research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 10| October 2015| Pages 1216-1218

Crystal structure of bis­­[μ-(4-meth­­oxy­phen­yl)methane­thiol­ato-κ2S:S]bis­­[chlorido­(η6-1-iso­propyl-4-methyl­benzene)­ruthenium(II)] chloro­form disolvate

CROSSMARK_Color_square_no_text.svg

aInstitut de Chimie, Université de Neuchâtel, Avenue de Bellevaux 51, CH-2000 Neuchâtel, Switzerland
*Correspondence e-mail: bruno.therrien@unine.ch

Edited by M. Weil, Vienna University of Technology, Austria (Received 12 September 2015; accepted 17 September 2015; online 26 September 2015)

The mol­ecular structure of the title complex, [Ru2(C8H9OS)2Cl2(C10H14)2]·2CHCl3 or (p-MeC6H4Pri)2Ru2(SCH2-p-C6H5-OCH3)2Cl2·2CHCl3, shows inversion symmetry. The two symmetry-related RuII atoms are bridged by two 4-meth­oxy-α-toluene­thiol­ato [(4-meth­oxy­phen­yl)methane­thiol­ato] units. One chlorido ligand and the p-cymene ligand complete the typical piano-stool coordination environment of the RuII atom. In the crystal, the CH moiety of the chloro­form mol­ecule inter­acts with the chlorido ligand of the dinuclear complex, while one Cl atom of the solvent inter­acts more weakly with the methyl group of the bridging 4-meth­oxy-α-toluene­thiol­ato unit. This assembly leads to the formation of supra­molecular chains extending parallel to [021].

1. Chemical context

Several series of dinuclear tri­thiol­ato arene ruthenium(II) complexes have been synthesized by our group in recent years (Gras et al., 2010[Gras, M., Therrien, B., Süss-Fink, G., Zava, O. & Dyson, P. J. (2010). Dalton Trans. 39, 10305-10313.]; Giannini et al., 2011[Giannini, F., Süss-Fink, G. & Furrer, J. (2011). Inorg. Chem. 50, 10552-10554.], 2013a[Giannini, F., Paul, L. E. H., Furrer, J., Therrien, B. & Süss-Fink, G. (2013a). New J. Chem. 37, 3503-3511.]) and investigated for their potential as anti­cancer agents (Giannini et al., 2012[Giannini, F., Furrer, J., Ibao, A.-F., Süss-Fink, G., Therrien, B., Zava, O., Baquie, M., Dyson, P. J. & Štěpnička, P. (2012). J. Biol. Inorg. Chem. 17, 951-960.]). The in vitro studies showed the IC50 values of the chloride salts of these complexes to be regularly in the nanomolar range, being among the most active ruthenium complexes synthesized to date. The recent discovery of di­thiol­ato complexes (Ibao et al., 2012[Ibao, A.-F., Gras, M., Therrien, B., Süss-Fink, G., Zava, O. & Dyson, P. J. (2012). Eur. J. Inorg. Chem. pp. 1531-1535.]) opened new possibilities for the design of thiol­ato-bridged dinuclear arene ruthenium(II) complexes (Giannini et al., 2013b[Giannini, F., Furrer, J., Süss-Fink, G., Clavel, C. M. & Dyson, P. J. (2013b). J. Organomet. Chem. 744, 41-48.]). Herein we report the structure of a neutral di­thio­l­ato complex, p-MeC6H4Pri)2Ru2(SCH2-p-C6H5-OCH3)2Cl2 that crystallized as a chloro­form disolvate.

[Scheme 1]

2. Structural commentary

The mol­ecular structure of the dinuclear title compound, [RuCl(C8H9OS)(C10H14)]2·2CHCl3, exhibits inversion symmetry and is presented in Fig. 1[link]. The RuII atom adopts a typical piano-stool coordination geometry with the p-cymene ligand being bound facially, formally occupying three coord­ination sites. The other three positions are occupied by symmetry-related S atoms of two 4-meth­oxy-α-toluene­thiol­ato units and one chlorido ligand. The inter­atomic distances between Ru1 and the two symmetry-related S1 atoms are 2.3778 (10) and 2.3931 (10) Å, between Ru1 and Cl1 2.4284 (12) Å, and between S1 and C1 1.847 (3) Å. The Ru1—S1—Ru1i angle is 100.03 (4)° [symmetry code: (i) –x + 1, –y + 1, –z]. The distance between the metal atom and the associated ring centroid (C1–C6) is 1.684 Å. In agreement with the electronic count, there is no metal–metal bond, the Ru⋯Ru distance in the dinuclear complex mol­ecule being 3.6555 (9) Å.

