170.09070.10710.03160.065*
C180.0757 (4)0.1487 (4)0.1421 (5)0.082 (2)
H18A0.07990.12080.19050.123*
H18B0.11700.19890.13240.123*
H18C0.01750.17240.14300.123*
C190.1899 (3)0.0414 (4)0.0745 (6)0.095 (3)
H19A0.20250.00170.03280.143*
H19B0.22960.09320.06600.143*
H19C0.19670.01070.12120.143*
C200.1397 (3)0.2491 (3)0.0989 (5)0.091 (3)
H20A0.18810.24280.13990.137*
H20B0.16130.25500.05150.137*
H20C0.10650.30370.10710.137*
C210.1759 (2)0.1523 (2)0.2144 (2)0.0318 (7)
C220.1763 (2)0.1270 (3)0.2903 (2)0.0381 (8)
H220.19590.06800.30690.046*
C230.1479 (3)0.1880 (3)0.3412 (2)0.0456 (9)
H230.14760.16980.39140.055*
C240.1202 (2)0.2753 (3)0.3176 (2)0.0431 (9)
C250.1177 (3)0.3026 (3)0.2427 (2)0.0407 (8)
H250.09760.36170.22690.049*
C260.1457 (2)0.2409 (3)0.1908 (2)0.0365 (8)
H260.14400.25890.14030.044*
C270.3138 (2)0.1002 (3)0.0697 (3)0.0413 (9)
H27A0.31590.08590.12340.050*
H27B0.29550.16460.06170.050*
C280.4040 (2)0.0887 (3)0.0494 (3)0.0382 (9)
C290.4732 (3)0.0540 (3)0.1000 (3)0.0463 (10)
H290.46600.04010.14970.056*
C300.5543 (3)0.0392 (3)0.0774 (3)0.0540 (12)
H300.60050.01530.11210.065*
C310.5663 (3)0.0597 (3)0.0048 (3)0.0536 (11)
H310.62030.04870.01010.064*
C320.4971 (3)0.0975 (3)0.0476 (3)0.0601 (13)
H320.50520.11290.09680.072*
C330.4171 (3)0.1112 (3)0.0250 (3)0.0500 (11)
H330.37100.13580.05950.060*
C340.0879 (2)0.1145 (3)0.0955 (2)0.0406 (8)
H34A0.10730.16900.12050.049*
H34B0.12090.06120.10880.049*
C350.0078 (2)0.0988 (3)0.1235 (2)0.0376 (8)
C360.0411 (3)0.0170 (3)0.1584 (3)0.0511 (10)
H360.00320.03020.16780.061*
C370.1319 (4)0.0053 (4)0.1796 (3)0.0602 (13)
H370.15380.04940.20360.072*
C380.1877 (3)0.0729 (4)0.1652 (3)0.0652 (14)
H380.24780.06380.17820.078*
C390.1565 (3)0.1543 (5)0.1317 (3)0.0691 (15)
H390.19500.20130.12290.083*
C400.0678 (3)0.1665 (3)0.1112 (3)0.0494 (10)
H400.04720.22220.08820.059*
O10.0975 (2)0.3350 (3)0.3719 (2)0.0593 (8)
H10.08200.38520.35190.089*
S10.22003 (5)0.07062 (6)0.15529 (5)0.02976 (16)
S20.23352 (5)0.02440 (6)0.01262 (5)0.02999 (17)
S30.11024 (5)0.13178 (6)0.00909 (5)0.02880 (17)
Ru10.265363 (15)0.136095 (17)0.044464 (15)0.02751 (6)
Ru20.107114 (15)0.013494 (17)0.074285 (15)0.02631 (6)
B10.1140 (3)0.5937 (4)0.2810 (3)0.0508 (12)
F10.0880 (5)0.5128 (3)0.3096 (4)0.161 (3)
F20.1726 (2)0.5769 (3)0.23242 (19)0.0842 (11)
F30.0429 (4)0.6320 (7)0.2444 (4)0.196 (4)
F40.1457 (4)0.6454 (6)0.3380 (4)0.212 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0331 (17)0.046 (2)0.049 (2)0.0089 (16)0.0128 (17)0.0188 (18)
C20.0272 (16)0.0314 (17)0.043 (2)0.0065 (13)0.0120 (15)0.0043 (15)
C30.0244 (15)0.0380 (19)0.050 (2)0.0071 (14)0.0069 (15)0.0017 (18)
C40.0360 (18)0.035 (2)0.070 (3)0.0164 (16)0.0148 (19)0.009 (2)
C50.044 (2)0.0277 (19)0.093 (4)0.0083 (16)0.030 (3)0.002 (2)
C60.037 (2)0.037 (2)0.091 (4)0.0002 (16)0.020 (2)0.033 (2)
C70.044 (2)0.104 (4)0.048 (3)0.009 (3)0.015 (2)0.029 (3)
C80.111 (5)0.102 (5)0.041 (3)0.062 (4)0.011 (3)0.002 (3)
C90.147 (7)0.088 (4)0.119 (6)0.024 (4)0.089 (5)0.058 (4)
C100.048 (2)0.073 (3)0.082 (4)0.022 (2)0.021 (2)0.042 (3)
C110.0280 (17)0.0348 (19)0.060 (3)0.0046 (14)0.0184 (18)0.0097 (18)
C120.046 (2)0.050 (2)0.044 (2)0.0096 (18)0.0295 (19)0.0008 (19)
C130.0347 (18)0.058 (2)0.049 (2)0.0050 (17)0.0108 (17)0.030 (2)
C140.0350 (19)0.0304 (18)0.086 (4)0.0031 (15)0.029 (2)0.017 (2)
C150.041 (2)0.040 (2)0.066 (3)0.0169 (17)0.028 (2)0.014 (2)
C160.0275 (17)0.054 (2)0.045 (2)0.0154 (17)0.0077 (16)0.0044 (19)
C170.038 (2)0.041 (2)0.088 (4)0.0049 (17)0.020 (2)0.014 (2)
C180.058 (3)0.047 (3)0.147 (6)0.004 (2)0.034 (4)0.018 (3)
C190.036 (2)0.049 (3)0.205 (8)0.001 (2)0.032 (4)0.002 (4)
C200.051 (3)0.037 (2)0.197 (8)0.004 (2)0.053 (4)0.031 (4)
C210.0247 (14)0.0372 (18)0.0332 (18)0.0013 (13)0.0034 (13)0.0016 (14)
C220.0385 (18)0.041 (2)0.0360 (19)0.0022 (15)0.0097 (15)0.0095 (15)
C230.047 (2)0.060 (3)0.033 (2)0.0005 (19)0.0154 (17)0.0044 (18)
C240.0354 (19)0.056 (2)0.041 (2)0.0008 (17)0.0153 (16)0.0088 (18)
C250.0425 (19)0.0381 (19)0.042 (2)0.0079 (16)0.0078 (17)0.0012 (16)
C260.0432 (19)0.0360 (18)0.0303 (18)0.0049 (15)0.0062 (15)0.0029 (14)
C270.0338 (18)0.0351 (19)0.058 (3)0.0087 (15)0.0176 (18)0.0067 (18)
C280.0307 (17)0.0327 (19)0.054 (2)0.0045 (14)0.0142 (17)0.0050 (17)
C290.041 (2)0.045 (2)0.054 (3)0.0077 (17)0.0079 (18)0.0115 (19)
C300.0323 (19)0.056 (3)0.070 (3)0.0020 (18)0.002 (2)0.014 (2)
C310.034 (2)0.051 (3)0.080 (3)0.0052 (18)0.022 (2)0.006 (2)
C320.054 (3)0.053 (3)0.082 (4)0.005 (2)0.038 (3)0.015 (3)
C330.040 (2)0.047 (2)0.067 (3)0.0054 (17)0.020 (2)0.014 (2)
C340.0354 (18)0.058 (2)0.0292 (19)0.0035 (16)0.0076 (15)0.0106 (17)
C350.0370 (18)0.043 (2)0.033 (2)0.0005 (15)0.0069 (15)0.0046 (16)
C360.064 (3)0.050 (2)0.040 (2)0.003 (2)0.008 (2)0.0050 (19)
C370.067 (3)0.054 (3)0.055 (3)0.022 (2)0.004 (2)0.005 (2)
C380.047 (2)0.079 (4)0.064 (3)0.006 (3)0.008 (2)0.008 (3)
C390.039 (2)0.092 (4)0.071 (4)0.010 (2)0.006 (2)0.015 (3)
C400.039 (2)0.048 (2)0.057 (3)0.0047 (17)0.0073 (19)0.005 (2)
O10.071 (2)0.064 (2)0.0481 (18)0.0128 (17)0.0241 (16)0.0114 (16)
S10.0282 (4)0.0300 (4)0.0310 (4)0.0016 (3)0.0046 (3)0.0047 (3)
S20.0257 (4)0.0291 (4)0.0370 (5)0.0027 (3)0.0104 (3)0.0007 (3)
S30.0242 (4)0.0319 (4)0.0307 (4)0.0001 (3)0.0057 (3)0.0069 (3)
Ru10.02280 (11)0.02572 (12)0.03464 (14)0.00190 (10)0.00659 (10)0.00523 (11)
Ru20.02355 (11)0.02625 (12)0.03065 (13)0.00107 (11)0.00895 (9)0.00414 (12)
B10.045 (2)0.054 (3)0.053 (3)0.005 (2)0.008 (2)0.008 (2)
F10.235 (7)0.072 (3)0.220 (7)0.026 (3)0.171 (6)0.007 (3)
F20.080 (2)0.118 (3)0.060 (2)0.033 (2)0.0282 (17)0.0103 (19)
F30.111 (4)0.341 (11)0.141 (5)0.118 (5)0.035 (4)0.067 (6)
F40.189 (6)0.306 (9)0.170 (6)0.184 (7)0.113 (5)0.171 (6)
Geometric parameters (Å, º) top
C1—C61.416 (7)C20—H20A0.9600
C1—C21.425 (6)C20—H20B0.9600
C1—C71.513 (7)C20—H20C0.9600
C1—Ru12.240 (4)C21—C261.395 (5)
C2—C31.406 (6)C21—C221.396 (5)
C2—Ru12.213 (3)C21—S11.782 (4)
C2—H20.9300C22—C231.382 (6)
C3—C41.421 (6)C22—H220.9300
C3—Ru12.224 (4)C23—C241.367 (6)
C3—H30.9300C23—H230.9300
C4—C51.400 (7)C24—O11.376 (5)
C4—C101.508 (7)C24—C251.382 (6)
C4—Ru12.233 (4)C25—C261.396 (5)
C5—C61.404 (8)C25—H250.9300
C5—Ru12.196 (4)C26—H260.9300
C5—H50.9300C27—C281.508 (5)
C6—Ru12.189 (4)C27—S21.828 (4)
C6—H60.9300C27—H27A0.9700
C7—C81.504 (9)C27—H27B0.9700
C7—C91.507 (8)C28—C291.375 (6)
C7—H70.9800C28—C331.406 (6)
C8—H8A0.9600C29—C301.395 (6)
C8—H8B0.9600C29—H290.9300
C8—H8C0.9600C30—C311.364 (8)
C9—H9A0.9600C30—H300.9300
C9—H9B0.9600C31—C321.408 (8)
C9—H9C0.9600C31—H310.9300
C10—H10A0.9600C32—C331.377 (6)
C10—H10B0.9600C32—H320.9300
C10—H10C0.9600C33—H330.9300
C11—C121.392 (7)C34—C351.501 (5)
C11—C161.403 (6)C34—S31.849 (4)
C11—C171.534 (6)C34—H34A0.9700
C11—Ru22.223 (4)C34—H34B0.9700
C12—C131.424 (6)C35—C401.385 (6)
C12—Ru22.174 (4)C35—C361.386 (6)
C12—H120.9300C36—C371.405 (7)
C13—C141.411 (7)C36—H360.9300
C13—Ru22.199 (4)C37—C381.350 (8)
C13—H130.9300C37—H370.9300
C14—C151.402 (7)C38—C391.363 (8)
C14—C201.507 (6)C38—H380.9300
C14—Ru22.244 (4)C39—C401.372 (6)
C15—C161.391 (6)C39—H390.9300
C15—Ru22.215 (4)C40—H400.9300
C15—H150.9300O1—H10.8200
C16—Ru22.213 (4)S1—Ru12.3878 (9)
C16—H160.9300S1—Ru22.3992 (9)
C17—C181.505 (8)S2—Ru22.3991 (8)
C17—C191.532 (6)S2—Ru12.4023 (9)
C17—H170.9800S3—Ru12.3813 (8)
C18—H18A0.9600S3—Ru22.3882 (8)
C18—H18B0.9600B1—F41.286 (7)
C18—H18C0.9600B1—F31.304 (7)
C19—H19A0.9600B1—F11.355 (7)
C19—H19B0.9600B1—F21.372 (6)
C19—H19C0.9600
C6—C1—C2117.0 (4)C25—C26—H26119.8
C6—C1—C7119.4 (4)C28—C27—S2112.0 (3)
C2—C1—C7123.6 (4)C28—C27—H27A109.2
C6—C1—Ru169.4 (2)S2—C27—H27A109.2
C2—C1—Ru170.3 (2)C28—C27—H27B109.2
C7—C1—Ru1133.2 (3)S2—C27—H27B109.2
C3—C2—C1121.4 (4)H27A—C27—H27B107.9
C3—C2—Ru171.9 (2)C29—C28—C33118.7 (4)
C1—C2—Ru172.4 (2)C29—C28—C27122.4 (4)
C3—C2—H2119.3C33—C28—C27118.8 (4)
C1—C2—H2119.3C28—C29—C30120.6 (4)
Ru1—C2—H2128.7C28—C29—H29119.7
C2—C3—C4120.6 (4)C30—C29—H29119.7
C2—C3—Ru171.1 (2)C31—C30—C29120.5 (4)
C4—C3—Ru171.7 (2)C31—C30—H30119.7
C2—C3—H3119.7C29—C30—H30119.7
C4—C3—H3119.7C30—C31—C32120.0 (4)
Ru1—C3—H3130.0C30—C31—H31120.0
C5—C4—C3118.4 (4)C32—C31—H31120.0
C5—C4—C10121.5 (4)C33—C32—C31119.1 (5)
C3—C4—C10120.1 (4)C33—C32—H32120.5
C5—C4—Ru170.2 (2)C31—C32—H32120.5
C3—C4—Ru171.1 (2)C32—C33—C28121.0 (4)
C10—C4—Ru1129.5 (3)C32—C33—H33119.5
C4—C5—C6121.0 (4)C28—C33—H33119.5
C4—C5—Ru173.0 (2)C35—C34—S3111.4 (3)
C6—C5—Ru171.1 (2)C35—C34—H34A109.3
C4—C5—H5119.5S3—C34—H34A109.3
C6—C5—H5119.5C35—C34—H34B109.3
Ru1—C5—H5128.8S3—C34—H34B109.3
C5—C6—C1121.7 (4)H34A—C34—H34B108.0
C5—C6—Ru171.6 (2)C40—C35—C36117.0 (4)
C1—C6—Ru173.3 (2)C40—C35—C34119.6 (4)
C5—C6—H6119.1C36—C35—C34123.4 (4)
C1—C6—H6119.1C35—C36—C37120.3 (4)
Ru1—C6—H6128.2C35—C36—H36119.9
C8—C7—C9109.5 (5)C37—C36—H36119.9
C8—C7—C1114.1 (4)C38—C37—C36120.4 (4)
C9—C7—C1109.5 (6)C38—C37—H37119.8
C8—C7—H7107.8C36—C37—H37119.8
C9—C7—H7107.8C37—C38—C39120.4 (5)
C1—C7—H7107.8C37—C38—H38119.8
C7—C8—H8A109.5C39—C38—H38119.8
C7—C8—H8B109.5C38—C39—C40119.5 (5)
H8A—C8—H8B109.5C38—C39—H39120.3
C7—C8—H8C109.5C40—C39—H39120.3
H8A—C8—H8C109.5C39—C40—C35122.5 (5)
H8B—C8—H8C109.5C39—C40—H40118.8
C7—C9—H9A109.5C35—C40—H40118.8
C7—C9—H9B109.5C24—O1—H1109.5
H9A—C9—H9B109.5C21—S1—Ru1114.81 (12)
C7—C9—H9C109.5C21—S1—Ru2111.85 (11)
H9A—C9—H9C109.5Ru1—S1—Ru289.27 (3)
H9B—C9—H9C109.5C27—S2—Ru2108.48 (13)
C4—C10—H10A109.5C27—S2—Ru1110.18 (15)
C4—C10—H10B109.5Ru2—S2—Ru188.93 (3)
H10A—C10—H10B109.5C34—S3—Ru1106.43 (12)
C4—C10—H10C109.5C34—S3—Ru2110.79 (14)
H10A—C10—H10C109.5Ru1—S3—Ru289.68 (3)
H10B—C10—H10C109.5C6—Ru1—C537.3 (2)
C12—C11—C16117.6 (4)C6—Ru1—C266.74 (14)
C12—C11—C17124.4 (4)C5—Ru1—C278.89 (15)
C16—C11—C17118.0 (4)C6—Ru1—C378.73 (16)
C12—C11—Ru269.6 (2)C5—Ru1—C366.47 (16)
C16—C11—Ru271.2 (2)C2—Ru1—C336.95 (15)
C17—C11—Ru2129.5 (3)C6—Ru1—C466.98 (19)
C11—C12—C13121.6 (4)C5—Ru1—C436.83 (18)
C11—C12—Ru273.5 (2)C2—Ru1—C467.04 (15)
C13—C12—Ru271.9 (2)C3—Ru1—C437.19 (15)
C11—C12—H12119.2C6—Ru1—C137.27 (17)
C13—C12—H12119.2C5—Ru1—C167.45 (18)
Ru2—C12—H12127.5C2—Ru1—C137.31 (14)
C14—C13—C12120.1 (4)C3—Ru1—C167.13 (15)
C14—C13—Ru273.2 (2)C4—Ru1—C179.82 (16)
C12—C13—Ru270.0 (2)C6—Ru1—S393.80 (11)
C14—C13—H13119.9C5—Ru1—S3103.06 (12)
C12—C13—H13119.9C2—Ru1—S3145.72 (11)
Ru2—C13—H13129.1C3—Ru1—S3169.43 (11)
C15—C14—C13117.4 (4)C4—Ru1—S3132.82 (11)
C15—C14—C20120.7 (5)C1—Ru1—S3111.14 (11)
C13—C14—C20121.8 (5)C6—Ru1—S1147.03 (15)
C15—C14—Ru270.5 (2)C5—Ru1—S1113.05 (15)
C13—C14—Ru269.7 (2)C2—Ru1—S1133.72 (11)
C20—C14—Ru2131.6 (3)C3—Ru1—S1104.49 (11)
C16—C15—C14121.9 (4)C4—Ru1—S195.42 (12)
C16—C15—Ru271.6 (2)C1—Ru1—S1170.98 (11)
C14—C15—Ru272.8 (2)S3—Ru1—S177.72 (3)
C16—C15—H15119.1C6—Ru1—S2134.30 (16)
C14—C15—H15119.1C5—Ru1—S2171.64 (15)
Ru2—C15—H15129.0C2—Ru1—S297.38 (10)
C15—C16—C11121.4 (4)C3—Ru1—S2114.82 (11)
C15—C16—Ru271.8 (2)C4—Ru1—S2148.05 (12)
C11—C16—Ru272.0 (2)C1—Ru1—S2105.05 (12)
C15—C16—H16119.3S3—Ru1—S275.75 (3)
C11—C16—H16119.3S1—Ru1—S274.95 (3)
Ru2—C16—H16129.5C12—Ru2—C1338.01 (17)
C18—C17—C19110.6 (5)C12—Ru2—C1666.05 (17)
C18—C17—C11114.1 (5)C13—Ru2—C1678.40 (16)
C19—C17—C11109.4 (4)C12—Ru2—C1578.34 (16)
C18—C17—H17107.5C13—Ru2—C1566.03 (18)
C19—C17—H17107.5C16—Ru2—C1536.62 (17)
C11—C17—H17107.5C12—Ru2—C1136.90 (18)
C17—C18—H18A109.5C13—Ru2—C1167.55 (15)
C17—C18—H18B109.5C16—Ru2—C1136.87 (16)
H18A—C18—H18B109.5C15—Ru2—C1166.59 (15)
C17—C18—H18C109.5C12—Ru2—C1467.56 (16)
H18A—C18—H18C109.5C13—Ru2—C1437.03 (19)
H18B—C18—H18C109.5C16—Ru2—C1466.43 (17)
C17—C19—H19A109.5C15—Ru2—C1436.65 (19)
C17—C19—H19B109.5C11—Ru2—C1479.68 (14)
H19A—C19—H19B109.5C12—Ru2—S3120.02 (12)
C17—C19—H19C109.5C13—Ru2—S3157.02 (13)
H19A—C19—H19C109.5C16—Ru2—S399.26 (12)
H19B—C19—H19C109.5C15—Ru2—S3124.53 (14)
C14—C20—H20A109.5C11—Ru2—S396.70 (10)
C14—C20—H20B109.5C14—Ru2—S3160.63 (15)
H20A—C20—H20B109.5C12—Ru2—S2161.04 (13)
C14—C20—H20C109.5C13—Ru2—S2124.58 (12)
H20A—C20—H20C109.5C16—Ru2—S2124.98 (12)
H20B—C20—H20C109.5C15—Ru2—S2102.07 (11)
C26—C21—C22118.4 (3)C11—Ru2—S2159.91 (13)
C26—C21—S1124.4 (3)C14—Ru2—S2101.26 (10)
C22—C21—S1117.2 (3)S3—Ru2—S275.68 (3)
C23—C22—C21121.1 (4)C12—Ru2—S197.29 (12)
C23—C22—H22119.5C13—Ru2—S196.53 (12)
C21—C22—H22119.5C16—Ru2—S1158.92 (12)
C24—C23—C22119.9 (4)C15—Ru2—S1157.00 (14)
C24—C23—H23120.1C11—Ru2—S1122.26 (13)
C22—C23—H23120.1C14—Ru2—S1120.75 (14)
C23—C24—O1117.3 (4)S3—Ru2—S177.37 (3)
C23—C24—C25120.8 (4)S2—Ru2—S174.81 (3)
O1—C24—C25121.9 (4)F4—B1—F3109.4 (7)
C24—C25—C26119.6 (4)F4—B1—F1107.3 (6)
C24—C25—H25120.2F3—B1—F1105.7 (6)
C26—C25—H25120.2F4—B1—F2113.0 (5)
C21—C26—C25120.3 (4)F3—B1—F2110.6 (5)
C21—C26—H26119.8F1—B1—F2110.6 (5)
C6—C1—C2—C31.9 (5)C2—C1—Ru1—S282.3 (2)
C7—C1—C2—C3175.7 (4)C7—C1—Ru1—S235.7 (5)
Ru1—C1—C2—C354.9 (3)C34—S3—Ru1—C663.2 (2)
C6—C1—C2—Ru153.1 (3)Ru2—S3—Ru1—C6174.80 (16)
C7—C1—C2—Ru1129.4 (4)C34—S3—Ru1—C599.8 (2)
C1—C2—C3—C41.1 (5)Ru2—S3—Ru1—C5148.57 (15)
Ru1—C2—C3—C454.1 (3)C34—S3—Ru1—C210.4 (2)
C1—C2—C3—Ru155.1 (3)Ru2—S3—Ru1—C2122.06 (17)
C2—C3—C4—C50.2 (5)C34—S3—Ru1—C3107.7 (6)
Ru1—C3—C4—C553.6 (3)Ru2—S3—Ru1—C3140.7 (6)
C2—C3—C4—C10179.2 (4)C34—S3—Ru1—C4125.0 (2)
Ru1—C3—C4—C10125.4 (4)Ru2—S3—Ru1—C4123.41 (17)
C2—C3—C4—Ru153.8 (3)C34—S3—Ru1—C129.23 (19)
C3—C4—C5—C60.5 (6)Ru2—S3—Ru1—C1140.85 (12)
C10—C4—C5—C6179.5 (4)C34—S3—Ru1—S1149.03 (15)
Ru1—C4—C5—C654.6 (3)Ru2—S3—Ru1—S137.41 (3)
C3—C4—C5—Ru154.1 (3)C34—S3—Ru1—S271.67 (15)
C10—C4—C5—Ru1124.9 (4)Ru2—S3—Ru1—S239.95 (3)
C4—C5—C6—C10.4 (6)C21—S1—Ru1—C61.2 (3)
Ru1—C5—C6—C155.9 (3)Ru2—S1—Ru1—C6115.0 (2)
C4—C5—C6—Ru155.5 (3)C21—S1—Ru1—C522.52 (19)
C2—C1—C6—C51.6 (5)Ru2—S1—Ru1—C5136.35 (13)
C7—C1—C6—C5176.1 (4)C21—S1—Ru1—C2119.24 (18)
Ru1—C1—C6—C555.1 (3)Ru2—S1—Ru1—C2126.92 (14)
C2—C1—C6—Ru153.5 (3)C21—S1—Ru1—C392.76 (17)
C7—C1—C6—Ru1128.8 (4)Ru2—S1—Ru1—C3153.41 (11)
C6—C1—C7—C8156.4 (4)C21—S1—Ru1—C456.07 (17)
C2—C1—C7—C826.1 (6)Ru2—S1—Ru1—C4169.91 (11)
Ru1—C1—C7—C867.8 (6)C21—S1—Ru1—S376.62 (13)
C6—C1—C7—C980.4 (6)Ru2—S1—Ru1—S337.22 (3)
C2—C1—C7—C997.1 (6)C21—S1—Ru1—S2154.94 (13)
Ru1—C1—C7—C9169.0 (4)Ru2—S1—Ru1—S241.11 (3)
C16—C11—C12—C131.5 (5)C27—S2—Ru1—C6129.7 (2)
C17—C11—C12—C13179.6 (3)Ru2—S2—Ru1—C6120.97 (15)
Ru2—C11—C12—C1355.8 (3)C27—S2—Ru1—C265.17 (18)
C16—C11—C12—Ru254.4 (3)Ru2—S2—Ru1—C2174.49 (11)
C17—C11—C12—Ru2124.6 (4)C27—S2—Ru1—C331.07 (18)
C11—C12—C13—C141.0 (6)Ru2—S2—Ru1—C3140.39 (12)
Ru2—C12—C13—C1455.6 (3)C27—S2—Ru1—C47.6 (3)
C11—C12—C13—Ru256.5 (3)Ru2—S2—Ru1—C4116.9 (2)
C12—C13—C14—C150.4 (5)C27—S2—Ru1—C1102.46 (17)
Ru2—C13—C14—C1553.7 (3)Ru2—S2—Ru1—C1148.22 (11)
C12—C13—C14—C20178.8 (4)C27—S2—Ru1—S3149.06 (14)
Ru2—C13—C14—C20127.1 (3)Ru2—S2—Ru1—S339.74 (3)
C12—C13—C14—Ru254.1 (3)C27—S2—Ru1—S168.20 (14)
C13—C14—C15—C161.1 (5)Ru2—S2—Ru1—S141.11 (3)
C20—C14—C15—C16178.0 (3)C11—C12—Ru2—C13132.2 (4)
Ru2—C14—C15—C1654.5 (3)C11—C12—Ru2—C1630.0 (2)
C13—C14—C15—Ru253.3 (3)C13—C12—Ru2—C16102.2 (3)
C20—C14—C15—Ru2127.5 (3)C11—C12—Ru2—C1566.4 (3)
C14—C15—C16—C110.6 (6)C13—C12—Ru2—C1565.8 (3)
Ru2—C15—C16—C1154.4 (3)C13—C12—Ru2—C11132.2 (4)
C14—C15—C16—Ru255.0 (3)C11—C12—Ru2—C14103.1 (3)
C12—C11—C16—C150.7 (5)C13—C12—Ru2—C1429.0 (3)
C17—C11—C16—C15179.7 (3)C11—C12—Ru2—S357.0 (3)
Ru2—C11—C16—C1554.3 (3)C13—C12—Ru2—S3170.9 (2)
C12—C11—C16—Ru253.6 (3)C11—C12—Ru2—S2159.6 (3)
C17—C11—C16—Ru2125.4 (3)C13—C12—Ru2—S227.4 (5)
C12—C11—C17—C1820.0 (6)C11—C12—Ru2—S1136.5 (2)
C16—C11—C17—C18159.0 (4)C13—C12—Ru2—S191.3 (3)
Ru2—C11—C17—C1871.1 (6)C14—C13—Ru2—C12131.8 (4)
C12—C11—C17—C19104.6 (6)C14—C13—Ru2—C1666.1 (3)
C16—C11—C17—C1976.4 (6)C12—C13—Ru2—C1665.8 (3)
Ru2—C11—C17—C19164.4 (5)C14—C13—Ru2—C1529.7 (2)
C26—C21—C22—C230.4 (6)C12—C13—Ru2—C15102.1 (3)
S1—C21—C22—C23176.4 (3)C14—C13—Ru2—C11103.0 (3)
C21—C22—C23—C241.0 (6)C12—C13—Ru2—C1128.8 (3)
C22—C23—C24—O1176.3 (4)C12—C13—Ru2—C14131.8 (4)
C22—C23—C24—C251.9 (6)C14—C13—Ru2—S3152.4 (3)
C23—C24—C25—C261.4 (6)C12—C13—Ru2—S320.6 (5)
O1—C24—C25—C26176.8 (4)C14—C13—Ru2—S258.6 (3)
C22—C21—C26—C251.0 (5)C12—C13—Ru2—S2169.5 (2)
S1—C21—C26—C25175.6 (3)C14—C13—Ru2—S1134.7 (2)
C24—C25—C26—C210.1 (6)C12—C13—Ru2—S193.5 (3)
S2—C27—C28—C29115.2 (4)C15—C16—Ru2—C12103.1 (3)
S2—C27—C28—C3362.6 (4)C11—C16—Ru2—C1230.0 (2)
C33—C28—C29—C301.6 (6)C15—C16—Ru2—C1365.2 (3)
C27—C28—C29—C30176.2 (4)C11—C16—Ru2—C1367.9 (3)
C28—C29—C30—C310.5 (7)C11—C16—Ru2—C15133.1 (4)
C29—C30—C31—C321.1 (7)C15—C16—Ru2—C11133.1 (4)
C30—C31—C32—C331.5 (7)C15—C16—Ru2—C1428.3 (3)
C31—C32—C33—C280.3 (7)C11—C16—Ru2—C14104.8 (3)
C29—C28—C33—C321.1 (7)C15—C16—Ru2—S3138.0 (3)
C27—C28—C33—C32176.7 (4)C11—C16—Ru2—S388.8 (2)
S3—C34—C35—C4059.4 (5)C15—C16—Ru2—S259.1 (3)
S3—C34—C35—C36117.3 (4)C11—C16—Ru2—S2167.78 (19)
C40—C35—C36—C370.1 (7)C15—C16—Ru2—S1143.1 (3)
C34—C35—C36—C37176.6 (4)C11—C16—Ru2—S110.0 (5)
C35—C36—C37—C380.9 (8)C16—C15—Ru2—C1265.3 (3)
C36—C37—C38—C391.7 (9)C14—C15—Ru2—C1267.9 (3)
C37—C38—C39—C401.3 (9)C16—C15—Ru2—C13103.3 (3)
C38—C39—C40—C350.3 (9)C14—C15—Ru2—C1330.0 (2)
C36—C35—C40—C390.4 (7)C14—C15—Ru2—C16133.3 (4)
C34—C35—C40—C39176.4 (5)C16—C15—Ru2—C1128.5 (3)
C26—C21—S1—Ru117.9 (3)C14—C15—Ru2—C11104.8 (3)
C22—C21—S1—Ru1158.7 (2)C16—C15—Ru2—C14133.3 (4)
C26—C21—S1—Ru281.9 (3)C16—C15—Ru2—S353.2 (3)
C22—C21—S1—Ru2101.5 (3)C14—C15—Ru2—S3173.49 (19)
C28—C27—S2—Ru2162.8 (3)C16—C15—Ru2—S2134.0 (2)
C28—C27—S2—Ru167.0 (3)C14—C15—Ru2—S292.7 (2)
C35—C34—S3—Ru1173.0 (3)C16—C15—Ru2—S1146.4 (2)
C35—C34—S3—Ru276.9 (3)C14—C15—Ru2—S113.2 (4)
C1—C6—Ru1—C5132.7 (4)C16—C11—Ru2—C12130.4 (4)
C5—C6—Ru1—C2102.6 (3)C17—C11—Ru2—C12118.4 (6)
C1—C6—Ru1—C230.1 (2)C12—C11—Ru2—C1329.6 (3)
C5—C6—Ru1—C365.8 (3)C16—C11—Ru2—C13100.9 (3)
C1—C6—Ru1—C366.9 (3)C17—C11—Ru2—C13148.0 (5)
C5—C6—Ru1—C428.7 (2)C12—C11—Ru2—C16130.4 (4)
C1—C6—Ru1—C4104.0 (3)C17—C11—Ru2—C16111.2 (6)
C5—C6—Ru1—C1132.7 (4)C12—C11—Ru2—C15102.1 (3)
C5—C6—Ru1—S3106.6 (2)C16—C11—Ru2—C1528.3 (3)
C1—C6—Ru1—S3120.7 (3)C17—C11—Ru2—C15139.5 (5)
C5—C6—Ru1—S133.5 (4)C12—C11—Ru2—C1466.2 (3)
C1—C6—Ru1—S1166.17 (19)C16—C11—Ru2—C1464.2 (3)
C5—C6—Ru1—S2179.61 (19)C17—C11—Ru2—C14175.4 (5)
C1—C6—Ru1—S246.9 (3)C12—C11—Ru2—S3133.0 (2)
C4—C5—Ru1—C6132.4 (4)C16—C11—Ru2—S396.5 (2)
C4—C5—Ru1—C266.4 (3)C17—C11—Ru2—S314.7 (5)
C6—C5—Ru1—C266.0 (2)C12—C11—Ru2—S2160.8 (3)
C4—C5—Ru1—C329.8 (3)C16—C11—Ru2—S230.3 (4)
C6—C5—Ru1—C3102.7 (3)C17—C11—Ru2—S280.9 (6)
C6—C5—Ru1—C4132.4 (4)C12—C11—Ru2—S153.8 (3)
C4—C5—Ru1—C1103.6 (3)C16—C11—Ru2—S1175.8 (2)
C6—C5—Ru1—C128.8 (2)C17—C11—Ru2—S164.6 (5)
C4—C5—Ru1—S3148.7 (2)C15—C14—Ru2—C12100.9 (3)
C6—C5—Ru1—S378.9 (2)C13—C14—Ru2—C1229.8 (3)
C4—C5—Ru1—S166.6 (3)C20—C14—Ru2—C12144.9 (7)
C6—C5—Ru1—S1161.0 (2)C15—C14—Ru2—C13130.6 (3)
C3—C2—Ru1—C6102.6 (3)C20—C14—Ru2—C13115.1 (7)
C1—C2—Ru1—C630.1 (3)C15—C14—Ru2—C1628.3 (2)
C3—C2—Ru1—C565.4 (3)C13—C14—Ru2—C16102.4 (3)
C1—C2—Ru1—C567.2 (3)C20—C14—Ru2—C16142.5 (7)
C1—C2—Ru1—C3132.7 (3)C13—C14—Ru2—C15130.6 (3)
C3—C2—Ru1—C428.8 (2)C20—C14—Ru2—C15114.3 (7)
C1—C2—Ru1—C4103.8 (3)C15—C14—Ru2—C1164.4 (3)
C3—C2—Ru1—C1132.7 (3)C13—C14—Ru2—C1166.2 (3)
C3—C2—Ru1—S3162.38 (19)C20—C14—Ru2—C11178.7 (7)
C1—C2—Ru1—S329.7 (3)C15—C14—Ru2—S316.3 (5)
C3—C2—Ru1—S145.9 (3)C13—C14—Ru2—S3147.0 (3)
C1—C2—Ru1—S1178.6 (2)C20—C14—Ru2—S397.9 (7)
C3—C2—Ru1—S2122.1 (2)C15—C14—Ru2—S295.1 (2)
C1—C2—Ru1—S2105.2 (2)C13—C14—Ru2—S2134.2 (2)
C2—C3—Ru1—C666.1 (3)C20—C14—Ru2—S219.1 (6)
C4—C3—Ru1—C666.6 (3)C15—C14—Ru2—S1174.05 (19)
C2—C3—Ru1—C5103.2 (3)C13—C14—Ru2—S155.3 (3)
C4—C3—Ru1—C529.5 (3)C20—C14—Ru2—S159.8 (7)
C4—C3—Ru1—C2132.7 (4)C34—S3—Ru2—C12124.07 (19)
C2—C3—Ru1—C4132.7 (4)Ru1—S3—Ru2—C12128.45 (14)
C2—C3—Ru1—C128.9 (2)C34—S3—Ru2—C13138.6 (3)
C4—C3—Ru1—C1103.8 (3)Ru1—S3—Ru2—C13114.0 (3)
C2—C3—Ru1—S3111.6 (6)C34—S3—Ru2—C1656.46 (17)
C4—C3—Ru1—S321.1 (8)Ru1—S3—Ru2—C16163.94 (12)
C2—C3—Ru1—S1147.6 (2)C34—S3—Ru2—C1527.50 (18)
C4—C3—Ru1—S179.7 (3)Ru1—S3—Ru2—C15134.98 (13)
C2—C3—Ru1—S267.7 (2)C34—S3—Ru2—C1193.62 (18)
C4—C3—Ru1—S2159.6 (2)Ru1—S3—Ru2—C11158.90 (13)
C5—C4—Ru1—C629.1 (3)C34—S3—Ru2—C1415.7 (3)
C3—C4—Ru1—C6102.0 (3)Ru1—S3—Ru2—C14123.2 (3)
C10—C4—Ru1—C6144.1 (5)C34—S3—Ru2—S267.45 (13)
C3—C4—Ru1—C5131.1 (4)Ru1—S3—Ru2—S240.03 (3)
C10—C4—Ru1—C5115.0 (5)C34—S3—Ru2—S1144.75 (13)
C5—C4—Ru1—C2102.5 (3)Ru1—S3—Ru2—S137.27 (3)
C3—C4—Ru1—C228.6 (2)C27—S2—Ru2—C122.7 (4)
C10—C4—Ru1—C2142.5 (5)Ru1—S2—Ru2—C12108.2 (4)
C5—C4—Ru1—C3131.1 (4)C27—S2—Ru2—C1317.4 (2)
C10—C4—Ru1—C3113.8 (5)Ru1—S2—Ru2—C13128.38 (16)
C5—C4—Ru1—C165.8 (3)C27—S2—Ru2—C16118.1 (2)
C3—C4—Ru1—C165.4 (3)Ru1—S2—Ru2—C16130.99 (14)
C10—C4—Ru1—C1179.2 (5)C27—S2—Ru2—C1586.5 (2)
C5—C4—Ru1—S343.7 (3)Ru1—S2—Ru2—C15162.55 (14)
C3—C4—Ru1—S3174.84 (19)C27—S2—Ru2—C11139.8 (3)
C10—C4—Ru1—S371.3 (5)Ru1—S2—Ru2—C11109.3 (3)
C5—C4—Ru1—S1122.0 (3)C27—S2—Ru2—C1449.1 (2)
C3—C4—Ru1—S1106.9 (2)Ru1—S2—Ru2—C14160.00 (15)
C10—C4—Ru1—S16.9 (4)C27—S2—Ru2—S3150.56 (16)
C5—C4—Ru1—S2167.9 (2)Ru1—S2—Ru2—S339.61 (3)
C3—C4—Ru1—S236.8 (4)C27—S2—Ru2—S170.03 (15)
C10—C4—Ru1—S277.0 (5)Ru1—S2—Ru2—S140.91 (3)
C2—C1—Ru1—C6130.4 (4)C21—S1—Ru2—C1239.83 (18)
C7—C1—Ru1—C6111.6 (6)Ru1—S1—Ru2—C12156.38 (13)
C6—C1—Ru1—C528.9 (3)C21—S1—Ru2—C1378.12 (18)
C2—C1—Ru1—C5101.6 (3)Ru1—S1—Ru2—C13165.33 (12)
C7—C1—Ru1—C5140.4 (5)C21—S1—Ru2—C163.5 (3)
C6—C1—Ru1—C2130.4 (4)Ru1—S1—Ru2—C16120.1 (3)
C7—C1—Ru1—C2118.0 (6)C21—S1—Ru2—C15117.1 (3)
C6—C1—Ru1—C3101.8 (3)Ru1—S1—Ru2—C15126.3 (3)
C2—C1—Ru1—C328.7 (2)C21—S1—Ru2—C1110.60 (19)
C7—C1—Ru1—C3146.7 (5)Ru1—S1—Ru2—C11127.14 (13)
C6—C1—Ru1—C465.2 (3)C21—S1—Ru2—C14108.01 (18)
C2—C1—Ru1—C465.3 (2)Ru1—S1—Ru2—C14135.44 (13)
C7—C1—Ru1—C4176.7 (5)C21—S1—Ru2—S379.40 (13)
C6—C1—Ru1—S367.0 (3)Ru1—S1—Ru2—S337.15 (3)
C2—C1—Ru1—S3162.58 (19)C21—S1—Ru2—S2157.76 (13)
C7—C1—Ru1—S344.6 (5)Ru1—S1—Ru2—S241.21 (3)
C6—C1—Ru1—S2147.2 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···F10.821.992.773 (9)161
C3—H3···F3i0.932.523.340 (11)148
C30—H30···F2i0.932.603.472 (9)156
C6—H6···F4ii0.932.343.249 (10)166
Symmetry codes: (i) x+1/2, y1/2, z; (ii) x, y+1, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···F10.821.992.773 (9)160.5
C3—H3···F3i0.932.523.340 (11)147.7
C30—H30···F2i0.932.603.472 (9)155.6
C6—H6···F4ii0.932.343.249 (10)166.1
Symmetry codes: (i) x+1/2, y1/2, z; (ii) x, y+1, z1/2.

Experimental details

Crystal data
Chemical formula[Ru2(C6H5OS)(C7H7S)2(C10H14)2]BF4
Mr928.91
Crystal system, space groupMonoclinic, Cc
Temperature (K)173
a, b, c (Å)15.4807 (10), 14.3435 (11), 17.7605 (10)
β (°) 99.435 (5)
V3)3890.3 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.99
Crystal size (mm)0.22 × 0.20 × 0.18
Data collection
DiffractometerStoe IPDS
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
34511, 10178, 8902
Rint0.060
(sin θ/λ)max1)0.690
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.074, 0.95
No. of reflections10178
No. of parameters466
No. of restraints2
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.52, 0.69
Absolute structureFlack x determined using 3741 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013).
Absolute structure parameter0.01 (2)

Computer programs: EXPOSE in IPDS Software (Stoe & Cie, 2000), CELL in IPDS Software (Stoe & Cie, 2000), INTEGRATE in IPDS Software (Stoe & Cie, 2000), SHELXS97 (Sheldrick, 2008), SHELXL2014 (Sheldrick, 2015), ORTEP-32 (Farrugia, 2012), SHELXL97 (Sheldrick, 2008).

 

Acknowledgements

We would like to acknowledge the financial support of the Swiss National Science Foundation (grant No. 200020-143254).

References

First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGiannini, F., Furrer, J., Ibao, A.-F., Süss-Fink, G., Therrien, B., Zava, O., Baquie, M., Dyson, P. J. & Štěpnička, P. (2012). J. Biol. Inorg. Chem. 17, 951–960.  CrossRef CAS PubMed Google Scholar
First citationGiannini, F., Furrer, J., Süss-Fink, G., Clavel, C. M. & Dyson, P. J. (2013b). J. Organomet. Chem. 744, 41–48.  CrossRef CAS Google Scholar
First citationGiannini, F., Paul, L. E. H., Furrer, J., Therrien, B. & Süss-Fink, G. (2013a). New J. Chem. 37, 3503–3511.  CSD CrossRef CAS Google Scholar
First citationGras, M., Therrien, B., Süss-Fink, G., Zava, O. & Dyson, P. J. (2010). Dalton Trans. 39, 10305–10313.  CSD CrossRef CAS PubMed Google Scholar
First citationIbao, A.-F., Gras, M., Therrien, B., Süss-Fink, G., Zava, O. & Dyson, P. J. (2012). Eur. J. Inorg. Chem. pp. 1531–1535.  CSD CrossRef Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationStoe & Cie (2000). IPDS Software. Stoe & Cie GmbH, Darmstadt, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 10| October 2015| Pages 1174-1176
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds