research communications
μ-(4-methoxyphenyl)methanethiolato-κ2S:S]bis[chlorido(η6-1-isopropyl-4-methylbenzene)ruthenium(II)] chloroform disolvate
of bis[aInstitut de Chimie, Université de Neuchâtel, Avenue de Bellevaux 51, CH-2000 Neuchâtel, Switzerland
*Correspondence e-mail: bruno.therrien@unine.ch
The molecular structure of the title complex, [Ru2(C8H9OS)2Cl2(C10H14)2]·2CHCl3 or (p-MeC6H4Pri)2Ru2(SCH2-p-C6H5-OCH3)2Cl2·2CHCl3, shows inversion symmetry. The two symmetry-related RuII atoms are bridged by two 4-methoxy-α-toluenethiolato [(4-methoxyphenyl)methanethiolato] units. One chlorido ligand and the p-cymene ligand complete the typical piano-stool coordination environment of the RuII atom. In the crystal, the CH moiety of the chloroform molecule interacts with the chlorido ligand of the dinuclear complex, while one Cl atom of the solvent interacts more weakly with the methyl group of the bridging 4-methoxy-α-toluenethiolato unit. This assembly leads to the formation of supramolecular chains extending parallel to [021].
CCDC reference: 1415346
1. Chemical context
Several series of dinuclear trithiolato arene ruthenium(II) complexes have been synthesized by our group in recent years (Gras et al., 2010; Giannini et al., 2011, 2013a) and investigated for their potential as anticancer agents (Giannini et al., 2012). The in vitro studies showed the IC50 values of the chloride salts of these complexes to be regularly in the nanomolar range, being among the most active ruthenium complexes synthesized to date. The recent discovery of dithiolato complexes (Ibao et al., 2012) opened new possibilities for the design of thiolato-bridged dinuclear arene ruthenium(II) complexes (Giannini et al., 2013b). Herein we report the structure of a neutral dithiolato complex, p-MeC6H4Pri)2Ru2(SCH2-p-C6H5-OCH3)2Cl2 that crystallized as a chloroform disolvate.
2. Structural commentary
The molecular structure of the dinuclear title compound, [RuCl(C8H9OS)(C10H14)]2·2CHCl3, exhibits inversion symmetry and is presented in Fig. 1. The RuII atom adopts a typical piano-stool coordination geometry with the p-cymene ligand being bound facially, formally occupying three coordination sites. The other three positions are occupied by symmetry-related S atoms of two 4-methoxy-α-toluenethiolato units and one chlorido ligand. The interatomic distances between Ru1 and the two symmetry-related S1 atoms are 2.3778 (10) and 2.3931 (10) Å, between Ru1 and Cl1 2.4284 (12) Å, and between S1 and C1 1.847 (3) Å. The Ru1—S1—Ru1i angle is 100.03 (4)° [symmetry code: (i) –x + 1, –y + 1, –z]. The distance between the metal atom and the associated ring centroid (C1–C6) is 1.684 Å. In agreement with the electronic count, there is no metal–metal bond, the Ru⋯Ru distance in the dinuclear complex molecule being 3.6555 (9) Å.
3. Supramolecular features
In the crystal packing of the title compound, the chlorido ligand of the complex interacts with the CH moiety of the chloroform molecule. Moreover, a more weak hydrogen-bonding interaction is also observed between the methoxy group of the 4-methoxy-α-toluenethiolato and a chlorine atom of the solvent molecule (Table 1). These interactions give rise to the formation of supramolecular chains extending parallel to [021] (Fig. 2).
4. Synthesis and crystallization
The title complex was obtained from the reaction of 100 mg (0.163 mmol) of (p-MeC6H4Pri)2Ru2Cl4 and 50.3 µl (0.343 mmol) of 4-methoxy-α-toluenethiol in ethanol. The solution was stirred at room temperature for 3 h, afterwards the solvent was reduced to 2 ml in vacuo and the product precipitated by adding hexane. The solid was filtered, washed with hexane and dried in vacuo. X-ray quality crystals were obtained by slow diffusion of diethyl ether into the solution of the title complex in chloroform.
Yield: 124.2 mg (89%). C36H46Cl2O2Ru2S2: calculated C, 50.99; H, 5.47; found C, 50.76; H, 5.46. ESI MS: (MeOH + CH2Cl2): m/z = 822.8 [M − Cl]+. 1H NMR (400 MHz, CDCl3): δ = 7.49 (d, 3J = 8 Hz, 2H, SCH2C6H4-p-OCH3), 6.85 (d, 3J = 8 Hz, 2H, SCH2C6H4-p-OCH3), 5.15–4.89 [m, 8H, p-CH3C6H4CH(CH3)2], 4.15 (d, 3J = 11 Hz, 2H, SCH2C6H4-p-OCH3), 3.83 (s, 6H, SCH2C6H4-p-OCH3), 3.26 (d, 3J = 11 Hz, 2H, SCH2C6H4-p-OCH3), 2.86 [sept, 3J = 8 Hz, 2H, p-CH3C6H4CH(CH3)2], 1.89 [s, 6H, p-CH3C6H4CH(CH3)2], 1.2 [s, 12H, p-CH3C6H4CH(CH3)2] p.p.m. 13C NMR (100 MHz, CDCl3): δ = 158.41, 132.89, 131.56, 112.96, 96.97, 83.91, 83.03, 55.32, 35.90, 29.88, 23.50, 21.22, 18.79 p.p.m.
5. Refinement
Crystal data, data collection and structure . All hydrogen atoms were included in calculated positions and treated as riding atoms, with C—H = 0.93 Å for Caromatic, 0.97 Å for –CH2–, 0.98 Å for –CH–, and 0.96 Å for –CH3, with Uiso(H) = 1.2Ueq(C) and 1.5Ueq(C) for methyl H atoms.
details are summarized in Table 2Supporting information
CCDC reference: 1415346
10.1107/S2056989015017399/wm5217sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S2056989015017399/wm5217Isup2.hkl
Several series of dinuclear trithiolato arene ruthenium(II) complexes have been synthesized by our group in recent years (Gras et al., 2010; Giannini et al., 2011, 2013a) and investigated for their potential as anticancer agents (Giannini et al., 2012). The in vitro studies showed the IC50 values of the chloride salts of these complexes to be regularly in the nanomolar range, making them some of the most active ruthenium complexes synthesized to date. The recent discovery of dithiolato complexes (Ibao et al., 2012) opened new possibilities for the design of thiolato-bridged dinuclear arene ruthenium(II) complexes (Giannini et al., 2013b). Herein we report the structure of a neutral dithiolato complex, p-MeC6H4Pri)2Ru2(SCH2-p-C6H5—OCH3)2Cl2 that crystallized as a chloroform disolvate.
The molecular structure of the dinuclear title compound, [RuCl(C8H9OS)(C10H14)]2·2CHCl3, exhibits inversion symmetry and is presented in Fig. 1. The RuII atom adopts a typical piano-stool coordination geometry with the p-cymene ligand being bound facially, formally occupying three coordination sites. The other three positions are occupied by symmetry-related S atoms of two 4-methoxy-α-toluenethiolato units and one chlorido ligand. The interatomic distances between Ru1 and the two symmetry-related S1 atoms are 2.3778 (10) and 2.3931 (10) Å, between Ru1 and Cl1 2.4284 (12) Å, and between S1 and C1 1.847 (3) Å. The Ru1—S1—Ru1i angle is 100.03 (4)° [symmetry code: (i) –x + 1, –y + 1, –z]. The distance between the metal atom and the associated ring centroid (C1–C6) is 1.684 Å. In agreement with the electronic count, there is no metal–metal bond, the Ru···Ru distance in the dinuclear complex molecule being 3.6555 (9) Å.
In the crystal packing of the title compound, the chlorido ligand of the complex interacts with the CH moiety of the chloroform molecule. Moreover, a more weak hydrogen-bonding interaction is also observed between the methoxy group of the 4-methoxy-α-toluenethiolato and a chlorine atom of the solvent molecule (Table 1). These interactions give rise to the formation of supramolecular chains extending parallel to [021] (Fig. 2).
The title complex was obtained from the reaction of 100 mg (0.163 mmol) of (p-MeC6H4Pri)2Ru2Cl4 and 50.3 µl (0.343 mmol) of 4-methoxy-α-toluenethiol in ethanol. The solution was stirred at room temperature for 3 h, afterwards the solvent was reduced to 2 ml in vacuo and the product precipitated by adding hexane. The solid was filtered, washed with hexane and dried in vacuo. X-ray quality crystals were obtained by slow diffusion of diethyl ether into the solution of the title complex in chloroform.
Yield: 124.2 mg (89%). C36H46Cl2O2Ru2S2: calculated C, 50.99; H, 5.47; found C, 50.76; H, 5.46. ESI MS: (MeOH + CH2Cl2): m/z = 822.8 [M - Cl]+. 1H NMR (400 MHz, CDCl3): δ = 7.49 (d, 3J = 8 Hz, 2H, SCH2C6H4-p-OCH3), 6.85 (d, 3J = 8 Hz, 2H, SCH2C6H4-p-OCH3), 5.15–4.89 [m, 8H, p-CH3C6H4CH(CH3)2], 4.15 (d, 3J = 11 Hz, 2H, SCH2C6H4-p-OCH3), 3.83 (s, 6H, SCH2C6H4-p-OCH3), 3.26 (d, 3J = 11 Hz, 2H, SCH2C6H4-p-OCH3), 2.86 [sept, 3J = 8 Hz, 2H, p-CH3C6H4CH(CH3)2], 1.89 [s, 6H, p-CH3C6H4CH(CH3)2], 1.2 [s, 12H, p-CH3C6H4CH(CH3)2] p.p.m. 13C NMR (100 MHz, CDCl3): δ = 158.41, 132.89, 131.56, 112.96, 96.97, 83.91, 83.03, 55.32, 35.90, 29.88, 23.50, 21.22, 18.79 p.p.m.
Crystal data, data collection and structure
details are summarized in Table 2. All hydrogen atoms were included in calculated positions and treated as riding atoms, with C—H = 0.93 Å for Caromatic, 0.97 Å for –CH2–, 0.98 Å for –CH–, and 0.96 Å for –CH3, with Uiso(H) = 1.2Ueq(C) and 1.5Ueq(C) for methyl H atoms.Data collection: EXPOSE (IPDS Software; Stoe & Cie, 2000); cell
CELL (IPDS Software; Stoe & Cie, 2000); data reduction: INTEGRATE (IPDS Software; Stoe & Cie, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014/7 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL2014/7 (Sheldrick, 2015).Fig. 1. The molecular structures of the components in the structure of (p-MeC6H4Pri)2Ru2(SCH2-p-C6H5-OCH3)2Cl2·2CHCl3. Displacement ellipsoids are drawn at the 50% probability level. | |
Fig. 2. The one dimensional supramolecular network in the crystal packing of (p-MeC6H4Pri)2Ru2(SCH2-p-C6H5-OCH3)2Cl2·2CHCl3. Only the stronger of the C—H···Cl interactions is shown (dotted lines). |
[Ru2(C8H9OS)2Cl2(C10H14)2]·2CHCl3 | Z = 1 |
Mr = 1086.62 | F(000) = 548 |
Triclinic, P1 | Dx = 1.639 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 10.034 (2) Å | Cell parameters from 8000 reflections |
b = 10.070 (2) Å | θ = 2.1–28.9° |
c = 12.124 (2) Å | µ = 1.30 mm−1 |
α = 112.75 (3)° | T = 173 K |
β = 95.58 (3)° | Block, orange |
γ = 98.51 (3)° | 0.24 × 0.21 × 0.19 mm |
V = 1101.2 (4) Å3 |
STOE IPDS diffractometer | 5787 independent reflections |
Radiation source: fine-focus sealed tube | 4504 reflections with I > 2σ(I) |
Detector resolution: 0.81 pixels mm-1 | Rint = 0.058 |
phi oscillation scans | θmax = 29.3°, θmin = 1.9° |
Absorption correction: empirical (using intensity measurements) (Walker & Stuart, 1983) | h = −11→13 |
Tmin = 0.655, Tmax = 0.819 | k = −13→13 |
13000 measured reflections | l = −16→16 |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.039 | H-atom parameters constrained |
wR(F2) = 0.092 | w = 1/[σ2(Fo2) + (0.047P)2] where P = (Fo2 + 2Fc2)/3 |
S = 0.97 | (Δ/σ)max < 0.001 |
5787 reflections | Δρmax = 0.94 e Å−3 |
239 parameters | Δρmin = −1.47 e Å−3 |
[Ru2(C8H9OS)2Cl2(C10H14)2]·2CHCl3 | γ = 98.51 (3)° |
Mr = 1086.62 | V = 1101.2 (4) Å3 |
Triclinic, P1 | Z = 1 |
a = 10.034 (2) Å | Mo Kα radiation |
b = 10.070 (2) Å | µ = 1.30 mm−1 |
c = 12.124 (2) Å | T = 173 K |
α = 112.75 (3)° | 0.24 × 0.21 × 0.19 mm |
β = 95.58 (3)° |
STOE IPDS diffractometer | 5787 independent reflections |
Absorption correction: empirical (using intensity measurements) (Walker & Stuart, 1983) | 4504 reflections with I > 2σ(I) |
Tmin = 0.655, Tmax = 0.819 | Rint = 0.058 |
13000 measured reflections |
R[F2 > 2σ(F2)] = 0.039 | 0 restraints |
wR(F2) = 0.092 | H-atom parameters constrained |
S = 0.97 | Δρmax = 0.94 e Å−3 |
5787 reflections | Δρmin = −1.47 e Å−3 |
239 parameters |
Experimental. A crystal was mounted at 173 K on a Stoe Image Plate Diffraction System (Stoe & Cie, 2000) using Mo Kα graphite monochromated radiation. Image plate distance 100 mm, φ oscillation scans 0 - 180°, step Δφ = 1.2°, 5 minutes per frame. Reflections were merged by SHELXL according to the crystal class for the calculation of statistics and refinement. _reflns_Friedel_fraction is defined as the number of unique Friedel pairs measured divided by the number that would be possible theoretically, ignoring centric projections and systematic absences. |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.7926 (3) | 0.4925 (4) | −0.0177 (3) | 0.0255 (6) | |
H1A | 0.8508 | 0.4762 | 0.0426 | 0.031* | |
H1B | 0.7565 | 0.3986 | −0.0855 | 0.031* | |
C2 | 0.8739 (3) | 0.5957 (4) | −0.0603 (3) | 0.0247 (6) | |
C3 | 0.9603 (3) | 0.7265 (4) | 0.0208 (3) | 0.0282 (7) | |
H3 | 0.9717 | 0.7483 | 0.1035 | 0.034* | |
C4 | 1.0290 (3) | 0.8237 (4) | −0.0184 (3) | 0.0314 (7) | |
H4 | 1.0850 | 0.9107 | 0.0376 | 0.038* | |
C5 | 1.0151 (3) | 0.7924 (4) | −0.1422 (3) | 0.0297 (7) | |
C6 | 0.9324 (3) | 0.6622 (4) | −0.2252 (3) | 0.0326 (7) | |
H6 | 0.9230 | 0.6397 | −0.3079 | 0.039* | |
C7 | 0.8633 (3) | 0.5650 (4) | −0.1833 (3) | 0.0303 (7) | |
H17 | 0.8086 | 0.4771 | −0.2393 | 0.036* | |
C8 | 1.0626 (4) | 0.8763 (5) | −0.2960 (4) | 0.0471 (10) | |
H8A | 1.0848 | 0.7849 | −0.3464 | 0.071* | |
H8B | 1.1185 | 0.9558 | −0.3056 | 0.071* | |
H8C | 0.9679 | 0.8746 | −0.3195 | 0.071* | |
C9 | 0.2694 (4) | 0.9102 (5) | 0.3930 (4) | 0.0423 (9) | |
H9 | 0.3270 | 0.8367 | 0.3788 | 0.051* | |
C10 | 0.5851 (3) | 0.3518 (4) | 0.2545 (3) | 0.0260 (7) | |
C11 | 0.4405 (4) | 0.2937 (4) | 0.2169 (3) | 0.0294 (7) | |
H11 | 0.3833 | 0.3152 | 0.2747 | 0.035* | |
C12 | 0.3845 (3) | 0.2066 (4) | 0.0967 (3) | 0.0273 (7) | |
H12 | 0.2906 | 0.1703 | 0.0758 | 0.033* | |
C13 | 0.4679 (3) | 0.1709 (3) | 0.0033 (3) | 0.0242 (6) | |
C14 | 0.6104 (3) | 0.2285 (4) | 0.0405 (3) | 0.0247 (6) | |
H14 | 0.6674 | 0.2094 | −0.0175 | 0.030* | |
C15 | 0.6681 (3) | 0.3150 (4) | 0.1645 (3) | 0.0243 (6) | |
H15 | 0.7624 | 0.3478 | 0.1864 | 0.029* | |
C16 | 0.6405 (4) | 0.4500 (5) | 0.3870 (3) | 0.0371 (8) | |
H16 | 0.5723 | 0.5092 | 0.4176 | 0.044* | |
C17 | 0.7731 (5) | 0.5567 (5) | 0.4064 (4) | 0.0516 (11) | |
H17A | 0.8449 | 0.5032 | 0.3844 | 0.077* | |
H17B | 0.7962 | 0.6241 | 0.4902 | 0.077* | |
H17C | 0.7621 | 0.6105 | 0.3569 | 0.077* | |
C18 | 0.6510 (5) | 0.3546 (6) | 0.4589 (4) | 0.0528 (12) | |
H18A | 0.5627 | 0.2956 | 0.4491 | 0.079* | |
H18B | 0.6824 | 0.4168 | 0.5433 | 0.079* | |
H18C | 0.7144 | 0.2918 | 0.4293 | 0.079* | |
C19 | 0.4071 (4) | 0.0830 (4) | −0.1272 (3) | 0.0360 (8) | |
H19A | 0.4595 | 0.1167 | −0.1768 | 0.054* | |
H19B | 0.3145 | 0.0947 | −0.1409 | 0.054* | |
H19C | 0.4081 | −0.0189 | −0.1477 | 0.054* | |
O1 | 1.0868 (3) | 0.8961 (3) | −0.1727 (3) | 0.0419 (6) | |
S1 | 0.65082 (7) | 0.57453 (8) | 0.04876 (7) | 0.02020 (15) | |
Cl1 | 0.46757 (8) | 0.64213 (9) | 0.25227 (7) | 0.02648 (16) | |
Cl2 | 0.33078 (13) | 1.05269 (14) | 0.53676 (10) | 0.0565 (3) | |
Cl3 | 0.09992 (13) | 0.82576 (14) | 0.38522 (11) | 0.0576 (3) | |
Cl4 | 0.27665 (14) | 0.97961 (17) | 0.28011 (11) | 0.0623 (3) | |
Ru1 | 0.50634 (2) | 0.41162 (3) | 0.10619 (2) | 0.01824 (7) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0191 (14) | 0.0273 (18) | 0.0344 (17) | 0.0071 (12) | 0.0081 (12) | 0.0157 (15) |
C2 | 0.0176 (13) | 0.0288 (18) | 0.0326 (16) | 0.0072 (12) | 0.0081 (12) | 0.0157 (14) |
C3 | 0.0246 (15) | 0.0313 (19) | 0.0302 (16) | 0.0052 (13) | 0.0046 (13) | 0.0140 (15) |
C4 | 0.0245 (16) | 0.0288 (19) | 0.0375 (18) | 0.0003 (13) | 0.0042 (14) | 0.0120 (16) |
C5 | 0.0234 (15) | 0.0292 (19) | 0.0413 (19) | 0.0046 (13) | 0.0132 (14) | 0.0180 (16) |
C6 | 0.0268 (16) | 0.042 (2) | 0.0302 (17) | 0.0061 (15) | 0.0091 (13) | 0.0154 (16) |
C7 | 0.0265 (16) | 0.0290 (19) | 0.0327 (17) | 0.0021 (13) | 0.0087 (14) | 0.0100 (15) |
C8 | 0.045 (2) | 0.057 (3) | 0.054 (2) | 0.0045 (19) | 0.0187 (19) | 0.038 (2) |
C9 | 0.048 (2) | 0.040 (2) | 0.037 (2) | 0.0147 (19) | 0.0076 (18) | 0.0118 (18) |
C10 | 0.0295 (16) | 0.0318 (18) | 0.0266 (15) | 0.0132 (13) | 0.0079 (13) | 0.0191 (15) |
C11 | 0.0337 (17) | 0.0343 (19) | 0.0338 (17) | 0.0137 (14) | 0.0159 (14) | 0.0236 (16) |
C12 | 0.0243 (15) | 0.0214 (17) | 0.0428 (19) | 0.0030 (12) | 0.0072 (13) | 0.0202 (15) |
C13 | 0.0315 (16) | 0.0122 (14) | 0.0285 (15) | 0.0005 (12) | 0.0010 (13) | 0.0101 (13) |
C14 | 0.0282 (15) | 0.0224 (16) | 0.0331 (16) | 0.0141 (13) | 0.0139 (13) | 0.0162 (14) |
C15 | 0.0236 (14) | 0.0250 (17) | 0.0311 (16) | 0.0118 (12) | 0.0055 (12) | 0.0160 (14) |
C16 | 0.044 (2) | 0.047 (2) | 0.0249 (16) | 0.0214 (18) | 0.0061 (15) | 0.0161 (17) |
C17 | 0.056 (3) | 0.050 (3) | 0.034 (2) | 0.009 (2) | −0.0070 (19) | 0.006 (2) |
C18 | 0.063 (3) | 0.079 (4) | 0.036 (2) | 0.034 (3) | 0.015 (2) | 0.035 (2) |
C19 | 0.046 (2) | 0.0240 (19) | 0.0357 (19) | 0.0037 (15) | 0.0020 (16) | 0.0123 (16) |
O1 | 0.0349 (14) | 0.0449 (17) | 0.0514 (16) | −0.0023 (12) | 0.0138 (12) | 0.0275 (14) |
S1 | 0.0175 (3) | 0.0209 (4) | 0.0245 (4) | 0.0040 (3) | 0.0043 (3) | 0.0116 (3) |
Cl1 | 0.0281 (4) | 0.0250 (4) | 0.0260 (4) | 0.0070 (3) | 0.0072 (3) | 0.0088 (3) |
Cl2 | 0.0583 (7) | 0.0529 (7) | 0.0386 (5) | 0.0077 (5) | 0.0022 (5) | 0.0004 (5) |
Cl3 | 0.0537 (6) | 0.0547 (7) | 0.0578 (7) | 0.0009 (5) | 0.0024 (5) | 0.0211 (6) |
Cl4 | 0.0711 (8) | 0.0793 (9) | 0.0511 (6) | 0.0268 (7) | 0.0240 (6) | 0.0348 (7) |
Ru1 | 0.01758 (11) | 0.01881 (13) | 0.02142 (12) | 0.00467 (8) | 0.00493 (8) | 0.01074 (10) |
C1—C2 | 1.503 (4) | C11—H11 | 0.9300 |
C1—S1 | 1.847 (3) | C12—C13 | 1.439 (5) |
C1—H1A | 0.9700 | C12—Ru1 | 2.194 (3) |
C1—H1B | 0.9700 | C12—H12 | 0.9300 |
C2—C7 | 1.391 (5) | C13—C14 | 1.418 (5) |
C2—C3 | 1.396 (5) | C13—C19 | 1.492 (5) |
C3—C4 | 1.372 (5) | C13—Ru1 | 2.208 (3) |
C3—H3 | 0.9300 | C14—C15 | 1.422 (5) |
C4—C5 | 1.397 (5) | C14—Ru1 | 2.173 (3) |
C4—H4 | 0.9300 | C14—H14 | 0.9300 |
C5—O1 | 1.369 (4) | C15—Ru1 | 2.204 (3) |
C5—C6 | 1.384 (5) | C15—H15 | 0.9300 |
C6—C7 | 1.396 (5) | C16—C17 | 1.517 (6) |
C6—H6 | 0.9300 | C16—C18 | 1.534 (5) |
C7—H17 | 0.9300 | C16—H16 | 0.9800 |
C8—O1 | 1.421 (5) | C17—H17A | 0.9600 |
C8—H8A | 0.9600 | C17—H17B | 0.9600 |
C8—H8B | 0.9600 | C17—H17C | 0.9600 |
C8—H8C | 0.9600 | C18—H18A | 0.9600 |
C9—Cl2 | 1.752 (4) | C18—H18B | 0.9600 |
C9—Cl3 | 1.761 (5) | C18—H18C | 0.9600 |
C9—Cl4 | 1.764 (4) | C19—H19A | 0.9600 |
C9—H9 | 0.9800 | C19—H19B | 0.9600 |
C10—C15 | 1.406 (4) | C19—H19C | 0.9600 |
C10—C11 | 1.438 (5) | S1—Ru1 | 2.3778 (10) |
C10—C16 | 1.517 (5) | S1—Ru1i | 2.3931 (10) |
C10—Ru1 | 2.219 (3) | Cl1—Ru1 | 2.4284 (12) |
C11—C12 | 1.384 (5) | Ru1—S1i | 2.3931 (10) |
C11—Ru1 | 2.196 (3) | ||
C2—C1—S1 | 108.8 (2) | C14—C15—Ru1 | 69.85 (16) |
C2—C1—H1A | 109.9 | C10—C15—H15 | 119.4 |
S1—C1—H1A | 109.9 | C14—C15—H15 | 119.4 |
C2—C1—H1B | 109.9 | Ru1—C15—H15 | 131.6 |
S1—C1—H1B | 109.9 | C17—C16—C10 | 113.6 (3) |
H1A—C1—H1B | 108.3 | C17—C16—C18 | 112.9 (4) |
C7—C2—C3 | 117.4 (3) | C10—C16—C18 | 109.4 (4) |
C7—C2—C1 | 120.7 (3) | C17—C16—H16 | 106.9 |
C3—C2—C1 | 121.9 (3) | C10—C16—H16 | 106.9 |
C4—C3—C2 | 121.6 (3) | C18—C16—H16 | 106.9 |
C4—C3—H3 | 119.2 | C16—C17—H17A | 109.5 |
C2—C3—H3 | 119.2 | C16—C17—H17B | 109.5 |
C3—C4—C5 | 120.3 (3) | H17A—C17—H17B | 109.5 |
C3—C4—H4 | 119.9 | C16—C17—H17C | 109.5 |
C5—C4—H4 | 119.9 | H17A—C17—H17C | 109.5 |
O1—C5—C6 | 124.3 (3) | H17B—C17—H17C | 109.5 |
O1—C5—C4 | 116.1 (3) | C16—C18—H18A | 109.5 |
C6—C5—C4 | 119.6 (3) | C16—C18—H18B | 109.5 |
C5—C6—C7 | 119.2 (3) | H18A—C18—H18B | 109.5 |
C5—C6—H6 | 120.4 | C16—C18—H18C | 109.5 |
C7—C6—H6 | 120.4 | H18A—C18—H18C | 109.5 |
C2—C7—C6 | 121.9 (3) | H18B—C18—H18C | 109.5 |
C2—C7—H17 | 119.0 | C13—C19—H19A | 109.5 |
C6—C7—H17 | 119.0 | C13—C19—H19B | 109.5 |
O1—C8—H8A | 109.5 | H19A—C19—H19B | 109.5 |
O1—C8—H8B | 109.5 | C13—C19—H19C | 109.5 |
H8A—C8—H8B | 109.5 | H19A—C19—H19C | 109.5 |
O1—C8—H8C | 109.5 | H19B—C19—H19C | 109.5 |
H8A—C8—H8C | 109.5 | C5—O1—C8 | 117.6 (3) |
H8B—C8—H8C | 109.5 | C1—S1—Ru1 | 111.36 (10) |
Cl2—C9—Cl3 | 110.4 (2) | C1—S1—Ru1i | 109.65 (11) |
Cl2—C9—Cl4 | 110.0 (2) | Ru1—S1—Ru1i | 100.03 (4) |
Cl3—C9—Cl4 | 109.8 (2) | C14—Ru1—C12 | 67.73 (12) |
Cl2—C9—H9 | 108.8 | C14—Ru1—C11 | 79.89 (12) |
Cl3—C9—H9 | 108.8 | C12—Ru1—C11 | 36.75 (14) |
Cl4—C9—H9 | 108.8 | C14—Ru1—C15 | 37.92 (12) |
C15—C10—C11 | 117.4 (3) | C12—Ru1—C15 | 79.44 (12) |
C15—C10—C16 | 123.3 (3) | C11—Ru1—C15 | 67.08 (12) |
C11—C10—C16 | 119.3 (3) | C14—Ru1—C13 | 37.76 (12) |
C15—C10—Ru1 | 70.89 (16) | C12—Ru1—C13 | 38.17 (12) |
C11—C10—Ru1 | 70.12 (16) | C11—Ru1—C13 | 68.07 (13) |
C16—C10—Ru1 | 129.3 (2) | C15—Ru1—C13 | 68.35 (13) |
C12—C11—C10 | 121.5 (3) | C14—Ru1—C10 | 68.23 (12) |
C12—C11—Ru1 | 71.54 (17) | C12—Ru1—C10 | 67.85 (13) |
C10—C11—Ru1 | 71.86 (17) | C11—Ru1—C10 | 38.02 (13) |
C12—C11—H11 | 119.2 | C15—Ru1—C10 | 37.08 (11) |
C10—C11—H11 | 119.2 | C13—Ru1—C10 | 81.53 (13) |
Ru1—C11—H11 | 130.0 | C14—Ru1—S1 | 96.92 (8) |
C11—C12—C13 | 121.6 (3) | C12—Ru1—S1 | 159.60 (10) |
C11—C12—Ru1 | 71.71 (19) | C11—Ru1—S1 | 157.71 (10) |
C13—C12—Ru1 | 71.44 (17) | C15—Ru1—S1 | 96.80 (8) |
C11—C12—H12 | 119.2 | C13—Ru1—S1 | 121.79 (9) |
C13—C12—H12 | 119.2 | C10—Ru1—S1 | 120.29 (9) |
Ru1—C12—H12 | 130.4 | C14—Ru1—S1i | 113.67 (9) |
C14—C13—C12 | 116.8 (3) | C12—Ru1—S1i | 93.66 (9) |
C14—C13—C19 | 121.5 (3) | C11—Ru1—S1i | 121.67 (10) |
C12—C13—C19 | 121.7 (3) | C15—Ru1—S1i | 151.25 (9) |
C14—C13—Ru1 | 69.78 (18) | C13—Ru1—S1i | 88.92 (9) |
C12—C13—Ru1 | 70.38 (18) | C10—Ru1—S1i | 159.68 (9) |
C19—C13—Ru1 | 128.3 (2) | S1—Ru1—S1i | 79.97 (4) |
C13—C14—C15 | 121.5 (3) | C14—Ru1—Cl1 | 155.31 (10) |
C13—C14—Ru1 | 72.46 (17) | C12—Ru1—Cl1 | 117.94 (9) |
C15—C14—Ru1 | 72.23 (17) | C11—Ru1—Cl1 | 92.05 (10) |
C13—C14—H14 | 119.3 | C15—Ru1—Cl1 | 117.51 (10) |
C15—C14—H14 | 119.3 | C13—Ru1—Cl1 | 155.93 (9) |
Ru1—C14—H14 | 128.4 | C10—Ru1—Cl1 | 91.04 (9) |
C10—C15—C14 | 121.1 (3) | S1—Ru1—Cl1 | 81.71 (4) |
C10—C15—Ru1 | 72.04 (17) | S1i—Ru1—Cl1 | 90.48 (4) |
S1—C1—C2—C7 | −105.6 (3) | C11—C12—C13—Ru1 | −53.5 (3) |
S1—C1—C2—C3 | 73.2 (3) | C12—C13—C14—C15 | 1.2 (4) |
C7—C2—C3—C4 | 2.1 (5) | C19—C13—C14—C15 | 178.6 (3) |
C1—C2—C3—C4 | −176.7 (3) | Ru1—C13—C14—C15 | 55.3 (2) |
C2—C3—C4—C5 | −0.9 (5) | C12—C13—C14—Ru1 | −54.1 (2) |
C3—C4—C5—O1 | 179.6 (3) | C19—C13—C14—Ru1 | 123.3 (3) |
C3—C4—C5—C6 | −0.5 (5) | C11—C10—C15—C14 | 2.4 (4) |
O1—C5—C6—C7 | −179.6 (3) | C16—C10—C15—C14 | −176.8 (3) |
C4—C5—C6—C7 | 0.6 (5) | Ru1—C10—C15—C14 | −51.8 (3) |
C3—C2—C7—C6 | −2.0 (5) | C11—C10—C15—Ru1 | 54.2 (2) |
C1—C2—C7—C6 | 176.8 (3) | C16—C10—C15—Ru1 | −125.0 (3) |
C5—C6—C7—C2 | 0.7 (5) | C13—C14—C15—C10 | −2.7 (4) |
C15—C10—C11—C12 | −0.8 (4) | Ru1—C14—C15—C10 | 52.8 (3) |
C16—C10—C11—C12 | 178.4 (3) | C13—C14—C15—Ru1 | −55.4 (2) |
Ru1—C10—C11—C12 | 53.7 (3) | C15—C10—C16—C17 | 25.9 (5) |
C15—C10—C11—Ru1 | −54.6 (2) | C11—C10—C16—C17 | −153.3 (3) |
C16—C10—C11—Ru1 | 124.7 (3) | Ru1—C10—C16—C17 | −65.9 (4) |
C10—C11—C12—C13 | −0.5 (5) | C15—C10—C16—C18 | −101.2 (4) |
Ru1—C11—C12—C13 | 53.3 (3) | C11—C10—C16—C18 | 79.6 (4) |
C10—C11—C12—Ru1 | −53.9 (3) | Ru1—C10—C16—C18 | 167.0 (3) |
C11—C12—C13—C14 | 0.3 (4) | C6—C5—O1—C8 | 7.4 (5) |
Ru1—C12—C13—C14 | 53.8 (2) | C4—C5—O1—C8 | −172.7 (3) |
C11—C12—C13—C19 | −177.0 (3) | C2—C1—S1—Ru1 | 175.94 (19) |
Ru1—C12—C13—C19 | −123.6 (3) | C2—C1—S1—Ru1i | 66.2 (2) |
Symmetry code: (i) −x+1, −y+1, −z. |
D—H···A | D—H | H···A | D···A | D—H···A |
C9—H9···Cl1 | 0.98 | 2.66 | 3.583 (4) | 157 |
C8—H8C···Cl4ii | 0.96 | 3.03 | 3.886 (5) | 150 |
Symmetry code: (ii) −x+1, −y+2, −z. |
D—H···A | D—H | H···A | D···A | D—H···A |
C9—H9···Cl1 | 0.98 | 2.66 | 3.583 (4) | 156.5 |
C8—H8C···Cl4i | 0.96 | 3.03 | 3.886 (5) | 149.8 |
Symmetry code: (i) −x+1, −y+2, −z. |
Experimental details
Crystal data | |
Chemical formula | [Ru2(C8H9OS)2Cl2(C10H14)2]·2CHCl3 |
Mr | 1086.62 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 173 |
a, b, c (Å) | 10.034 (2), 10.070 (2), 12.124 (2) |
α, β, γ (°) | 112.75 (3), 95.58 (3), 98.51 (3) |
V (Å3) | 1101.2 (4) |
Z | 1 |
Radiation type | Mo Kα |
µ (mm−1) | 1.30 |
Crystal size (mm) | 0.24 × 0.21 × 0.19 |
Data collection | |
Diffractometer | STOE IPDS diffractometer |
Absorption correction | Empirical (using intensity measurements) (Walker & Stuart, 1983) |
Tmin, Tmax | 0.655, 0.819 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 13000, 5787, 4504 |
Rint | 0.058 |
(sin θ/λ)max (Å−1) | 0.689 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.039, 0.092, 0.97 |
No. of reflections | 5787 |
No. of parameters | 239 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.94, −1.47 |
Computer programs: EXPOSE (IPDS Software; Stoe & Cie, 2000), CELL (IPDS Software; Stoe & Cie, 2000), INTEGRATE (IPDS Software; Stoe & Cie, 2000), SHELXS97 (Sheldrick, 2008), SHELXL2014/7 (Sheldrick, 2015), ORTEP-3 for Windows (Farrugia, 2012).
Acknowledgements
This work was supported financially by the Swiss National Science Foundation (Projects 200020–143254 and 200020–131844). We also thank Johnson Matthey Research Centre for the generous loan of ruthenium trichloride hydrate.
References
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Giannini, F., Furrer, J., Ibao, A.-F., Süss-Fink, G., Therrien, B., Zava, O., Baquie, M., Dyson, P. J. & Štěpnička, P. (2012). J. Biol. Inorg. Chem. 17, 951–960. CrossRef CAS PubMed Google Scholar
Giannini, F., Furrer, J., Süss-Fink, G., Clavel, C. M. & Dyson, P. J. (2013b). J. Organomet. Chem. 744, 41–48. CrossRef CAS Google Scholar
Giannini, F., Paul, L. E. H., Furrer, J., Therrien, B. & Süss-Fink, G. (2013a). New J. Chem. 37, 3503–3511. CSD CrossRef CAS Google Scholar
Giannini, F., Süss-Fink, G. & Furrer, J. (2011). Inorg. Chem. 50, 10552–10554. CrossRef CAS PubMed Google Scholar
Gras, M., Therrien, B., Süss-Fink, G., Zava, O. & Dyson, P. J. (2010). Dalton Trans. 39, 10305–10313. CSD CrossRef CAS PubMed Google Scholar
Ibao, A.-F., Gras, M., Therrien, B., Süss-Fink, G., Zava, O. & Dyson, P. J. (2012). Eur. J. Inorg. Chem. pp. 1531–1535. CSD CrossRef Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Stoe & Cie (2000). IPDS Software. Stoe & Cie GmbH, Darmstadt, Germany. Google Scholar
Walker, N. & Stuart, D. (1983). Acta Cryst. A39, 158–166. CrossRef CAS Web of Science IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.