[Figure 1]
Figure 1
The mol­ecular structures of the components in the structure of (p-MeC6H4Pri)2Ru2(SCH2-p-C6H5-OCH3)2Cl2·2CHCl3. Displacement ellipsoids are drawn at the 50% probability level.

3. Supra­molecular features

In the crystal packing of the title compound, the chlorido ligand of the complex inter­acts with the CH moiety of the chloro­form mol­ecule. Moreover, a more weak hydrogen-bonding inter­action is also observed between the meth­oxy group of the 4-meth­oxy-α-toluene­thiol­ato and a chlorine atom of the solvent mol­ecule (Table 1[link]). These inter­actions give rise to the formation of supra­molecular chains extending parallel to [021] (Fig. 2[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C9—H9⋯Cl1 0.98 2.66 3.583 (4) 157
C8—H8C⋯Cl4i 0.96 3.03 3.886 (5) 150
Symmetry code: (i) -x+1, -y+2, -z.
[Figure 2]
Figure 2
The one dimensional supra­molecular network in the crystal packing of (p-MeC6H4Pri)2Ru2(SCH2-p-C6H5-OCH3)2Cl2·2CHCl3. Only the stronger of the C—H⋯Cl inter­actions is shown (dotted lines).

4. Synthesis and crystallization

The title complex was obtained from the reaction of 100 mg (0.163 mmol) of (p-MeC6H4Pri)2Ru2Cl4 and 50.3 µl (0.343 mmol) of 4-meth­oxy-α-toluene­thiol in ethanol. The solution was stirred at room temperature for 3 h, afterwards the solvent was reduced to 2 ml in vacuo and the product precipitated by adding hexane. The solid was filtered, washed with hexane and dried in vacuo. X-ray quality crystals were obtained by slow diffusion of diethyl ether into the solution of the title complex in chloro­form.

Yield: 124.2 mg (89%). C36H46Cl2O2Ru2S2: calculated C, 50.99; H, 5.47; found C, 50.76; H, 5.46. ESI MS: (MeOH + CH2Cl2): m/z = 822.8 [M − Cl]+. 1H NMR (400 MHz, CDCl3): δ = 7.49 (d, 3J = 8 Hz, 2H, SCH2C6H4-p-OCH3), 6.85 (d, 3J = 8 Hz, 2H, SCH2C6H4-p-OCH3), 5.15–4.89 [m, 8H, p-CH3C6H4CH(CH3)2], 4.15 (d, 3J = 11 Hz, 2H, SCH2C6H4-p-OCH3), 3.83 (s, 6H, SCH2C6H4-p-OCH3), 3.26 (d, 3J = 11 Hz, 2H, SCH2C6H4-p-OCH3), 2.86 [sept, 3J = 8 Hz, 2H, p-CH3C6H4CH(CH3)2], 1.89 [s, 6H, p-CH3C6H4CH(CH3)2], 1.2 [s, 12H, p-CH3C6H4CH(CH3)2] p.p.m. 13C NMR (100 MHz, CDCl3): δ = 158.41, 132.89, 131.56, 112.96, 96.97, 83.91, 83.03, 55.32, 35.90, 29.88, 23.50, 21.22, 18.79 p.p.m.

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. All hydrogen atoms were included in calculated positions and treated as riding atoms, with C—H = 0.93 Å for Caromatic, 0.97 Å for –CH2–, 0.98 Å for –CH–, and 0.96 Å for –CH3, with Uiso(H) = 1.2Ueq(C) and 1.5Ueq(C) for methyl H atoms.

Table 2
Experimental details

Crystal data
Chemical formula [Ru2(C8H9OS)2Cl2(C10H14)2]·2CHCl3
Mr 1086.62
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 173
a, b, c (Å) 10.034 (2), 10.070 (2), 12.124 (2)
α, β, γ (°) 112.75 (3), 95.58 (3), 98.51 (3)
V3) 1101.2 (4)
Z 1
Radiation type Mo Kα
μ (mm−1) 1.30
Crystal size (mm) 0.24 × 0.21 × 0.19
 
Data collection
Diffractometer STOE IPDS
Absorption correction Empirical (using intensity measurements) (Walker & Stuart, 1983[Walker, N. & Stuart, D. (1983). Acta Cryst. A39, 158-166.])
Tmin, Tmax 0.655, 0.819
No. of measured, independent and observed [I > 2σ(I)] reflections 13000, 5787, 4504
Rint 0.058
(sin θ/λ)max−1) 0.689
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.092, 0.97
No. of reflections 5787
No. of parameters 239
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.94, −1.47
Computer programs: EXPOSE, CELL and INTEGRATE (IPDS Software; Stoe & Cie, 2000[Stoe & Cie (2000). IPDS Software. Stoe & Cie GmbH, Darmstadt, Germany.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014/7 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Chemical context top

Several series of dinuclear tri­thiol­ato arene ruthenium(II) complexes have been synthesized by our group in recent years (Gras et al., 2010; Giannini et al., 2011, 2013a) and investigated for their potential as anti­cancer agents (Giannini et al., 2012). The in vitro studies showed the IC50 values of the chloride salts of these complexes to be regularly in the nanomolar range, making them some of the most active ruthenium complexes synthesized to date. The recent discovery of di­thiol­ato complexes (Ibao et al., 2012) opened new possibilities for the design of thiol­ato-bridged dinuclear arene ruthenium(II) complexes (Giannini et al., 2013b). Herein we report the structure of a neutral di­thiol­ato complex, p-MeC6H4Pri)2Ru2(SCH2-p-C6H5—OCH3)2Cl2 that crystallized as a chloro­form disolvate.

Structural commentary top

The molecular structure of the dinuclear title compound, [RuCl(C8H9OS)(C10H14)]2·2CHCl3, exhibits inversion symmetry and is presented in Fig. 1. The RuII atom adopts a typical piano-stool coordination geometry with the p-cymene ligand being bound facially, formally occupying three coordination sites. The other three positions are occupied by symmetry-related S atoms of two 4-meth­oxy-α-toluene­thiol­ato units and one chlorido ligand. The inter­atomic distances between Ru1 and the two symmetry-related S1 atoms are 2.3778 (10) and 2.3931 (10) Å, between Ru1 and Cl1 2.4284 (12) Å, and between S1 and C1 1.847 (3) Å. The Ru1—S1—Ru1i angle is 100.03 (4)° [symmetry code: (i) –x + 1, –y + 1, –z]. The distance between the metal atom and the associated ring centroid (C1–C6) is 1.684 Å. In agreement with the electronic count, there is no metal–metal bond, the Ru···Ru distance in the dinuclear complex molecule being 3.6555 (9) Å.

Supra­molecular features top

In the crystal packing of the title compound, the chlorido ligand of the complex inter­acts with the CH moiety of the chloro­form molecule. Moreover, a more weak hydrogen-bonding inter­action is also observed between the meth­oxy group of the 4-meth­oxy-α-toluene­thiol­ato and a chlorine atom of the solvent molecule (Table 1). These inter­actions give rise to the formation of supra­molecular chains extending parallel to [021] (Fig. 2).

Synthesis and crystallization top

The title complex was obtained from the reaction of 100 mg (0.163 mmol) of (p-MeC6H4Pri)2Ru2Cl4 and 50.3 µl (0.343 mmol) of 4-meth­oxy-α-toluene­thiol in ethanol. The solution was stirred at room temperature for 3 h, afterwards the solvent was reduced to 2 ml in vacuo and the product precipitated by adding hexane. The solid was filtered, washed with hexane and dried in vacuo. X-ray quality crystals were obtained by slow diffusion of di­ethyl ether into the solution of the title complex in chloro­form.

Yield: 124.2 mg (89%). C36H46Cl2O2Ru2S2: calculated C, 50.99; H, 5.47; found C, 50.76; H, 5.46. ESI MS: (MeOH + CH2Cl2): m/z = 822.8 [M - Cl]+. 1H NMR (400 MHz, CDCl3): δ = 7.49 (d, 3J = 8 Hz, 2H, SCH2C6H4-p-OCH3), 6.85 (d, 3J = 8 Hz, 2H, SCH2C6H4-p-OCH3), 5.15–4.89 [m, 8H, p-CH3C6H4CH(CH3)2], 4.15 (d, 3J = 11 Hz, 2H, SCH2C6H4-p-OCH3), 3.83 (s, 6H, SCH2C6H4-p-OCH3), 3.26 (d, 3J = 11 Hz, 2H, SCH2C6H4-p-OCH3), 2.86 [sept, 3J = 8 Hz, 2H, p-CH3C6H4CH(CH3)2], 1.89 [s, 6H, p-CH3C6H4CH(CH3)2], 1.2 [s, 12H, p-CH3C6H4CH(CH3)2] p.p.m. 13C NMR (100 MHz, CDCl3): δ = 158.41, 132.89, 131.56, 112.96, 96.97, 83.91, 83.03, 55.32, 35.90, 29.88, 23.50, 21.22, 18.79 p.p.m.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 2. All hydrogen atoms were included in calculated positions and treated as riding atoms, with C—H = 0.93 Å for Caromatic, 0.97 Å for –CH2–, 0.98 Å for –CH–, and 0.96 Å for –CH3, with Uiso(H) = 1.2Ueq(C) and 1.5Ueq(C) for methyl H atoms.

Computing details top

Data collection: EXPOSE (IPDS Software; Stoe & Cie, 2000); cell refinement: CELL (IPDS Software; Stoe & Cie, 2000); data reduction: INTEGRATE (IPDS Software; Stoe & Cie, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014/7 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL2014/7 (Sheldrick, 2015).

Figures top
[Figure 1] Fig. 1. The molecular structures of the components in the structure of (p-MeC6H4Pri)2Ru2(SCH2-p-C6H5-OCH3)2Cl2·2CHCl3. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. The one dimensional supramolecular network in the crystal packing of (p-MeC6H4Pri)2Ru2(SCH2-p-C6H5-OCH3)2Cl2·2CHCl3. Only the stronger of the C—H···Cl interactions is shown (dotted lines).
Bis[µ-(4-methoxyphenyl)methanethiolato-κ2S:S]\ bis[chlorido(η6-1-isopropyl-4-methylbenzene)ruthenium(II)] chloroform disolvate top
Crystal data top
[Ru2(C8H9OS)2Cl2(C10H14)2]·2CHCl3Z = 1
Mr = 1086.62F(000) = 548
Triclinic, P1Dx = 1.639 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.034 (2) ÅCell parameters from 8000 reflections
b = 10.070 (2) Åθ = 2.1–28.9°
c = 12.124 (2) ŵ = 1.30 mm1
α = 112.75 (3)°T = 173 K
β = 95.58 (3)°Block, orange
γ = 98.51 (3)°0.24 × 0.21 × 0.19 mm
V = 1101.2 (4) Å3
Data collection top
STOE IPDS
diffractometer
5787 independent reflections
Radiation source: fine-focus sealed tube4504 reflections with I > 2σ(I)
Detector resolution: 0.81 pixels mm-1Rint = 0.058
phi oscillation scansθmax = 29.3°, θmin = 1.9°
Absorption correction: empirical (using intensity measurements)
(Walker & Stuart, 1983)
h = 1113
Tmin = 0.655, Tmax = 0.819k = 1313
13000 measured reflectionsl = 1616
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.039H-atom parameters constrained
wR(F2) = 0.092 w = 1/[σ2(Fo2) + (0.047P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.97(Δ/σ)max < 0.001
5787 reflectionsΔρmax = 0.94 e Å3
239 parametersΔρmin = 1.47 e Å3
Crystal data top
[Ru2(C8H9OS)2Cl2(C10H14)2]·2CHCl3γ = 98.51 (3)°
Mr = 1086.62V = 1101.2 (4) Å3
Triclinic, P1Z = 1
a = 10.034 (2) ÅMo Kα radiation
b = 10.070 (2) ŵ = 1.30 mm1
c = 12.124 (2) ÅT = 173 K
α = 112.75 (3)°0.24 × 0.21 × 0.19 mm
β = 95.58 (3)°
Data collection top
STOE IPDS
diffractometer
5787 independent reflections
Absorption correction: empirical (using intensity measurements)
(Walker & Stuart, 1983)
4504 reflections with I > 2σ(I)
Tmin = 0.655, Tmax = 0.819Rint = 0.058
13000 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.092H-atom parameters constrained
S = 0.97Δρmax = 0.94 e Å3
5787 reflectionsΔρmin = 1.47 e Å3
239 parameters
Special details top

Experimental. A crystal was mounted at 173 K on a Stoe Image Plate Diffraction System (Stoe & Cie, 2000) using Mo Kα graphite monochromated radiation. Image plate distance 100 mm, φ oscillation scans 0 - 180°, step Δφ = 1.2°, 5 minutes per frame.

Reflections were merged by SHELXL according to the crystal class for the calculation of statistics and refinement.

_reflns_Friedel_fraction is defined as the number of unique Friedel pairs measured divided by the number that would be possible theoretically, ignoring centric projections and systematic absences.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.7926 (3)0.4925 (4)0.0177 (3)0.0255 (6)
H1A0.85080.47620.04260.031*
H1B0.75650.39860.08550.031*
C20.8739 (3)0.5957 (4)0.0603 (3)0.0247 (6)
C30.9603 (3)0.7265 (4)0.0208 (3)0.0282 (7)
H30.97170.74830.10350.034*
C41.0290 (3)0.8237 (4)0.0184 (3)0.0314 (7)
H41.08500.91070.03760.038*
C51.0151 (3)0.7924 (4)0.1422 (3)0.0297 (7)
C60.9324 (3)0.6622 (4)0.2252 (3)0.0326 (7)
H60.92300.63970.30790.039*
C70.8633 (3)0.5650 (4)0.1833 (3)0.0303 (7)
H170.80860.47710.23930.036*
C81.0626 (4)0.8763 (5)0.2960 (4)0.0471 (10)
H8A1.08480.78490.34640.071*
H8B1.11850.95580.30560.071*
H8C0.96790.87460.31950.071*
C90.2694 (4)0.9102 (5)0.3930 (4)0.0423 (9)
H90.32700.83670.37880.051*
C100.5851 (3)0.3518 (4)0.2545 (3)0.0260 (7)
C110.4405 (4)0.2937 (4)0.2169 (3)0.0294 (7)
H110.38330.31520.27470.035*
C120.3845 (3)0.2066 (4)0.0967 (3)0.0273 (7)
H120.29060.17030.07580.033*
C130.4679 (3)0.1709 (3)0.0033 (3)0.0242 (6)
C140.6104 (3)0.2285 (4)0.0405 (3)0.0247 (6)
H140.66740.20940.01750.030*
C150.6681 (3)0.3150 (4)0.1645 (3)0.0243 (6)
H150.76240.34780.18640.029*
C160.6405 (4)0.4500 (5)0.3870 (3)0.0371 (8)
H160.57230.50920.41760.044*
C170.7731 (5)0.5567 (5)0.4064 (4)0.0516 (11)
H17A0.84490.50320.38440.077*
H17B0.79620.62410.49020.077*
H17C0.76210.61050.35690.077*
C180.6510 (5)0.3546 (6)0.4589 (4)0.0528 (12)
H18A0.56270.29560.44910.079*
H18B0.68240.41680.54330.079*
H18C0.71440.29180.42930.079*
C190.4071 (4)0.0830 (4)0.1272 (3)0.0360 (8)
H19A0.45950.11670.17680.054*
H19B0.31450.09470.14090.054*
H19C0.40810.01890.14770.054*
O11.0868 (3)0.8961 (3)0.1727 (3)0.0419 (6)
S10.65082 (7)0.57453 (8)0.04876 (7)0.02020 (15)
Cl10.46757 (8)0.64213 (9)0.25227 (7)0.02648 (16)
Cl20.33078 (13)1.05269 (14)0.53676 (10)0.0565 (3)
Cl30.09992 (13)0.82576 (14)0.38522 (11)0.0576 (3)
Cl40.27665 (14)0.97961 (17)0.28011 (11)0.0623 (3)
Ru10.50634 (2)0.41162 (3)0.10619 (2)0.01824 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0191 (14)0.0273 (18)0.0344 (17)0.0071 (12)0.0081 (12)0.0157 (15)
C20.0176 (13)0.0288 (18)0.0326 (16)0.0072 (12)0.0081 (12)0.0157 (14)
C30.0246 (15)0.0313 (19)0.0302 (16)0.0052 (13)0.0046 (13)0.0140 (15)
C40.0245 (16)0.0288 (19)0.0375 (18)0.0003 (13)0.0042 (14)0.0120 (16)
C50.0234 (15)0.0292 (19)0.0413 (19)0.0046 (13)0.0132 (14)0.0180 (16)
C60.0268 (16)0.042 (2)0.0302 (17)0.0061 (15)0.0091 (13)0.0154 (16)
C70.0265 (16)0.0290 (19)0.0327 (17)0.0021 (13)0.0087 (14)0.0100 (15)
C80.045 (2)0.057 (3)0.054 (2)0.0045 (19)0.0187 (19)0.038 (2)
C90.048 (2)0.040 (2)0.037 (2)0.0147 (19)0.0076 (18)0.0118 (18)
C100.0295 (16)0.0318 (18)0.0266 (15)0.0132 (13)0.0079 (13)0.0191 (15)
C110.0337 (17)0.0343 (19)0.0338 (17)0.0137 (14)0.0159 (14)0.0236 (16)
C120.0243 (15)0.0214 (17)0.0428 (19)0.0030 (12)0.0072 (13)0.0202 (15)
C130.0315 (16)0.0122 (14)0.0285 (15)0.0005 (12)0.0010 (13)0.0101 (13)
C140.0282 (15)0.0224 (16)0.0331 (16)0.0141 (13)0.0139 (13)0.0162 (14)
C150.0236 (14)0.0250 (17)0.0311 (16)0.0118 (12)0.0055 (12)0.0160 (14)
C160.044 (2)0.047 (2)0.0249 (16)0.0214 (18)0.0061 (15)0.0161 (17)
C170.056 (3)0.050 (3)0.034 (2)0.009 (2)0.0070 (19)0.006 (2)
C180.063 (3)0.079 (4)0.036 (2)0.034 (3)0.015 (2)0.035 (2)
C190.046 (2)0.0240 (19)0.0357 (19)0.0037 (15)0.0020 (16)0.0123 (16)
O10.0349 (14)0.0449 (17)0.0514 (16)0.0023 (12)0.0138 (12)0.0275 (14)
S10.0175 (3)0.0209 (4)0.0245 (4)0.0040 (3)0.0043 (3)0.0116 (3)
Cl10.0281 (4)0.0250 (4)0.0260 (4)0.0070 (3)0.0072 (3)0.0088 (3)
Cl20.0583 (7)0.0529 (7)0.0386 (5)0.0077 (5)0.0022 (5)0.0004 (5)
Cl30.0537 (6)0.0547 (7)0.0578 (7)0.0009 (5)0.0024 (5)0.0211 (6)
Cl40.0711 (8)0.0793 (9)0.0511 (6)0.0268 (7)0.0240 (6)0.0348 (7)
Ru10.01758 (11)0.01881 (13)0.02142 (12)0.00467 (8)0.00493 (8)0.01074 (10)
Geometric parameters (Å, º) top
C1—C21.503 (4)C11—H110.9300
C1—S11.847 (3)C12—C131.439 (5)
C1—H1A0.9700C12—Ru12.194 (3)
C1—H1B0.9700C12—H120.9300
C2—C71.391 (5)C13—C141.418 (5)
C2—C31.396 (5)C13—C191.492 (5)
C3—C41.372 (5)C13—Ru12.208 (3)
C3—H30.9300C14—C151.422 (5)
C4—C51.397 (5)C14—Ru12.173 (3)
C4—H40.9300C14—H140.9300
C5—O11.369 (4)C15—Ru12.204 (3)
C5—C61.384 (5)C15—H150.9300
C6—C71.396 (5)C16—C171.517 (6)
C6—H60.9300C16—C181.534 (5)
C7—H170.9300C16—H160.9800
C8—O11.421 (5)C17—H17A0.9600
C8—H8A0.9600C17—H17B0.9600
C8—H8B0.9600C17—H17C0.9600
C8—H8C0.9600C18—H18A0.9600
C9—Cl21.752 (4)C18—H18B0.9600
C9—Cl31.761 (5)C18—H18C0.9600
C9—Cl41.764 (4)C19—H19A0.9600
C9—H90.9800C19—H19B0.9600
C10—C151.406 (4)C19—H19C0.9600
C10—C111.438 (5)S1—Ru12.3778 (10)
C10—C161.517 (5)S1—Ru1i2.3931 (10)
C10—Ru12.219 (3)Cl1—Ru12.4284 (12)
C11—C121.384 (5)Ru1—S1i2.3931 (10)
C11—Ru12.196 (3)
C2—C1—S1108.8 (2)C14—C15—Ru169.85 (16)
C2—C1—H1A109.9C10—C15—H15119.4
S1—C1—H1A109.9C14—C15—H15119.4
C2—C1—H1B109.9Ru1—C15—H15131.6
S1—C1—H1B109.9C17—C16—C10113.6 (3)
H1A—C1—H1B108.3C17—C16—C18112.9 (4)
C7—C2—C3117.4 (3)C10—C16—C18109.4 (4)
C7—C2—C1120.7 (3)C17—C16—H16106.9
C3—C2—C1121.9 (3)C10—C16—H16106.9
C4—C3—C2121.6 (3)C18—C16—H16106.9
C4—C3—H3119.2C16—C17—H17A109.5
C2—C3—H3119.2C16—C17—H17B109.5
C3—C4—C5120.3 (3)H17A—C17—H17B109.5
C3—C4—H4119.9C16—C17—H17C109.5
C5—C4—H4119.9H17A—C17—H17C109.5
O1—C5—C6124.3 (3)H17B—C17—H17C109.5
O1—C5—C4116.1 (3)C16—C18—H18A109.5
C6—C5—C4119.6 (3)C16—C18—H18B109.5
C5—C6—C7119.2 (3)H18A—C18—H18B109.5
C5—C6—H6120.4C16—C18—H18C109.5
C7—C6—H6120.4H18A—C18—H18C109.5
C2—C7—C6121.9 (3)H18B—C18—H18C109.5
C2—C7—H17119.0C13—C19—H19A109.5
C6—C7—H17119.0C13—C19—H19B109.5
O1—C8—H8A109.5H19A—C19—H19B109.5
O1—C8—H8B109.5C13—C19—H19C109.5
H8A—C8—H8B109.5H19A—C19—H19C109.5
O1—C8—H8C109.5H19B—C19—H19C109.5
H8A—C8—H8C109.5C5—O1—C8117.6 (3)
H8B—C8—H8C109.5C1—S1—Ru1111.36 (10)
Cl2—C9—Cl3110.4 (2)C1—S1—Ru1i109.65 (11)
Cl2—C9—Cl4110.0 (2)Ru1—S1—Ru1i100.03 (4)
Cl3—C9—Cl4109.8 (2)C14—Ru1—C1267.73 (12)
Cl2—C9—H9108.8C14—Ru1—C1179.89 (12)
Cl3—C9—H9108.8C12—Ru1—C1136.75 (14)
Cl4—C9—H9108.8C14—Ru1—C1537.92 (12)
C15—C10—C11117.4 (3)C12—Ru1—C1579.44 (12)
C15—C10—C16123.3 (3)C11—Ru1—C1567.08 (12)
C11—C10—C16119.3 (3)C14—Ru1—C1337.76 (12)
C15—C10—Ru170.89 (16)C12—Ru1—C1338.17 (12)
C11—C10—Ru170.12 (16)C11—Ru1—C1368.07 (13)
C16—C10—Ru1129.3 (2)C15—Ru1—C1368.35 (13)
C12—C11—C10121.5 (3)C14—Ru1—C1068.23 (12)
C12—C11—Ru171.54 (17)C12—Ru1—C1067.85 (13)
C10—C11—Ru171.86 (17)C11—Ru1—C1038.02 (13)
C12—C11—H11119.2C15—Ru1—C1037.08 (11)
C10—C11—H11119.2C13—Ru1—C1081.53 (13)
Ru1—C11—H11130.0C14—Ru1—S196.92 (8)
C11—C12—C13121.6 (3)C12—Ru1—S1159.60 (10)
C11—C12—Ru171.71 (19)C11—Ru1—S1157.71 (10)
C13—C12—Ru171.44 (17)C15—Ru1—S196.80 (8)
C11—C12—H12119.2C13—Ru1—S1121.79 (9)
C13—C12—H12119.2C10—Ru1—S1120.29 (9)
Ru1—C12—H12130.4C14—Ru1—S1i113.67 (9)
C14—C13—C12116.8 (3)C12—Ru1—S1i93.66 (9)
C14—C13—C19121.5 (3)C11—Ru1—S1i121.67 (10)
C12—C13—C19121.7 (3)C15—Ru1—S1i151.25 (9)
C14—C13—Ru169.78 (18)C13—Ru1—S1i88.92 (9)
C12—C13—Ru170.38 (18)C10—Ru1—S1i159.68 (9)
C19—C13—Ru1128.3 (2)S1—Ru1—S1i79.97 (4)
C13—C14—C15121.5 (3)C14—Ru1—Cl1155.31 (10)
C13—C14—Ru172.46 (17)C12—Ru1—Cl1117.94 (9)
C15—C14—Ru172.23 (17)C11—Ru1—Cl192.05 (10)
C13—C14—H14119.3C15—Ru1—Cl1117.51 (10)
C15—C14—H14119.3C13—Ru1—Cl1155.93 (9)
Ru1—C14—H14128.4C10—Ru1—Cl191.04 (9)
C10—C15—C14121.1 (3)S1—Ru1—Cl181.71 (4)
C10—C15—Ru172.04 (17)S1i—Ru1—Cl190.48 (4)
S1—C1—C2—C7105.6 (3)C11—C12—C13—Ru153.5 (3)
S1—C1—C2—C373.2 (3)C12—C13—C14—C151.2 (4)
C7—C2—C3—C42.1 (5)C19—C13—C14—C15178.6 (3)
C1—C2—C3—C4176.7 (3)Ru1—C13—C14—C1555.3 (2)
C2—C3—C4—C50.9 (5)C12—C13—C14—Ru154.1 (2)
C3—C4—C5—O1179.6 (3)C19—C13—C14—Ru1123.3 (3)
C3—C4—C5—C60.5 (5)C11—C10—C15—C142.4 (4)
O1—C5—C6—C7179.6 (3)C16—C10—C15—C14176.8 (3)
C4—C5—C6—C70.6 (5)Ru1—C10—C15—C1451.8 (3)
C3—C2—C7—C62.0 (5)C11—C10—C15—Ru154.2 (2)
C1—C2—C7—C6176.8 (3)C16—C10—C15—Ru1125.0 (3)
C5—C6—C7—C20.7 (5)C13—C14—C15—C102.7 (4)
C15—C10—C11—C120.8 (4)Ru1—C14—C15—C1052.8 (3)
C16—C10—C11—C12178.4 (3)C13—C14—C15—Ru155.4 (2)
Ru1—C10—C11—C1253.7 (3)C15—C10—C16—C1725.9 (5)
C15—C10—C11—Ru154.6 (2)C11—C10—C16—C17153.3 (3)
C16—C10—C11—Ru1124.7 (3)Ru1—C10—C16—C1765.9 (4)
C10—C11—C12—C130.5 (5)C15—C10—C16—C18101.2 (4)
Ru1—C11—C12—C1353.3 (3)C11—C10—C16—C1879.6 (4)
C10—C11—C12—Ru153.9 (3)Ru1—C10—C16—C18167.0 (3)
C11—C12—C13—C140.3 (4)C6—C5—O1—C87.4 (5)
Ru1—C12—C13—C1453.8 (2)C4—C5—O1—C8172.7 (3)
C11—C12—C13—C19177.0 (3)C2—C1—S1—Ru1175.94 (19)
Ru1—C12—C13—C19123.6 (3)C2—C1—S1—Ru1i66.2 (2)
Symmetry code: (i) x+1, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9···Cl10.982.663.583 (4)157
C8—H8C···Cl4ii0.963.033.886 (5)150
Symmetry code: (ii) x+1, y+2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9···Cl10.982.663.583 (4)156.5
C8—H8C···Cl4i0.963.033.886 (5)149.8
Symmetry code: (i) x+1, y+2, z.

Experimental details

Crystal data
Chemical formula[Ru2(C8H9OS)2Cl2(C10H14)2]·2CHCl3
Mr1086.62
Crystal system, space groupTriclinic, P1
Temperature (K)173
a, b, c (Å)10.034 (2), 10.070 (2), 12.124 (2)
α, β, γ (°)112.75 (3), 95.58 (3), 98.51 (3)
V3)1101.2 (4)
Z1
Radiation typeMo Kα
µ (mm1)1.30
Crystal size (mm)0.24 × 0.21 × 0.19
Data collection
DiffractometerSTOE IPDS
diffractometer
Absorption correctionEmpirical (using intensity measurements)
(Walker & Stuart, 1983)
Tmin, Tmax0.655, 0.819
No. of measured, independent and
observed [I > 2σ(I)] reflections
13000, 5787, 4504
Rint0.058
(sin θ/λ)max1)0.689
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.092, 0.97
No. of reflections5787
No. of parameters239
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.94, 1.47

Computer programs: EXPOSE (IPDS Software; Stoe & Cie, 2000), CELL (IPDS Software; Stoe & Cie, 2000), INTEGRATE (IPDS Software; Stoe & Cie, 2000), SHELXS97 (Sheldrick, 2008), SHELXL2014/7 (Sheldrick, 2015), ORTEP-3 for Windows (Farrugia, 2012).

 

Acknowledgements

This work was supported financially by the Swiss National Science Foundation (Projects 200020–143254 and 200020–131844). We also thank Johnson Matthey Research Centre for the generous loan of ruthenium trichloride hydrate.

References

First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGiannini, F., Furrer, J., Ibao, A.-F., Süss-Fink, G., Therrien, B., Zava, O., Baquie, M., Dyson, P. J. & Štěpnička, P. (2012). J. Biol. Inorg. Chem. 17, 951–960.  CrossRef CAS PubMed Google Scholar
First citationGiannini, F., Furrer, J., Süss-Fink, G., Clavel, C. M. & Dyson, P. J. (2013b). J. Organomet. Chem. 744, 41–48.  CrossRef CAS Google Scholar
First citationGiannini, F., Paul, L. E. H., Furrer, J., Therrien, B. & Süss-Fink, G. (2013a). New J. Chem. 37, 3503–3511.  CSD CrossRef CAS Google Scholar
First citationGiannini, F., Süss-Fink, G. & Furrer, J. (2011). Inorg. Chem. 50, 10552–10554.  CrossRef CAS PubMed Google Scholar
First citationGras, M., Therrien, B., Süss-Fink, G., Zava, O. & Dyson, P. J. (2010). Dalton Trans. 39, 10305–10313.  CSD CrossRef CAS PubMed Google Scholar
First citationIbao, A.-F., Gras, M., Therrien, B., Süss-Fink, G., Zava, O. & Dyson, P. J. (2012). Eur. J. Inorg. Chem. pp. 1531–1535.  CSD CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationStoe & Cie (2000). IPDS Software. Stoe & Cie GmbH, Darmstadt, Germany.  Google Scholar
First citationWalker, N. & Stuart, D. (1983). Acta Cryst. A39, 158–166.  CrossRef CAS Web of Science IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 10| October 2015| Pages 1216-1218
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds