research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 10| October 2015| Pages 1259-1261

Crystal structure of [5-bromo-2-(pyridin-2-yl-κN)phenyl-κC1](pentane-2,4-dionato-κ2O,O′)platinum(II)

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry and Biochemistry, School of Advanced Science and Engineering, Waseda University, Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
*Correspondence e-mail: tom-s@aoni.waseda.jp

Edited by M. Weil, Vienna University of Technology, Austria (Received 7 September 2015; accepted 18 September 2015; online 30 September 2015)

The title cyclo­metalated platinum(II) complex with 2-(4-bromo­phen­yl)pyridinato and acetyl­acetonato ligands, [Pt(C11H7BrN)(C5H7O2)], consists of two crystallographically non-equivalent dimers, each stacked by ππ inter­actions with distances of ≃ 3.4 Å. In both dimers, the platinum(II) complexes are arranged anti­parallel to each other. Each complex exhibits a slightly distorted square-planar coordination environment around the central Pt(II) atom. The dihedral angles between two chelate rings including the PtII atom in these complexes are 0.08 (12) and 1.54 (9)°.

1. Chemical context

Square-planar cyclo­metalated platinum(II) complexes with luminescent properties have recently attracted attention because of their potential applications (Chi & Chou, 2010[Chi, Y. & Chou, P.-T. (2010). Chem. Soc. Rev. 39, 638-655.]; Ma et al., 2013[Ma, D.-L., He, H.-Z., Leung, K.-H., Chan, D. S.-H. & Leung, C.-H. (2013). Angew. Chem. Int. Ed. 52, 7666-7682.]), such as DNA probing, as chemical sensors or as organic light-emitting diodes (OLEDs). In particular, platinum(II) complexes including β-diketonate anions (e.g. acetyl­acetonate) as an ancillary ligand have been widely studied because of their excellent stabilities and high quantum yields. Although these complexes afford luminescence in the solid state, their crystal structures have not been sufficiently explored. We report herein the crystal structure of the cyclo­metalated platinum(II) complex with 2-(4-bromo­phen­yl)pyridinato (Brppy, C11H7BrN) and acetyl­acetonato (acac, C5H7O2) ligands, [Pt(Brppy)(acac)].

[Scheme 1]

2. Structural commentary

The asymmetric unit of the title compound contains two complex mol­ecules with very similar configurations (r.m.s. deviation of fit of two molecules = 0.07 Å). The structure of one of the complex mol­ecules of the title compound is shown in Fig. 1[link]. In both complexes, the PtII atom is coordinated by C and N atoms of the bidentate Brppy ligand and two O atoms of the acac ligand. The coordination environments around the central PtII atoms (Pt1 and Pt2) are slightly distorted from an ideal square-planar configuration, with angles around Pt1 in the range 81.89 (18)–93.04 (17)° and around Pt2 in the range 81.73 (18)–93.57 (16)°. The Pt—C bond lengths [Pt1—C11 = 1.970 (5) and Pt2—C27 = 1.969 (5) Å] are slightly shorter than the Pt—N bond lengths [Pt1—N1 = 1.995 (4) and Pt2—N2 = 1.999 (4) Å] due to the stronger electron-donating ability of a C atom compared to that of an N atom. Pt—O bond lengths are compiled in Table 1[link]. The phenyl and pyridyl rings are approximately coplanar [the dihedral angle between the N1,C1–C5 and C6–C11 rings is 1.31 (17)° while that between the N2,C17–C21 and C22–C27 rings is 3.12 (13)°]. In addition, the dihedral angles between two planes composed of the two chelate rings in the cyclo­metalated complex are 0.08 (12)° (involving Pt1) and 1.54 (9)° (involving Pt2).

Table 1
Selected bond lengths (Å)

O1—Pt1 2.077 (3) O3—Pt2 2.081 (3)
O2—Pt1 2.007 (3) O4—Pt2 2.005 (3)
[Figure 1]
Figure 1
Mol­ecular structure of one of the two independent PtII complexes of the title compound, with displacement ellipsoids drawn at the 50% probability level.

3. Supra­molecular features

As shown in Figs. 2[link] and 3[link], in the unit cell two non-equivalent dimers are formed by ππ inter­actions between individual complexes. Each non-equivalent dimer is in a head-to-tail form. In each unit cell both types of head-to-tail dimers stacked with an inter­molecular ππ inter­action are perpendicular to each other. The π-plane of one PtII complex (Pt1) is directed to the b axis, on the other hand, that of the other complex (Pt2) is directed to the a axis. The shortest inter­molecular contacts are C4⋯C15i = 3.406 (7) and C22⋯O3ii = 3.402 (6) Å [symmetry codes: (i) –x + [{3\over 2}], –y + [{1\over 2}], −z + 1; (ii) –x + [{1\over 2}], –y + [{1\over 2}], –z + 1]. Weak C—H⋯O and C—H⋯Br inter­actions might also help to consolidate the crystal packing (Table 2[link]). There is almost no inter­action between the two PtII atoms in each dimers because the z-axes of Pt1 and Pt2 are not coaxial. In fact, the Pt—Pt contacts [Pt1⋯Pt1i = 3.688 (1) and Pt2⋯Pt2ii = 3.723 (1) Å] are longer than the van der Waals diameter of the Pt atom (3.5 Å; Bondi, 1964[Bondi, A. (1964). J. Phys. Chem. 68, 441-451.])

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1⋯O1 0.95 2.40 2.999 (7) 121
C4—H4⋯O4i 0.95 2.58 3.281 (6) 131
C17—H17⋯O3 0.95 2.45 3.034 (6) 120
C17—H17⋯Br1ii 0.95 2.87 3.693 (6) 145
Symmetry codes: (i) [-x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1]; (ii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].
[Figure 2]
Figure 2
Crystal packing of the title complex, viewed perpendicular to the ab plane. Dashed lines represent the shortest inter­molecular contacts. Red wires represent the Pt1 mol­ecule, and blue wires the Pt2 mol­ecule. H atoms are omitted for clarity. [Symmetry codes: (i) –x + [{3\over 2}], –y + [{1\over 2}], –z + 1; (ii) –x + [{1\over 2}], –y + [{1\over 2}], –z + 1.]
[Figure 3]
Figure 3
Crystal packing of the title complex, viewed perpendicular to the ac plane. Red wires represent the Pt1 mol­ecule, and blue wires the Pt2 mol­ecule. H atoms are omitted for clarity.

4. Synthesis and crystallization

The title complex was synthesized according to a traditional two-step preparation method via the di­chlorido-bridged dimer complex [Pt(C11H7BrN)(μ-Cl)]2 (Cockburn et al., 1973[Cockburn, B. N., Howe, V., Keating, T., Johnson, B. F. G. & Lewis, J. (1973). J. Chem. Soc. Dalton Trans. pp. 404-410.]; Liu et al., 2009[Liu, J., Yang, C.-J., Cao, Q.-Y., Xu, M., Wang, J., Peng, H.-N., Tan, W.-F., Lü, X.-X. & Gao, X.-C. (2009). Inorg. Chim. Acta, 362, 575-579.]), though one-pot synthesis has been reported recently (Hudson et al., 2012[Hudson, Z. M., Blight, B. A. & Wang, S. (2012). Org. Lett. 14, 1700-1703.]).

[Pt(C11H7BrN)(μ-Cl)]2: A mixture of 2-(4-bromo­phen­yl)pyridine (0.585 g, 2.5 mmol) and K2PtCl4 (1.00 g, 2.4 mmol) in a 2-eth­oxy­ethanol–water mixture (45 ml/15 ml) was stirred for 6 h at 333 K under an Ar atmosphere. After cooling to room temperature, the yellow–green precipitate was filtered off, washed with di­chloro­methane, and dried in vacuo. Yield: 0.535 g, (48.2%).

[Pt(C11H7BrN)(C5H7O2)]: A mixture of the di­chlorido-bridged dimer complex (0.185 g, 0.20 mmol), acetyl­acetone (0.020 g, 0.20 mmol) and Na2CO3 (0.211 g, 2.0 mmol) in 2-eth­oxy­ethanol was stirred for 7 h at 323 K under an Ar atmosphere. After cooling to room temperature, the yellow precipitate was filtered off and dried in vacuo. Yield: 0.200 g (47.6%)

Yellow single crystals suitable for X-ray structural analysis were grown by vapor diffusion of hexane into the di­chloro­methane solution of the title complex.

Analysis found (calculated for C16H14BrNO2Pt): C, 36.15 (36.45); H, 2.25 (2.68); N, 2.59 (2.66). UV–vis [CHCl3, λmax nm−1 ( / L mol−1 cm−1)]: 262 (29800), 280 (27500), 317 (sh, 11700), 330 (sh, 9400), 363 (6400), 389 (4200). 1H NMR (CDCl3, 298 K); 8.97 (d, JPt-H = 40.0 Hz, J = 6.0 Hz, 1H), 7.81 (t, J = 6.0 Hz, 1H), 7.71 (s, JPt-H = 40.0 Hz, 1H), 7.57 (d, J = 6.0 Hz, 1H), 7.31-7.45 (m, 2H), 7.14 (t, J = 6.0 Hz, 1H), 5.48 (s, 1H), 2.03 (s, 3H), 2.01 (s, 3H).

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. All H atoms were placed in geometrically idealized positions and refined using a riding model, with C—H = 0.95 Å, Uiso(H) = 1.2Ueq(C) for Csp2–H, and Uiso(H) = 1.5Ueq(C) for methyl H atoms.

Table 3
Experimental details

Crystal data
Chemical formula [Pt(C11H7BrN)(C5H7O2)]
Mr 527.28
Crystal system, space group Monoclinic, C2/c
Temperature (K) 200
a, b, c (Å) 17.557 (2), 17.876 (2), 19.832 (2)
β (°) 91.397 (1)
V3) 6222.4 (13)
Z 16
Radiation type Mo Kα
μ (mm−1) 11.59
Crystal size (mm) 0.18 × 0.06 × 0.02
 
Data collection
Diffractometer Bruker APEXII CCD area detector
Absorption correction Multi-scan (SADABS; Bruker, 2014[Bruker (2014). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.48, 0.80
No. of measured, independent and observed [I > 2σ(I)] reflections 35025, 7103, 6001
Rint 0.038
(sin θ/λ)max−1) 0.649
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.070, 1.01
No. of reflections 7103
No. of parameters 383
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 3.66, −1.20
Computer programs: APEX2 and SAINT (Bruker, 2014[Bruker (2014). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]).

Supporting information


Chemical context top

Square-planar cyclo­metalated platinum(II) complexes with luminescent properties have recently attracted attention because of their potential applications (Chi & Chou, 2010; Ma et al., 2013), such as DNA probing, as chemical sensors or as organic light-emitting diodes (OLEDs). In particular, platinum(II) complexes including β-diketonate anions (e.g. acetyl­acetonate) as an ancillary ligand have been widely studied because of their excellent stabilities and high quantum yields. Although these complexes afford luminescence in the solid state, their crystal structures have not been sufficiently explored. We report herein the crystal structure of the cyclo­metalated platinum(II) complex with 2-(4-bromo­phenyl)­pyridinato (Brppy, C11H7BrN) and acetyl­acetonato (acac, C5H7O2) ligands, [Pt(Brppy)(acac)].

Structural commentary top

The asymmetric unit of the title compound contains two complex molecules with very similar configurations. The structure of one of the complex molecules of the title compound is shown in Fig. 1. In both complexes, the PtII atom is coordinated by C and N atoms of the bidentate Brppy ligand and two O atoms of the acac ligand. The coordination environments around the central PtII atoms (Pt1 and Pt2) are slightly distorted from an ideal square-planar configuration, with angles around Pt1 in the range 81.89 (18)–93.04 (17)° and around Pt2 in the range 81.73 (18)–93.57 (16)°. The Pt—C bond lengths [Pt1—C11 = 1.970 (5) and Pt2—C27 = 1.969 (5) Å] are slightly shorter than the Pt—N bond lengths [Pt1—N1 = 1.995 (4) and Pt2—N2 = 1.999 (4) Å] due to the stronger electron-donating ability of a C atom compared to that of an N atom. Pt—O bond lengths are compiled in Table 1. The phenyl and pyridyl rings are approximately coplanar [(N1,C1,N2,C3,C4,C5)^(C6,C7,C8,C9,C10,C11) = 1.31 (17)°; (N2,C17,C18,C19,C20,C21)^(C22,C23,C24,C25,C26,C27) = 3.12 (13)°]. In addition, the dihedral angles between two planes composed of the two chelate rings in the cyclo­metalated complex are 0.08 (12)° (involving Pt1) and 1.54 (9)° (involving Pt2).

As shown in Figs. 2 and 3, in the unit cell two non-equivalent dimers are formed by ππ inter­actions between individual complexes [give numerical details]. Each nonequivalent dimer is in a head-to-tail form.

Supra­molecular features top

As mentioned above, in each unit cell both types of head-to-tail dimers stacked with an inter­molecular ππ inter­action are perpendicular to each other. The π-plane of one PtII complex (Pt1) is directed to the b axis, on the other hand, that of the other complex (Pt2) is directed to the a axis. The shortest inter­molecular contacts are C4···C15i = 3.406 (7) and C22···O3ii = 3.402 (6) Å [symmetry codes: (i) –x + 3/2, –y + 1/2, –z + 1; (ii) –x + 1/2, –y + 1/2, –z + 1]. Weak C—H···O and C—H···Br inter­actions might also help to consolidate the crystal packing (Table 2). There is almost no inter­action between the two PtII atoms of adjacent dimers because the z-axes of Pt1 and Pt2 are not coaxial. In fact, the Pt—Pt contacts [Pt1···Pt1i = 3.688 (1) and Pt2···Pt2ii = 3.723 (1) Å] are longer than the van der Waals diameter of the Pt atom (3.5 Å; Bondi, 1964)

Synthesis and crystallization top

The title complex was synthesized according to a traditional two-step preparation method via the dichlorido-bridged dimer complex [Pt(C11H7BrN)(µ-Cl)]2 (Cockburn et al., 1973; Liu et al., 2009), though one-pot synthesis has been reported recently (Hudson et al., 2012).

[Pt(C11H7BrN)(µ-Cl)]2: A mixture of 2-(4-bromo­phenyl)­pyridine (0.585 g, 2.5 mmol) and K2PtCl4 (1.00 g, 2.4 mmol) in a 2-eth­oxy­ethanol–water mixture (45 ml/15 ml) was stirred for 6 h at 333 K under an Ar atmosphere. After cooling to room temperature, the yellow–green precipitate was filtered off, washed with di­chloro­methane, and dried in vacuo. Yield: 0.535 g, (48.2 %).

[Pt(C11H7BrN)(C5H7O2)]: A mixture of the dichlorido-bridged dimer complex (0.185 g, 0.20 mmol), acetyl­acetone (0.020 g, 0.20 mmol) and Na2CO3 (0.211 g, 2.0 mmol) in 2-eth­oxy­ethanol was stirred for 7 h at 323 K under an Ar atmosphere. After cooling to room temperature, the yellow precipitate was filtered off and dried in vacuo. Yield: 0.200 g (47.6 %)

Yellow single crystals suitable for X-ray structural analysis were grown by vapor diffusion of hexane into the di­chloro­methane solution of the title complex.

Analysis found (calculated for C16H14BrNO2Pt): C, 36.15 (36.45); H, 2.25 (2.68); N, 2.59 (2.66). UV–vis [CHCl3, λmax / nm (ε / L mol–1 cm–1)]: 262 (29800), 280 (27500), 317 (sh, 11700), 330 (sh, 9400), 363 (6400), 389 (4200). 1H NMR (CDCl3, 298 K); 8.97 (d, JPt—H = 40.0 Hz, J = 6.0 Hz, 1H), 7.81 (t, J = 6.0 Hz, 1H), 7.71 (s, JPt—H = 40.0 Hz, 1H), 7.57 (d, J = 6.0 Hz, 1H), 7.31-7.45 (m, 2H), 7.14 (t, J = 6.0 Hz, 1H), 5.48 (s, 1H), 2.03 (s, 3H), 2.01 (s, 3H).

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 3. All H atoms were placed in geometrically idealized positions and refined using a riding model, with C—H = 0.95 Å, Uiso(H) = 1.2Ueq(C) for Csp2–H, and Uiso(H) = 1.5Ueq(C) for methyl protons.

Related literature top

For related literature, see: Bondi (1964); Cockburn et al. (1973); Hudson et al. (2012); Liu et al. (2009); Chi & Chou (2010); Ma et al. (2013).

Computing details top

Data collection: APEX2 (Bruker, 2014); cell refinement: SAINT (Bruker, 2014); data reduction: SAINT (Bruker, 2014); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015).

Figures top
[Figure 1] Fig. 1. Molecular structure of one of the two independent PtII complexes of the title compound, with displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. Crystal packing of the title complex, viewed perpendicular to the ab plane. Dashed lines represent the shortest intermolecular contacts. Red wires represent the Pt1 molecule, and blue wires the Pt2 molecule. H atoms are omitted for clarity. [Symmetry codes: (i) –x + 3/2, –y + 1/2, –z + 1; (ii) –x + 1/2, –y + 1/2, –z + 1.]
[Figure 3] Fig. 3. Crystal packing of the title complex, viewed perpendicular to the ac plane. Red wires represent the Pt1 molecule, and blue wires the Pt2 molecule. H atoms are omitted for clarity.
[5-Bromo-2-(pyridin-2-yl-κN)phenyl-κC1](pentane-2,4-dionato-κ2O,O')platinum(II) top
Crystal data top
[Pt(C11H7BrN)(C5H7O2)]F(000) = 3936
Mr = 527.28Dx = 2.251 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 17.557 (2) ÅCell parameters from 9927 reflections
b = 17.876 (2) Åθ = 2.3–27.3°
c = 19.832 (2) ŵ = 11.59 mm1
β = 91.397 (1)°T = 200 K
V = 6222.4 (13) Å3Lath, yellow
Z = 160.18 × 0.06 × 0.02 mm
Data collection top
Bruker APEXII CCD area detector
diffractometer
7103 independent reflections
Radiation source: Bruker TXS fine-focus rotating anode6001 reflections with I > 2σ(I)
Bruker Helios multilayer confocal mirror monochromatorRint = 0.038
Detector resolution: 8.333 pixels mm-1θmax = 27.5°, θmin = 1.6°
phi and ω scansh = 2222
Absorption correction: multi-scan
(SADABS; Bruker, 2014)
k = 2323
Tmin = 0.48, Tmax = 0.80l = 2525
35025 measured reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.027H-atom parameters constrained
wR(F2) = 0.070 w = 1/[σ2(Fo2) + (0.0368P)2 + 16.0306P]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max = 0.001
7103 reflectionsΔρmax = 3.66 e Å3
383 parametersΔρmin = 1.19 e Å3
Crystal data top
[Pt(C11H7BrN)(C5H7O2)]V = 6222.4 (13) Å3
Mr = 527.28Z = 16
Monoclinic, C2/cMo Kα radiation
a = 17.557 (2) ŵ = 11.59 mm1
b = 17.876 (2) ÅT = 200 K
c = 19.832 (2) Å0.18 × 0.06 × 0.02 mm
β = 91.397 (1)°
Data collection top
Bruker APEXII CCD area detector
diffractometer
7103 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2014)
6001 reflections with I > 2σ(I)
Tmin = 0.48, Tmax = 0.80Rint = 0.038
35025 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0270 restraints
wR(F2) = 0.070H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0368P)2 + 16.0306P]
where P = (Fo2 + 2Fc2)/3
7103 reflectionsΔρmax = 3.66 e Å3
383 parametersΔρmin = 1.19 e Å3
Special details top

Geometry. Distance SDEV

3.4016 (0.0055) C22 - O3_$6 3.4056 (0.0070) C4 - C15_$5 3.6879 (0.0005) Pt1 - Pt1_$5 3.7230 (0.0005) Pt2 - Pt2_$6

$5 1.5 - x, 0.5 - y, 1 - z $6 0.5 - x, 0.5 - y, 1 - z

Least-squares planes (x,y,z in crystal coordinates) and deviations from them (* indicates atom used to define plane)

17.0464 (0.0086) x + 3.5524 (0.0343) y - 3.1157 (0.0389) z = 1.9362 (0.0174)

* -0.0159 (0.0032) C22 * 0.0106 (0.0035) C23 * 0.0050 (0.0037) C24 * -0.0152 (0.0036) C25 * 0.0096 (0.0034) C26 * 0.0059 (0.0032) C27

Rms deviation of fitted atoms = 0.0112

17.1816 (0.0082) x + 3.3837 (0.0389) y - 2.0681 (0.0436) z = 2.4419 (0.0278)

Angle to previous plane (with approximate e.s.d.) = 3.118 (0.129)

* -0.0040 (0.0032) N2 * 0.0023 (0.0037) C17 * 0.0000 (0.0041) C18 * -0.0004 (0.0041) C19 * -0.0014 (0.0038) C20 * 0.0036 (0.0033) C21

Rms deviation of fitted atoms = 0.0025

3.5018 (0.0341) x + 17.1159 (0.0108) y - 4.2313 (0.0388) z = 3.1261 (0.0262)

Angle to previous plane (with approximate e.s.d.) = 66.846 (0.177)

* 0.0047 (0.0032) C6 * -0.0001 (0.0036) C7 * -0.0055 (0.0037) C8 * 0.0064 (0.0036) C9 * -0.0015 (0.0033) C10 * -0.0040 (0.0031) C11

Rms deviation of fitted atoms = 0.0043

3.8621 (0.0359) x + 17.0726 (0.0113) y - 4.0479 (0.0426) z = 3.4669 (0.0355)

Angle to previous plane (with approximate e.s.d.) = 1.309 (0.166)

* -0.0056 (0.0031) N1 * 0.0048 (0.0038) C1 * -0.0003 (0.0042) C2 * -0.0032 (0.0042) C3 * 0.0024 (0.0037) C4 * 0.0019 (0.0032) C5

Rms deviation of fitted atoms = 0.0035

17.0575 (0.0059) x + 3.8901 (0.0226) y - 2.3217 (0.0295) z = 2.4371 (0.0163)

Angle to previous plane (with approximate e.s.d.) = 63.889 (0.149)

* 0.0136 (0.0026) O3 * 0.0004 (0.0034) C29 * -0.0121 (0.0038) C30 * -0.0006 (0.0035) C31 * 0.0149 (0.0026) O4 * -0.0162 (0.0018) Pt2

Rms deviation of fitted atoms = 0.0117

17.1494 (0.0057) x + 3.4219 (0.0232) y - 2.3782 (0.0383) z = 2.2709 (0.0209)

Angle to previous plane (with approximate e.s.d.) = 1.538 (0.086)

* -0.0073 (0.0024) N2 * 0.0020 (0.0029) C21 * 0.0076 (0.0030) C22 * -0.0104 (0.0026) C27 * 0.0081 (0.0018) Pt2

Rms deviation of fitted atoms = 0.0076

3.7521 (0.0218) x + 17.0640 (0.0077) y - 4.2225 (0.0285) z = 3.2745 (0.0235)

Angle to previous plane (with approximate e.s.d.) = 65.705 (0.111)

* -0.0132 (0.0026) O1 * -0.0080 (0.0035) C13 * 0.0257 (0.0037) C14 * -0.0103 (0.0034) C15 * -0.0121 (0.0026) O2 * 0.0179 (0.0017) Pt1

Rms deviation of fitted atoms = 0.0157

3.7578 (0.0215) x + 17.0576 (0.0090) y - 4.2485 (0.0367) z = 3.2795 (0.0249)

Angle to previous plane (with approximate e.s.d.) = 0.080 (0.123)

* -0.0089 (0.0023) N1 * 0.0120 (0.0028) C5 * -0.0086 (0.0028) C6 * 0.0027 (0.0024) C11 * 0.0028 (0.0017) Pt1

Rms deviation of fitted atoms = 0.0079

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.63794 (4)0.11449 (4)0.24876 (3)0.06869 (19)
Br20.13287 (5)0.08166 (4)0.25166 (3)0.06997 (19)
C10.6968 (3)0.1984 (3)0.6440 (3)0.0478 (12)
H10.74590.19280.66460.057*
C20.6367 (4)0.2211 (3)0.6835 (3)0.0614 (16)
H20.64410.23040.73040.074*
C30.5655 (4)0.2296 (3)0.6522 (3)0.0626 (17)
H30.52310.24490.67770.075*
C40.5565 (3)0.2159 (3)0.5846 (3)0.0484 (13)
H40.50800.22210.56320.058*
C50.6187 (3)0.1929 (2)0.5470 (3)0.0368 (10)
C60.6190 (3)0.1739 (2)0.4758 (3)0.0355 (10)
C70.5543 (3)0.1762 (3)0.4328 (3)0.0467 (12)
H70.50650.19040.45020.056*
C80.5596 (3)0.1583 (3)0.3660 (3)0.0493 (14)
H80.51600.15930.33670.059*
C90.6299 (3)0.1388 (3)0.3424 (3)0.0455 (12)
C100.6949 (3)0.1351 (3)0.3833 (2)0.0392 (11)
H100.74210.12070.36490.047*
C110.6905 (3)0.1526 (2)0.4509 (2)0.0342 (10)
C120.9693 (4)0.1381 (4)0.6572 (3)0.0652 (17)
H12A0.95520.18220.68350.098*
H12B1.02340.14100.64630.098*
H12C0.96020.09280.68370.098*
C130.9223 (3)0.1355 (3)0.5936 (3)0.0445 (12)
C140.9569 (3)0.1148 (3)0.5327 (3)0.0475 (13)
H141.01040.10670.53490.057*
C150.9213 (3)0.1051 (3)0.4705 (3)0.0395 (11)
C160.9671 (3)0.0762 (3)0.4126 (3)0.0514 (14)
H16A0.94350.03050.39470.077*
H16B1.01920.06530.42860.077*
H16C0.96840.11420.37700.077*
C170.1737 (3)0.2277 (3)0.6336 (3)0.0477 (13)
H170.16510.27900.64350.057*
C180.1893 (3)0.1793 (4)0.6855 (3)0.0591 (15)
H180.19130.19670.73080.071*
C190.2023 (3)0.1049 (4)0.6714 (3)0.0629 (17)
H190.21330.07060.70690.075*
C200.1990 (3)0.0805 (3)0.6053 (3)0.0511 (13)
H200.20770.02930.59510.061*
C210.1831 (3)0.1312 (3)0.5538 (3)0.0411 (11)
C220.1765 (2)0.1157 (3)0.4814 (3)0.0377 (11)
C230.1874 (3)0.0452 (3)0.4521 (3)0.0452 (12)
H230.20230.00400.47960.054*
C240.1767 (3)0.0357 (3)0.3844 (3)0.0482 (13)
H240.18360.01210.36450.058*
C250.1556 (3)0.0967 (3)0.3451 (3)0.0444 (12)
C260.1472 (3)0.1677 (3)0.3722 (3)0.0410 (11)
H260.13460.20890.34380.049*
C270.1574 (3)0.1782 (3)0.4412 (3)0.0360 (10)
C280.1093 (4)0.4917 (3)0.5815 (3)0.0568 (15)
H28A0.07910.47310.61890.085*
H28B0.08380.53520.56110.085*
H28C0.16000.50620.59850.085*
C290.1167 (3)0.4308 (3)0.5292 (3)0.0435 (12)
C300.1027 (3)0.4486 (3)0.4614 (3)0.0490 (13)
H300.08880.49900.45200.059*
C310.1067 (3)0.4011 (3)0.4063 (3)0.0433 (12)
C320.0874 (4)0.4303 (3)0.3369 (3)0.0617 (16)
H32A0.12630.41410.30550.093*
H32B0.08550.48510.33790.093*
H32C0.03760.41080.32190.093*
N10.6882 (2)0.1843 (2)0.5787 (2)0.0349 (8)
N20.1701 (2)0.2051 (2)0.5697 (2)0.0368 (9)
O10.85200 (19)0.15218 (18)0.59970 (18)0.0418 (8)
O20.85083 (18)0.11665 (19)0.45482 (17)0.0402 (8)
O30.13515 (19)0.36673 (18)0.55181 (18)0.0410 (8)
O40.1237 (2)0.33092 (18)0.40711 (17)0.0400 (8)
Pt10.77288 (2)0.15171 (2)0.52011 (2)0.03211 (6)
Pt20.14668 (2)0.27243 (2)0.49142 (2)0.03308 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0827 (5)0.0827 (5)0.0401 (3)0.0135 (4)0.0115 (3)0.0119 (3)
Br20.0957 (5)0.0599 (4)0.0547 (4)0.0007 (3)0.0093 (3)0.0143 (3)
C10.052 (3)0.043 (3)0.047 (3)0.001 (2)0.000 (2)0.003 (2)
C20.071 (4)0.056 (4)0.057 (4)0.003 (3)0.008 (3)0.005 (3)
C30.064 (4)0.052 (4)0.073 (4)0.006 (3)0.027 (3)0.001 (3)
C40.036 (3)0.039 (3)0.070 (4)0.006 (2)0.009 (3)0.006 (3)
C50.032 (2)0.023 (2)0.056 (3)0.0007 (18)0.001 (2)0.009 (2)
C60.027 (2)0.026 (2)0.053 (3)0.0041 (18)0.004 (2)0.009 (2)
C70.031 (3)0.049 (3)0.060 (3)0.000 (2)0.004 (2)0.008 (3)
C80.038 (3)0.045 (3)0.063 (4)0.007 (2)0.019 (3)0.017 (3)
C90.050 (3)0.046 (3)0.040 (3)0.008 (2)0.007 (2)0.009 (2)
C100.037 (3)0.035 (2)0.046 (3)0.004 (2)0.001 (2)0.009 (2)
C110.033 (2)0.024 (2)0.045 (3)0.0028 (18)0.002 (2)0.0079 (19)
C120.048 (4)0.079 (5)0.068 (4)0.001 (3)0.020 (3)0.008 (3)
C130.036 (3)0.043 (3)0.054 (3)0.008 (2)0.011 (2)0.014 (2)
C140.028 (2)0.046 (3)0.068 (4)0.003 (2)0.006 (2)0.013 (3)
C150.027 (2)0.040 (3)0.051 (3)0.001 (2)0.001 (2)0.013 (2)
C160.035 (3)0.052 (3)0.067 (4)0.004 (2)0.006 (2)0.014 (3)
C170.041 (3)0.051 (3)0.051 (3)0.001 (2)0.000 (2)0.002 (2)
C180.057 (4)0.071 (4)0.049 (3)0.007 (3)0.009 (3)0.013 (3)
C190.053 (4)0.074 (4)0.061 (4)0.006 (3)0.011 (3)0.025 (3)
C200.043 (3)0.045 (3)0.065 (4)0.001 (2)0.006 (3)0.016 (3)
C210.027 (2)0.036 (3)0.060 (3)0.0026 (19)0.000 (2)0.010 (2)
C220.022 (2)0.028 (2)0.064 (3)0.0004 (17)0.005 (2)0.009 (2)
C230.035 (3)0.031 (3)0.070 (4)0.002 (2)0.007 (2)0.005 (2)
C240.046 (3)0.029 (3)0.069 (4)0.000 (2)0.010 (3)0.005 (2)
C250.042 (3)0.039 (3)0.053 (3)0.003 (2)0.014 (2)0.006 (2)
C260.037 (3)0.032 (2)0.054 (3)0.001 (2)0.008 (2)0.003 (2)
C270.028 (2)0.028 (2)0.052 (3)0.0004 (18)0.005 (2)0.005 (2)
C280.062 (4)0.042 (3)0.067 (4)0.003 (3)0.004 (3)0.010 (3)
C290.033 (3)0.031 (2)0.067 (3)0.004 (2)0.008 (2)0.001 (2)
C300.049 (3)0.032 (3)0.066 (4)0.003 (2)0.007 (3)0.006 (2)
C310.045 (3)0.027 (2)0.058 (3)0.002 (2)0.008 (2)0.009 (2)
C320.085 (5)0.037 (3)0.063 (4)0.007 (3)0.004 (3)0.011 (3)
N10.033 (2)0.0284 (19)0.043 (2)0.0001 (16)0.0005 (17)0.0037 (16)
N20.0235 (19)0.037 (2)0.050 (2)0.0018 (16)0.0014 (16)0.0063 (18)
O10.0344 (19)0.043 (2)0.048 (2)0.0013 (14)0.0061 (15)0.0071 (15)
O20.0295 (17)0.0403 (19)0.051 (2)0.0019 (14)0.0007 (14)0.0059 (15)
O30.0366 (18)0.0320 (17)0.055 (2)0.0009 (14)0.0031 (15)0.0027 (15)
O40.045 (2)0.0295 (17)0.0461 (19)0.0016 (14)0.0055 (15)0.0068 (14)
Pt10.02610 (9)0.02845 (10)0.04157 (11)0.00042 (6)0.00348 (7)0.00636 (7)
Pt20.02732 (10)0.02679 (9)0.04527 (11)0.00091 (6)0.00418 (7)0.00340 (7)
Geometric parameters (Å, º) top
C9—C101.385 (7)C16—H16A0.9800
C6—C111.414 (7)C16—H16B0.9800
C10—C111.380 (7)C16—H16C0.9800
C12—C131.492 (8)C17—H170.9500
C13—C141.413 (8)C18—H180.9500
C14—C151.382 (7)C19—H190.9500
C15—C161.508 (7)C2—H20.9500
C17—C181.368 (8)C20—H200.9500
C18—C191.378 (9)C23—H230.9500
C1—C21.390 (8)C24—H240.9500
C19—C201.381 (9)C26—H260.9500
C20—C211.389 (7)C28—H28A0.9800
C21—C221.463 (7)C28—H28B0.9800
C22—C231.402 (7)C28—H28C0.9800
C23—C241.362 (8)C3—H30.9500
Br2—C251.905 (5)C30—H300.9500
C24—C251.386 (8)C32—H32A0.9800
C25—C261.388 (7)C32—H32B0.9800
C22—C271.407 (6)C32—H32C0.9800
C26—C271.388 (7)C4—H40.9500
C28—C291.511 (7)C7—H70.9500
C2—C31.392 (9)C8—H80.9500
C29—C301.397 (8)C1—N11.325 (6)
C30—C311.387 (8)C5—N11.367 (6)
C31—C321.504 (8)C17—N21.331 (7)
C3—C41.367 (9)C21—N21.378 (6)
C4—C51.400 (7)C13—O11.279 (6)
C5—C61.452 (7)C15—O21.284 (5)
C6—C71.404 (7)C29—O31.270 (6)
C7—C81.369 (8)C31—O41.290 (6)
Br1—C91.915 (5)C11—Pt11.970 (5)
C8—C91.376 (8)N1—Pt11.995 (4)
C1—H10.9500O1—Pt12.077 (3)
C10—H100.9500O2—Pt12.007 (3)
C12—H12A0.9800C27—Pt21.969 (5)
C12—H12B0.9800N2—Pt21.999 (4)
C12—H12C0.9800O3—Pt22.081 (3)
C14—H140.9500O4—Pt22.005 (3)
N1—C1—C2122.5 (5)C21—C20—H20120.1
N1—C1—H1118.8N2—C21—C20119.2 (5)
C2—C1—H1118.8N2—C21—C22113.4 (4)
C1—C2—C3117.8 (6)C20—C21—C22127.4 (5)
C1—C2—H2121.1C23—C22—C27120.8 (5)
C3—C2—H2121.1C23—C22—C21124.6 (4)
C4—C3—C2119.9 (6)C27—C22—C21114.6 (4)
C4—C3—H3120.0C24—C23—C22120.3 (5)
C2—C3—H3120.0C24—C23—H23119.9
C3—C4—C5120.2 (5)C22—C23—H23119.9
C3—C4—H4119.9C23—C24—C25119.0 (5)
C5—C4—H4119.9C23—C24—H24120.5
N1—C5—C4119.1 (5)C25—C24—H24120.5
N1—C5—C6113.4 (4)C24—C25—C26122.0 (5)
C4—C5—C6127.5 (5)C24—C25—Br2118.9 (4)
C7—C6—C11120.6 (5)C26—C25—Br2119.0 (4)
C7—C6—C5124.2 (5)C27—C26—C25119.5 (5)
C11—C6—C5115.2 (4)C27—C26—H26120.2
C8—C7—C6120.5 (5)C25—C26—H26120.2
C8—C7—H7119.8C26—C27—C22118.3 (5)
C6—C7—H7119.8C26—C27—Pt2127.0 (4)
C7—C8—C9118.2 (5)C22—C27—Pt2114.7 (4)
C7—C8—H8120.9C29—C28—H28A109.5
C9—C8—H8120.9C29—C28—H28B109.5
C8—C9—C10123.1 (5)H28A—C28—H28B109.5
C8—C9—Br1118.4 (4)C29—C28—H28C109.5
C10—C9—Br1118.5 (4)H28A—C28—H28C109.5
C11—C10—C9119.6 (5)H28B—C28—H28C109.5
C11—C10—H10120.2O3—C29—C30125.6 (5)
C9—C10—H10120.2O3—C29—C28115.7 (5)
C10—C11—C6118.1 (4)C30—C29—C28118.7 (5)
C10—C11—Pt1128.2 (4)C31—C30—C29127.4 (5)
C6—C11—Pt1113.7 (4)C31—C30—H30116.3
C13—C12—H12A109.5C29—C30—H30116.3
C13—C12—H12B109.5O4—C31—C30127.0 (5)
H12A—C12—H12B109.5O4—C31—C32113.3 (5)
C13—C12—H12C109.5C30—C31—C32119.7 (5)
H12A—C12—H12C109.5C31—C32—H32A109.5
H12B—C12—H12C109.5C31—C32—H32B109.5
O1—C13—C14125.3 (5)H32A—C32—H32B109.5
O1—C13—C12115.3 (5)C31—C32—H32C109.5
C14—C13—C12119.4 (5)H32A—C32—H32C109.5
C15—C14—C13126.9 (5)H32B—C32—H32C109.5
C15—C14—H14116.5C1—N1—C5120.5 (4)
C13—C14—H14116.5C1—N1—Pt1123.8 (3)
O2—C15—C14127.5 (5)C5—N1—Pt1115.7 (3)
O2—C15—C16113.6 (5)C17—N2—C21120.4 (4)
C14—C15—C16119.0 (4)C17—N2—Pt2124.1 (4)
C15—C16—H16A109.5C21—N2—Pt2115.6 (3)
C15—C16—H16B109.5C13—O1—Pt1123.8 (3)
H16A—C16—H16B109.5C15—O2—Pt1124.2 (3)
C15—C16—H16C109.5C29—O3—Pt2123.8 (4)
H16A—C16—H16C109.5C31—O4—Pt2124.0 (3)
H16B—C16—H16C109.5C11—Pt1—N181.89 (18)
N2—C17—C18121.9 (6)C11—Pt1—O293.04 (17)
N2—C17—H17119.1N1—Pt1—O2174.80 (15)
C18—C17—H17119.1C11—Pt1—O1174.72 (17)
C17—C18—C19119.3 (6)N1—Pt1—O192.90 (15)
C17—C18—H18120.3O2—Pt1—O192.15 (14)
C19—C18—H18120.3C27—Pt2—N281.73 (18)
C18—C19—C20119.6 (5)C27—Pt2—O492.57 (17)
C18—C19—H19120.2N2—Pt2—O4174.29 (15)
C20—C19—H19120.2C27—Pt2—O3175.20 (17)
C19—C20—C21119.7 (6)N2—Pt2—O393.57 (16)
C19—C20—H20120.1O4—Pt2—O392.12 (13)
N1—C1—C2—C30.6 (9)C21—C22—C23—C24177.1 (5)
C1—C2—C3—C40.2 (9)C22—C23—C24—C250.6 (8)
C2—C3—C4—C50.4 (9)C23—C24—C25—C261.9 (8)
C3—C4—C5—N10.1 (7)C23—C24—C25—Br2175.1 (4)
C3—C4—C5—C6178.0 (5)C24—C25—C26—C272.4 (8)
N1—C5—C6—C7178.2 (4)Br2—C25—C26—C27174.6 (4)
C4—C5—C6—C70.2 (8)C25—C26—C27—C220.3 (7)
N1—C5—C6—C112.2 (6)C25—C26—C27—Pt2178.7 (4)
C4—C5—C6—C11179.8 (4)C23—C22—C27—C262.1 (7)
C11—C6—C7—C80.4 (7)C21—C22—C27—C26177.6 (4)
C5—C6—C7—C8179.2 (5)C23—C22—C27—Pt2178.8 (3)
C6—C7—C8—C90.6 (8)C21—C22—C27—Pt21.5 (5)
C7—C8—C9—C101.2 (8)O3—C29—C30—C310.6 (9)
C7—C8—C9—Br1179.5 (4)C28—C29—C30—C31179.8 (5)
C8—C9—C10—C110.9 (8)C29—C30—C31—O40.5 (9)
Br1—C9—C10—C11179.8 (3)C29—C30—C31—C32178.3 (5)
C9—C10—C11—C60.1 (7)C2—C1—N1—C51.2 (8)
C9—C10—C11—Pt1179.7 (4)C2—C1—N1—Pt1179.9 (4)
C7—C6—C11—C100.7 (7)C4—C5—N1—C10.9 (7)
C5—C6—C11—C10178.9 (4)C6—C5—N1—C1179.1 (4)
C7—C6—C11—Pt1179.1 (4)C4—C5—N1—Pt1179.7 (3)
C5—C6—C11—Pt11.3 (5)C6—C5—N1—Pt12.1 (5)
O1—C13—C14—C153.6 (9)C18—C17—N2—C210.8 (8)
C12—C13—C14—C15175.8 (5)C18—C17—N2—Pt2179.5 (4)
C13—C14—C15—O23.9 (9)C20—C21—N2—C170.9 (7)
C13—C14—C15—C16174.6 (5)C22—C21—N2—C17179.7 (4)
N2—C17—C18—C190.4 (9)C20—C21—N2—Pt2179.4 (4)
C17—C18—C19—C200.1 (9)C22—C21—N2—Pt20.6 (5)
C18—C19—C20—C210.3 (8)C14—C13—O1—Pt10.3 (7)
C19—C20—C21—N20.6 (8)C12—C13—O1—Pt1179.0 (4)
C19—C20—C21—C22179.2 (5)C14—C15—O2—Pt10.7 (7)
N2—C21—C22—C23179.7 (4)C16—C15—O2—Pt1177.9 (3)
C20—C21—C22—C231.7 (8)C30—C29—O3—Pt21.2 (7)
N2—C21—C22—C270.6 (6)C28—C29—O3—Pt2178.4 (3)
C20—C21—C22—C27178.0 (5)C30—C31—O4—Pt21.5 (7)
C27—C22—C23—C242.6 (7)C32—C31—O4—Pt2176.5 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···O10.952.402.999 (7)121
C4—H4···O4i0.952.583.281 (6)131
C17—H17···O30.952.453.034 (6)120
C17—H17···Br1ii0.952.873.693 (6)145
Symmetry codes: (i) x+1/2, y+1/2, z+1; (ii) x1/2, y+1/2, z+1/2.
Selected bond lengths (Å) top
O1—Pt12.077 (3)O3—Pt22.081 (3)
O2—Pt12.007 (3)O4—Pt22.005 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···O10.952.402.999 (7)120.6
C4—H4···O4i0.952.583.281 (6)130.9
C17—H17···O30.952.453.034 (6)119.8
C17—H17···Br1ii0.952.873.693 (6)145.0
Symmetry codes: (i) x+1/2, y+1/2, z+1; (ii) x1/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Pt(C11H7BrN)(C5H7O2)]
Mr527.28
Crystal system, space groupMonoclinic, C2/c
Temperature (K)200
a, b, c (Å)17.557 (2), 17.876 (2), 19.832 (2)
β (°) 91.397 (1)
V3)6222.4 (13)
Z16
Radiation typeMo Kα
µ (mm1)11.59
Crystal size (mm)0.18 × 0.06 × 0.02
Data collection
DiffractometerBruker APEXII CCD area detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2014)
Tmin, Tmax0.48, 0.80
No. of measured, independent and
observed [I > 2σ(I)] reflections
35025, 7103, 6001
Rint0.038
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.070, 1.01
No. of reflections7103
No. of parameters383
H-atom treatmentH-atom parameters constrained
w = 1/[σ2(Fo2) + (0.0368P)2 + 16.0306P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)3.66, 1.19

Computer programs: APEX2 (Bruker, 2014), SAINT (Bruker, 2014), SHELXS97 (Sheldrick, 2008), SHELXL2014 (Sheldrick, 2015), ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008).

 

Acknowledgements

The authors thank Professor Takashi Fujihara (Saitama University) for providing an opportunity for X-ray crystallographic analysis. This work was supported by JSPS KAKENHI Grant-in-Aid for Young Scientists (B) (25810052 to TS), and partially by JSPS KAKENHI Grant No. 2540150.

References

First citationBondi, A. (1964). J. Phys. Chem. 68, 441–451.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2014). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChi, Y. & Chou, P.-T. (2010). Chem. Soc. Rev. 39, 638–655.  Web of Science CrossRef CAS PubMed Google Scholar
First citationCockburn, B. N., Howe, V., Keating, T., Johnson, B. F. G. & Lewis, J. (1973). J. Chem. Soc. Dalton Trans. pp. 404–410.  CrossRef Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHudson, Z. M., Blight, B. A. & Wang, S. (2012). Org. Lett. 14, 1700–1703.  Web of Science CrossRef CAS PubMed Google Scholar
First citationLiu, J., Yang, C.-J., Cao, Q.-Y., Xu, M., Wang, J., Peng, H.-N., Tan, W.-F., Lü, X.-X. & Gao, X.-C. (2009). Inorg. Chim. Acta, 362, 575–579.  CrossRef CAS Google Scholar
First citationMa, D.-L., He, H.-Z., Leung, K.-H., Chan, D. S.-H. & Leung, C.-H. (2013). Angew. Chem. Int. Ed. 52, 7666–7682.  CrossRef CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 10| October 2015| Pages 1259-1261
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds