organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 10| October 2015| Pages o715-o716

Crystal structure of 2-hy­dr­oxy-2-(2-oxo­cyclo­hept­yl)-2,3-di­hydro-1H-indene-1,3-dione

CROSSMARK_Color_square_no_text.svg

aDepartment of Physics, Dr. Zakir Husain College, Ilayankudi, Sivagangai District 625 009, India, bDepartment of Physics, Thiagarajar College, Madurai 625 009, India, and cSchool of Chemistry, Madurai Kamaraj University, Madurai 625 021, India
*Correspondence e-mail: vasan692000@yahoo.co.in

Edited by D.-J. Xu, Zhejiang University (Yuquan Campus), China (Received 23 August 2015; accepted 28 August 2015; online 12 September 2015)

In the title compound, C16H16O4, the five-membered ring of the indene-1,3-dione unit adopts a twist conformation, whereas the seven-membered ring adopts a twist–chair conformation. In the crystal, mol­ecules are linked by O—H⋯O hydrogen bonds, weak C—H⋯O hydrogen bonds and ππ stacking [centroid-to-centroid distance = 3.7373 (8) Å] into a three-dimensional supra­molecular architecture.

1. Related literature

For the background and potential applications of the title compound, see: Andreu et al. (2009[Andreu, R., Carrasquer, L., Garín, J., Modrego, M. J., Orduna, J., Alicante, R., Villacampa, B. & Allain, M. (2009). Tetrahedron Lett. 50, 2920-2924.]); Fun et al. (2009[Fun, H.-K., Quah, C. K., Parveen, M., Ghalib, R. M. & Mehdi, S. H. (2009). Acta Cryst. E65, o1209.]); Ghalib et al. (2011[Ghalib, R. M., Hashim, R., Mehdi, S. H., Yeap, C. S. & Fun, H.-K. (2011). Acta Cryst. E67, o1576.]); Uk Kim et al. (2004[Uk Kim, D., Paik, S. H., Kim, S. H., Tak, Y. H., Han, Y. S., Kim, S. D., Kim, K. B., Ju, H. J. & Kim, T. J. (2004). Mater. Sci. Eng. C, 24, 147-149.]); Penthala et al. (2009[Penthala, N. R., Reddy, T. R. Y., Parkin, S. & Crooks, P. A. (2009). Acta Cryst. E65, o1877.]); Sundar et al. (2010[Sundar, J. K., Maharani, S., Kumar, R. R., Natarajan, S., Suresh, J. & Lakshman, P. L. N. (2010). Acta Cryst. E66, o2967.]); Yao et al. (2006a[Yao, Y.-S., Xiao, J., Wang, X.-S., Deng, Z.-B. & Zhang, B.-W. (2006a). Adv. Funct. Mater. 16, 709-718.],b[Yao, Y.-S., Xiao, J., Zhou, Q.-X., Wang, X.-S., Wang, Y. & Zhang, B.-W. (2006b). J. Mater. Chem. 16, 3512-3520.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C16H16O4

  • Mr = 272.29

  • Orthorhombic, P b c a

  • a = 7.4131 (5) Å

  • b = 18.8596 (13) Å

  • c = 19.0166 (13) Å

  • V = 2658.7 (3) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 294 K

  • 0.30 × 0.23 × 0.18 mm

2.2. Data collection

  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.978, Tmax = 0.986

  • 28734 measured reflections

  • 3191 independent reflections

  • 2849 reflections with I > 2σ(I)

  • Rint = 0.020

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.119

  • S = 1.03

  • 3191 reflections

  • 185 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯O4i 0.80 (2) 1.99 (2) 2.7707 (13) 163 (2)
C4—H4⋯O1ii 0.93 2.48 3.2758 (17) 144
C15—H15B⋯O3iii 0.97 2.47 3.3998 (19) 160
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1]; (ii) [x-{\script{1\over 2}}, y, -z+{\script{1\over 2}}]; (iii) -x+2, -y, -z+1.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS2013 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

In the continuation of studies of ninhydrin reactions viz. 2-acetonyl-2-hydroxyindan-1,3-dione (Fun et al., 2009), rac-2-(2-amino-4-pxp-4,5-dihydro-1,3-thiazol-5-yl)-2- hydroxyindane-1,3-dione (Penthala et al., 2009), rac-2-hydroxy-2-(2-oxocyclopentyl)-1H-indene- 1,3(2H)-dione (Sundar et al., 2010), 2-hydroxy-2- (3-oxobutan-2-yl)indan-1,3-dione, we have undertaken the structural analysis of the title compound, the indene-1,3(2H)-dione moiety belongs to an important class of luminescent materials which is used as a strong electron acceptor in organic light-emitting diodes (Yao et al., 2006a,b; Andreu et al., 2009; Kim et al., 2004). The derivatives of indandione is a promising materials in the field of photonics. It is also used in the first stage of forensic identification of latent fingerprints.

The measure of angle strain is 5.65° which is comparable with calculated crystal structure data value of 6.5°.

The title compound 2-hydroxy-2-(2-oxocycloheptyl)-2,3-dihydro-1H-indene-1,3-dione crystallizes in orthorhombic space group Pbca. The five-membered ring adopts twist conformation on C8—C9 with Q = 0.1502 Å and φ = 302.24°. In the crystal structure, molecules are linked by intermolecular O—H···O and C—H···O hydrogen bonds. The symmetry related six-membered spiro rings show π-π interactions with distance of 3.7373 (8) Å (Fig. 2).

The O—H···O hydrogen bonding form a infinite linear hydrogen bonding chain C(11) extending along a axis.

The mean plane of oxocycloheptyl and fused ring of indene make an angle of 61.945 °. The substituent oxygen O1 deviates from the mean plane of oxocycloheptyl ring by -0.9121 Å

Related literature top

For the background and potential applications of the title compound, see: Andreu et al. (2009); Fun et al. (2009); Ghalib et al. (2011); Kim et al. (2004); Penthala et al. (2009); Sundar et al. (2010); Yao et al. (2006a,b).

Experimental top

A mixture of cycloheptanone (1 mmol) and ninhydrin (1 mmol) was taken in a boiling tube and was subjected to microwave irradiation for 5 minutes. The progress of reaction was monitored by thin layer chromatography after each one minute of irradiation. After completion of reaction as evident from TLC, the residue was purified by column chromatography by using petroleum ether and ethyl acetate 65:35 v/v mixture as an eluent to afford the product. The product was recrystallized from ethyl acetate.

Refinement top

H atoms were positioned geometrically and refined using a riding model with C—H = 0.95–0.99 Å and with Uiso(H) = 1.2 (1.5 for methyl groups) times Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS2013 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with atom labels and 50% probability displacement ellipsoids for non-H atoms.
[Figure 2] Fig. 2. A view of the molecular aggregation down the a axis. Ring systems and H atoms that are not involved in hydrogen bonding have been omitted for clarity.
2-Hydroxy-2-(2-oxocycloheptyl)-2,3-dihydro-1H-indene-1,3-dione top
Crystal data top
C16H16O4Dx = 1.361 Mg m3
Dm = 1.35 Mg m3
Dm measured by floatation method
Mr = 272.29Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PbcaCell parameters from 7469 reflections
a = 7.4131 (5) Åθ = 2.4–27.8°
b = 18.8596 (13) ŵ = 0.10 mm1
c = 19.0166 (13) ÅT = 294 K
V = 2658.7 (3) Å3Needle, colourless
Z = 80.30 × 0.23 × 0.18 mm
F(000) = 1152
Data collection top
Bruker SMART APEXII CCD
diffractometer
2849 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.020
φ and ω scansθmax = 28.0°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 99
Tmin = 0.978, Tmax = 0.986k = 2424
28734 measured reflectionsl = 2425
3191 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.045H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.119 w = 1/[σ2(Fo2) + (0.0599P)2 + 0.7812P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
3191 reflectionsΔρmax = 0.33 e Å3
185 parametersΔρmin = 0.20 e Å3
Crystal data top
C16H16O4V = 2658.7 (3) Å3
Mr = 272.29Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 7.4131 (5) ŵ = 0.10 mm1
b = 18.8596 (13) ÅT = 294 K
c = 19.0166 (13) Å0.30 × 0.23 × 0.18 mm
Data collection top
Bruker SMART APEXII CCD
diffractometer
3191 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
2849 reflections with I > 2σ(I)
Tmin = 0.978, Tmax = 0.986Rint = 0.020
28734 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.119H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.33 e Å3
3191 reflectionsΔρmin = 0.20 e Å3
185 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O11.03172 (15)0.08184 (7)0.44453 (5)0.0593 (3)
O20.56285 (14)0.19613 (6)0.45415 (5)0.0525 (3)
O30.60520 (16)0.04223 (5)0.41294 (5)0.0565 (3)
O40.93803 (17)0.25552 (5)0.41716 (5)0.0570 (3)
C10.68387 (16)0.09552 (6)0.39677 (6)0.0357 (3)
C20.73825 (16)0.11650 (6)0.32474 (6)0.0343 (3)
C30.70883 (18)0.08049 (8)0.26203 (7)0.0446 (3)
H30.65820.03540.26170.053*
C40.75714 (19)0.11383 (9)0.20020 (7)0.0509 (4)
H40.73830.09080.15760.061*
C50.83328 (19)0.18099 (9)0.20053 (6)0.0487 (3)
H50.86080.20280.15800.058*
C60.86906 (18)0.21611 (7)0.26286 (6)0.0427 (3)
H60.92380.26050.26310.051*
C70.82010 (16)0.18254 (6)0.32509 (6)0.0335 (2)
C80.84477 (17)0.20639 (6)0.39815 (6)0.0355 (3)
C90.72848 (16)0.15854 (6)0.44602 (6)0.0334 (2)
C100.81939 (16)0.14094 (6)0.51591 (6)0.0343 (2)
H100.83960.18550.54120.041*
C110.70788 (19)0.09172 (7)0.56410 (7)0.0434 (3)
H11A0.58070.10090.55630.052*
H11B0.73120.04290.55090.052*
C120.7486 (3)0.10069 (9)0.64220 (7)0.0589 (4)
H12A0.72600.14970.65490.071*
H12B0.66450.07160.66860.071*
C130.9388 (3)0.08166 (10)0.66515 (8)0.0679 (5)
H13A0.96070.03230.65340.081*
H13B0.94590.08600.71590.081*
C141.0880 (2)0.12630 (9)0.63284 (8)0.0594 (4)
H14A1.19380.12320.66270.071*
H14B1.04940.17540.63240.071*
C151.1415 (2)0.10527 (8)0.55851 (8)0.0547 (4)
H15A1.24010.13580.54410.066*
H15B1.18860.05730.56040.066*
C161.00134 (17)0.10759 (6)0.50196 (7)0.0380 (3)
H20.549 (3)0.2103 (10)0.4936 (11)0.070 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0519 (6)0.0860 (8)0.0399 (5)0.0216 (5)0.0051 (4)0.0029 (5)
O20.0512 (6)0.0737 (7)0.0326 (5)0.0284 (5)0.0016 (4)0.0022 (4)
O30.0654 (7)0.0510 (6)0.0530 (6)0.0195 (5)0.0038 (5)0.0066 (4)
O40.0843 (8)0.0484 (5)0.0381 (5)0.0224 (5)0.0097 (5)0.0021 (4)
C10.0347 (6)0.0388 (6)0.0335 (6)0.0007 (4)0.0020 (4)0.0002 (4)
C20.0325 (5)0.0405 (6)0.0298 (5)0.0033 (4)0.0018 (4)0.0050 (4)
C30.0420 (7)0.0523 (7)0.0394 (7)0.0029 (5)0.0053 (5)0.0148 (5)
C40.0451 (7)0.0768 (10)0.0308 (6)0.0108 (7)0.0049 (5)0.0160 (6)
C50.0429 (7)0.0771 (9)0.0261 (6)0.0113 (6)0.0019 (5)0.0035 (6)
C60.0418 (6)0.0535 (7)0.0327 (6)0.0011 (5)0.0009 (5)0.0058 (5)
C70.0340 (5)0.0403 (6)0.0261 (5)0.0030 (4)0.0009 (4)0.0013 (4)
C80.0452 (6)0.0337 (5)0.0277 (5)0.0015 (5)0.0028 (4)0.0005 (4)
C90.0367 (6)0.0376 (5)0.0258 (5)0.0057 (4)0.0017 (4)0.0003 (4)
C100.0399 (6)0.0372 (6)0.0257 (5)0.0024 (5)0.0003 (4)0.0015 (4)
C110.0440 (7)0.0514 (7)0.0348 (6)0.0021 (5)0.0044 (5)0.0083 (5)
C120.0780 (11)0.0668 (9)0.0319 (6)0.0066 (8)0.0087 (7)0.0102 (6)
C130.0937 (13)0.0668 (10)0.0431 (8)0.0138 (9)0.0193 (8)0.0195 (7)
C140.0743 (10)0.0544 (8)0.0494 (8)0.0069 (7)0.0244 (7)0.0063 (6)
C150.0475 (8)0.0568 (8)0.0597 (9)0.0069 (6)0.0157 (7)0.0008 (7)
C160.0379 (6)0.0400 (6)0.0360 (6)0.0004 (5)0.0017 (5)0.0066 (5)
Geometric parameters (Å, º) top
O1—C161.2163 (16)C9—C101.5267 (15)
O2—C91.4262 (14)C10—C161.5118 (17)
O2—H20.80 (2)C10—C111.5442 (16)
O3—C11.2018 (15)C10—H100.9800
O4—C81.2113 (15)C11—C121.5249 (18)
C1—C21.4818 (16)C11—H11A0.9700
C1—C91.5489 (16)C11—H11B0.9700
C2—C71.3856 (17)C12—C131.519 (3)
C2—C31.3894 (16)C12—H12A0.9700
C3—C41.381 (2)C12—H12B0.9700
C3—H30.9300C13—C141.520 (3)
C4—C51.387 (2)C13—H13A0.9700
C4—H40.9300C13—H13B0.9700
C5—C61.3833 (18)C14—C151.521 (2)
C5—H50.9300C14—H14A0.9700
C6—C71.3904 (16)C14—H14B0.9700
C6—H60.9300C15—C161.4961 (19)
C7—C81.4718 (15)C15—H15A0.9700
C8—C91.5448 (16)C15—H15B0.9700
C9—O2—H2112.0 (14)C9—C10—H10107.9
O3—C1—C2126.28 (11)C11—C10—H10107.9
O3—C1—C9126.20 (11)C12—C11—C10113.91 (12)
C2—C1—C9107.22 (9)C12—C11—H11A108.8
C7—C2—C3120.82 (11)C10—C11—H11A108.8
C7—C2—C1110.77 (9)C12—C11—H11B108.8
C3—C2—C1128.33 (12)C10—C11—H11B108.8
C4—C3—C2117.88 (13)H11A—C11—H11B107.7
C4—C3—H3121.1C13—C12—C11115.93 (14)
C2—C3—H3121.1C13—C12—H12A108.3
C3—C4—C5121.17 (12)C11—C12—H12A108.3
C3—C4—H4119.4C13—C12—H12B108.3
C5—C4—H4119.4C11—C12—H12B108.3
C6—C5—C4121.29 (12)H12A—C12—H12B107.4
C6—C5—H5119.4C12—C13—C14115.37 (13)
C4—C5—H5119.4C12—C13—H13A108.4
C5—C6—C7117.47 (13)C14—C13—H13A108.4
C5—C6—H6121.3C12—C13—H13B108.4
C7—C6—H6121.3C14—C13—H13B108.4
C2—C7—C6121.30 (11)H13A—C13—H13B107.5
C2—C7—C8109.50 (10)C13—C14—C15114.90 (14)
C6—C7—C8129.20 (11)C13—C14—H14A108.5
O4—C8—C7125.90 (11)C15—C14—H14A108.5
O4—C8—C9126.13 (10)C13—C14—H14B108.5
C7—C8—C9107.96 (9)C15—C14—H14B108.5
O2—C9—C10113.19 (9)H14A—C14—H14B107.5
O2—C9—C8104.70 (9)C16—C15—C14118.64 (13)
C10—C9—C8113.18 (10)C16—C15—H15A107.7
O2—C9—C1105.26 (10)C14—C15—H15A107.7
C10—C9—C1116.99 (9)C16—C15—H15B107.7
C8—C9—C1102.19 (9)C14—C15—H15B107.7
C16—C10—C9109.36 (9)H15A—C15—H15B107.1
C16—C10—C11109.37 (9)O1—C16—C15120.34 (12)
C9—C10—C11114.26 (10)O1—C16—C10119.27 (11)
C16—C10—H10107.9C15—C16—C10120.38 (11)
O3—C1—C2—C7177.60 (13)O3—C1—C9—O276.24 (15)
C9—C1—C2—C73.64 (13)C2—C1—C9—O297.72 (11)
O3—C1—C2—C30.9 (2)O3—C1—C9—C1050.41 (17)
C9—C1—C2—C3173.10 (12)C2—C1—C9—C10135.63 (10)
C7—C2—C3—C42.52 (19)O3—C1—C9—C8174.60 (13)
C1—C2—C3—C4173.93 (12)C2—C1—C9—C811.44 (12)
C2—C3—C4—C50.3 (2)O2—C9—C10—C16174.64 (10)
C3—C4—C5—C62.1 (2)C8—C9—C10—C1655.70 (12)
C4—C5—C6—C72.2 (2)C1—C9—C10—C1662.72 (13)
C3—C2—C7—C62.51 (18)O2—C9—C10—C1162.41 (14)
C1—C2—C7—C6174.52 (11)C8—C9—C10—C11178.65 (10)
C3—C2—C7—C8176.47 (11)C1—C9—C10—C1160.24 (13)
C1—C2—C7—C86.50 (14)C16—C10—C11—C1283.76 (14)
C5—C6—C7—C20.13 (18)C9—C10—C11—C12153.30 (12)
C5—C6—C7—C8178.63 (12)C10—C11—C12—C1363.91 (18)
C2—C7—C8—O4166.80 (13)C11—C12—C13—C1462.5 (2)
C6—C7—C8—O412.1 (2)C12—C13—C14—C1579.9 (2)
C2—C7—C8—C914.11 (13)C13—C14—C15—C1659.78 (19)
C6—C7—C8—C9167.02 (12)C14—C15—C16—O1169.58 (14)
O4—C8—C9—O284.79 (15)C14—C15—C16—C109.5 (2)
C7—C8—C9—O294.30 (11)C9—C10—C16—O119.61 (16)
O4—C8—C9—C1038.94 (17)C11—C10—C16—O1106.21 (14)
C7—C8—C9—C10141.98 (10)C9—C10—C16—C15161.33 (12)
O4—C8—C9—C1165.63 (13)C11—C10—C16—C1572.85 (15)
C7—C8—C9—C115.28 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O4i0.80 (2)1.99 (2)2.7707 (13)163 (2)
C4—H4···O1ii0.932.483.2758 (17)144
C15—H15B···O3iii0.972.473.3998 (19)160
Symmetry codes: (i) x1/2, y+1/2, z+1; (ii) x1/2, y, z+1/2; (iii) x+2, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O4i0.80 (2)1.99 (2)2.7707 (13)163 (2)
C4—H4···O1ii0.932.483.2758 (17)143.9
C15—H15B···O3iii0.972.473.3998 (19)159.6
Symmetry codes: (i) x1/2, y+1/2, z+1; (ii) x1/2, y, z+1/2; (iii) x+2, y, z+1.
 

Acknowledgements

The authors thank the Sophisticated Analytical Instrumentation Facility (SAIF), Indian Institute of Technology, Chennai, for the X-ray intensity data collection.

References

First citationAndreu, R., Carrasquer, L., Garín, J., Modrego, M. J., Orduna, J., Alicante, R., Villacampa, B. & Allain, M. (2009). Tetrahedron Lett. 50, 2920–2924.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFun, H.-K., Quah, C. K., Parveen, M., Ghalib, R. M. & Mehdi, S. H. (2009). Acta Cryst. E65, o1209.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGhalib, R. M., Hashim, R., Mehdi, S. H., Yeap, C. S. & Fun, H.-K. (2011). Acta Cryst. E67, o1576.  CSD CrossRef IUCr Journals Google Scholar
First citationPenthala, N. R., Reddy, T. R. Y., Parkin, S. & Crooks, P. A. (2009). Acta Cryst. E65, o1877.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSundar, J. K., Maharani, S., Kumar, R. R., Natarajan, S., Suresh, J. & Lakshman, P. L. N. (2010). Acta Cryst. E66, o2967.  CSD CrossRef IUCr Journals Google Scholar
First citationUk Kim, D., Paik, S. H., Kim, S. H., Tak, Y. H., Han, Y. S., Kim, S. D., Kim, K. B., Ju, H. J. & Kim, T. J. (2004). Mater. Sci. Eng. C, 24, 147–149.  CrossRef Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYao, Y.-S., Xiao, J., Wang, X.-S., Deng, Z.-B. & Zhang, B.-W. (2006a). Adv. Funct. Mater. 16, 709–718.  Web of Science CSD CrossRef CAS Google Scholar
First citationYao, Y.-S., Xiao, J., Zhou, Q.-X., Wang, X.-S., Wang, Y. & Zhang, B.-W. (2006b). J. Mater. Chem. 16, 3512–3520.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 10| October 2015| Pages o715-o716
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds