research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 10| October 2015| Pages 1140-1142

Crystal structure of di­methyl 3,3′-[(4-fluoro­phen­yl)methyl­ene]bis­­(1H-indole-2-carboxyl­ate)

CROSSMARK_Color_square_no_text.svg

aChemical Engineering Department, Nanjing Polytechnic Institute, Nanjing 210048, People's Republic of China
*Correspondence e-mail: njutshs@126.com

Edited by D.-J. Xu, Zhejiang University (Yuquan Campus), China (Received 30 August 2015; accepted 1 September 2015; online 12 September 2015)

In the title compound, C27H21FN2O4, the mean planes of the indole ring systems (r.m.s. deviations = 0.0263 and 0.0160 Å) are approximately perpendic­ular to one another, making a dihedral angle of 84.0 (5)°; the fluoro­benzene ring is twisted with respect to the mean planes of the two indole ring systems at 89.5 (5) and 84.6 (3)°. In the crystal, pairs of N—H⋯O hydrogen bonds link the mol­ecules into inversion dimers, which are further linked by N—H⋯O hydrogen bonds into supra­molecular chains propagated along the b-axis direction. Weak C—H⋯π inter­actions are observed between neighbouring chains.

1. Chemical context

Bis(indol­yl)methane derivatives have been found widely in various terrestrial and marine natural resources (Porter et al., 1977[Porter, J. K., Bacon, C. W., Robbins, J. D., Himmelsbach, D. S. & Higman, H. C. (1977). J. Agric. Food Chem. 25, 88-93.]; Sundberg, 1996[Sundberg, R. J. (1996). The Chemistry of Indoles, p. 113. New York: Academic Press.]), and have many applications in pharmaceuticals with diverse activities, such as anti­cancer, anti­leishmanial and anti­hyperlipidemic (Chang et al., 1999[Chang, Y.-C., Riby, J., Chang, G. H.-F., Peng, B., Firestone, G. & Bjeldanes, L. F. (1999). Biochem. Pharmacol. 58, 825-834.]; Ge et al., 1999[Ge, X., Fares, F. A. & Yannai, S. (1999). Anticancer Res. 19, 3199-3203.]). Other, bis­(indoly)methane derivatives can also be used as a precursor for MRI contrast agents (Ni, 2008[Ni, Y.-C. (2008). Curr. Med. Imaging Rev. 4, 96-112.]). In recent years, we have reported the synthesis and crystal structures of some similar compounds (Sun et al., 2012[Sun, H.-S., Li, Y.-L., Xu, N., Xu, H. & Zhang, J.-D. (2012). Acta Cryst. E68, o2764.], 2013[Sun, H.-S., Li, Y.-L., Xu, N., Xu, H. & Zhang, J.-D. (2013). Acta Cryst. E69, o1516.], 2014[Sun, H.-S., Li, Y.-L., Jiang, H., Xu, N. & Xu, H. (2014). Acta Cryst. E70, 370-372.]; Li et al., 2014[Li, Y., Sun, H., Jiang, H., Xu, N. & Xu, H. (2014). Acta Cryst. E70, 259-261.]; Lu et al., 2014[Lu, X.-H., Sun, H.-S. & Hu, J. (2014). Acta Cryst. E70, 593-595.]). Now we report herein another bis­(indoly)methane compound.

[Scheme 1]

2. Structural commentary

The mol­ecular structure of the title compound is shown in Fig. 1[link]. The two indole ring systems are approximately planar, the maximum deviations being 0.049 (3) and 0.030 (2) Å; the mean planes of the two indole ring systems nearly perpen­dicular to each other [dihedral angle = 84.0 (5)°] while the benzene ring (C22–C27) is twisted to the N1/C2–C9 and N2/C12–C19 indole ring systems by dihedral angles of 89.5 (5) and 84.6 (3)°, respectively. The carboxyl groups are approximately co-planar with the attached indole ring systems, the dihedral angles between the carboxyl groups and the mean planes of attached indole ring systems are 10.8 (3) and 12.3 (4)°.

[Figure 1]
Figure 1
The mol­ecular structure of the title mol­ecule, showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.

3. Supra­molecular features

In the crystal, pairs of N1—H1A⋯O4i [symmetry code: (i) x, y + 1, z] hydrogen bonds link the mol­ecules into inversion dimmers, which are further linked by N2—H2A⋯O2ii [symmetry code: (ii) 1 − x, 1 − y, 1 − z] hydrogen bonds into supra­molecular chains propagated along the b axis (Table 1[link] and Fig. 2[link]). Weak C—H⋯π inter­actions are also observed between neighbouring chains.

Table 1
Hydrogen-bond geometry (Å, °)

Cg1, Cg4 and Cg5 are the centroids of the N1-ring, C14-ring and C22-ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O4i 0.86 2.07 2.903 (3) 162
N2—H2A⋯O2ii 0.86 2.07 2.892 (3) 159
C4—H4ACg5 0.93 2.82 3.622 (3) 146
C5—H5BCg4iii 0.93 2.84 3.705 (3) 156
C26—H26ACg1iv 0.93 2.69 3.587 (4) 161
Symmetry codes: (i) x, y+1, z; (ii) -x+1, -y+1, -z+1; (iii) -x+1, -y+2, -z; (iv) -x+2, -y+2, -z.
[Figure 2]
Figure 2
A packing diagram of the title compound. Hydrogen bonds are shown as dashed lines.

4. Database survey

Several similar structures have been reported previously, i.e. diethyl 3,3′-(phenyl­methyl­ene)bis­(1H-indole-2-carboxyl­ate) (Sun et al., 2012[Sun, H.-S., Li, Y.-L., Xu, N., Xu, H. & Zhang, J.-D. (2012). Acta Cryst. E68, o2764.]), dimethyl 3,3′-(phenyl­methyl­ene)bis­(1H-indole-2-carboxyl­ate) (Sun et al., 2013[Sun, H.-S., Li, Y.-L., Xu, N., Xu, H. & Zhang, J.-D. (2013). Acta Cryst. E69, o1516.]), dimethyl 3,3′-[(4-chloro­phen­yl) methyl­ene]bis­(1H-indole-2-carboxyl­ate) (Li et al., 2014[Li, Y., Sun, H., Jiang, H., Xu, N. & Xu, H. (2014). Acta Cryst. E70, 259-261.]), dimethyl 3,3′-[(3-nitro­phen­yl) methyl­ene]bis­(1H-indole-2-carboxyl­ate) ethanol monosolvate (Sun et al., 2014[Sun, H.-S., Li, Y.-L., Jiang, H., Xu, N. & Xu, H. (2014). Acta Cryst. E70, 370-372.]) and dimethyl 3,3′-[(3-fluoro­phen­yl)methyl­ene]bis­(1H-indole-2-carboxyl­ate) (Lu et al., 2014[Lu, X.-H., Sun, H.-S. & Hu, J. (2014). Acta Cryst. E70, 593-595.]). In those structures, the two indole ring systems are also nearly perpendicular to each other, the dihedral angles being 82.0 (5), 84.5 (5), 79.5 (4), 89.3 (5) and 87.8 (5)°, respectively.

5. Synthesis and crystallization

Methyl indole-2-carboxyl­ate (17.5 g, 100 mmol) was dissolved in 200 ml methanol; commercially available 4-fluoro­benzaldehyde (6.2 g, 50 mmol) was added and the mixture was heated to reflux temperature. Concentrated HCl (3.7 ml) was added and the reaction was left for 1 h. After cooling the white product was filtered off and washed thoroughly with methanol. The reaction was monitored by TLC (CHCl3:hexane = 1:1). Yield was 90%. Single crystals of the title compound suitable for X-ray analysis were obtained by slow evaporation of a methanol solution. 1H NMR (300 MHz, DMSO) δ 11.81 (s, 2H), 7.59–7.36 (m, 3H), 7.13 (dd, J = 15.1, 7.2 Hz, 6H), 6.71 (t, J = 7.5 Hz, 2H), 6.60 (d, J = 8.3 Hz, 2H), 3.77 (s, 6H).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. H atoms were positioned geometrically with N—H = 0.86 Å and C—H = 0.93–0.98 Å, and constrained to ride on their parent atoms. Uiso(H) = xUeq(C,N), where x = 1.5 for methyl H atoms and 1.2 for the others.

Table 2
Experimental details

Crystal data
Chemical formula C27H21FN2O4
Mr 456.46
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 293
a, b, c (Å) 9.7270 (19), 10.122 (2), 13.441 (3)
α, β, γ (°) 68.15 (3), 73.69 (3), 89.73 (3)
V3) 1171.4 (4)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.09
Crystal size (mm) 0.30 × 0.20 × 0.10
 
Data collection
Diffractometer Nonius CAD-4 diffractometer
Absorption correction ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.])
Tmin, Tmax 0.973, 0.991
No. of measured, independent and observed [I > 2σ(I)] reflections 4587, 4311, 2756
Rint 0.040
(sin θ/λ)max−1) 0.603
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.147, 1.00
No. of reflections 4311
No. of parameters 307
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.16, −0.18
Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1994[Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.]), XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]), SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Chemical context top

Bis(indolyl)methane derivatives have been found widely in various terrestrial and marine natural resources (Porter et al., 1977; Sundberg, 1996), and have many applications in pharmaceuticals with diverse activities, such as anti­cancer, anti­leishmanial and anti­hyperlipidemic (Chang et al., 1999; Ge et al., 1999). Other, bis­(indoly)methane derivatives can also be used as a precursor for MRI contrast agents (Ni, 2008). In recent years, we have reported the synthesis and crystal structures of some similar compounds (Sun et al., 2012, 2013, 2014; Li et al., 2014; Lu et al., 2014). Now we report herein another bis­(indoly)methane compound.

Structural commentary top

The molecular structure of the title compound is shown in Fig. 1. The two indole ring systems are approximately planar, the maximum deviations being 0.49 (3) and 0.30 (2) Å; the mean planes of the two indole ring systems nearly perpendicular to each other [dihedral angle = 84.0 (5)°] while the benzene ring (C22–C27) is twisted to the N1/C2–C9 and N2/C12–C19 indole ring systems by dihedral angles of 89.5 (5) and 84.6 (3)°, respectively. The carboxyl groups are approximately co-planar with the attached indole ring systems, the dihedral angles between the carboxyl groups and the mean planes of attached indole ring systems are 10.8 (3) and 12.3 (4)°.

Supra­molecular features top

In the crystal, pairs of N1—H1A···O4i [symmetry code: (i) x, y + 1, z] hydrogen bonds link the molecules into inversion dimmers, which are further linked by N2—H2A···O2ii [symmetry code: (ii) 1 - x, 1 - y, 1 - z] hydrogen bonds into supra­molecular chains propagated along the b axis (Table 1 and Fig. 2). Weak C—H···π inter­actions are also observed between neighbouring chains.

Database survey top

Several similar structures have been reported previously, i.e. di­ethyl 3,3'-(phenyl­methyl­ene)bis­(1H-indole-2-carboxyl­ate) (Sun et al., 2012), di­methyl 3,3'-(phenyl­methyl­ene)bis­(1H-indole-2-carboxyl­ate) (Sun et al., 2013), di­methyl 3,3'-[(4-chloro­phenyl) methyl­ene]bis­(1H-indole-2-carboxyl­ate) (Li et al., 2014), di­methyl 3,3'-[(3-nitro­phenyl) methyl­ene]bis­(1H-indole-2-carboxyl­ate) ethanol monosolvate (Sun et al., 2014) and di­methyl 3,3'-[(3-fluoro­phenyl)­methyl­ene]bis­(1H-indole-2-carboxyl­ate) (Lu et al., 2014). In those structures, the two indole ring systems are also nearly perpendicular to each other, the dihedral angles are 82.0 (5), 84.5 (5), 79.5 (4) , 89.3 (5) and 87.8 (5)°, respectively.

Synthesis and crystallization top

Methyl indole-2-carboxyl­ate (17.5 g, 100 mmol) was dissolved in 200 ml methanol; commercially available 4-fluoro­benzaldehyde (6.2 g, 50 mmol) was added and the mixture was heated to reflux temperature. Concentrated HCl (3.7 ml) was added and the reaction was left for 1 h. After cooling the white product was filtered off and washed thoroughly with methanol. The reaction was monitored by TLC (CHCl3:hexane = 1:1). Yield was 90%. Single crystals of the title compound suitable for X-ray analysis were obtained by slow evaporation of a methanol solution. 1H NMR (300 MHz, DMSO) δ 11.81 (s, 2H), 7.59–7.36 (m, 3H), 7.13 (dd, J = 15.1, 7.2 Hz, 6H), 6.71 (t, J = 7.5 Hz, 2H), 6.60 (d, J = 8.3 Hz, 2H), 3.77 (s, 6H).

Refinement top

H atoms were positioned geometrically with N—H = 0.86 Å and C—H = 0.93–0.98 Å, and constrained to ride on their parent atoms. Uiso(H) = xUeq(C,N), where x = 1.5 for methyl H atoms and 1.2 for the others.

Related literature top

For related literature, see: Chang et al. (1999); Ge et al. (1999); Li et al. (2014); Lu et al. (2014); Ni (2008); Poter et al. (1977); Sun et al. (2012, 2013, 2014); Sundberg (1996).

Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS (Enraf–Nonius, 1994); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. A packing diagram of the title compound. Hydrogen bonds are shown as dashed lines.
Dimethyl 3,3'-[(4-fluorophenyl)methylene]bis(1H-indole-2-carboxylate) top
Crystal data top
C27H21FN2O4Z = 2
Mr = 456.46F(000) = 476
Triclinic, P1Dx = 1.294 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.7270 (19) ÅCell parameters from 25 reflections
b = 10.122 (2) Åθ = 9–13°
c = 13.441 (3) ŵ = 0.09 mm1
α = 68.15 (3)°T = 293 K
β = 73.69 (3)°Block, colorless
γ = 89.73 (3)°0.30 × 0.20 × 0.10 mm
V = 1171.4 (4) Å3
Data collection top
Nonius CAD-4
diffractometer
2756 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.040
Graphite monochromatorθmax = 25.4°, θmin = 1.7°
ω/2θ scansh = 011
Absorption correction: ψ scan
(North et al., 1968)
k = 1212
Tmin = 0.973, Tmax = 0.991l = 1516
4587 measured reflections3 standard reflections every 200 reflections
4311 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.147H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.075P)2]
where P = (Fo2 + 2Fc2)/3
4311 reflections(Δ/σ)max < 0.001
307 parametersΔρmax = 0.16 e Å3
0 restraintsΔρmin = 0.18 e Å3
Crystal data top
C27H21FN2O4γ = 89.73 (3)°
Mr = 456.46V = 1171.4 (4) Å3
Triclinic, P1Z = 2
a = 9.7270 (19) ÅMo Kα radiation
b = 10.122 (2) ŵ = 0.09 mm1
c = 13.441 (3) ÅT = 293 K
α = 68.15 (3)°0.30 × 0.20 × 0.10 mm
β = 73.69 (3)°
Data collection top
Nonius CAD-4
diffractometer
2756 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.040
Tmin = 0.973, Tmax = 0.9913 standard reflections every 200 reflections
4587 measured reflections intensity decay: 1%
4311 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0540 restraints
wR(F2) = 0.147H-atom parameters constrained
S = 1.00Δρmax = 0.16 e Å3
4311 reflectionsΔρmin = 0.18 e Å3
307 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.6800 (2)1.1318 (2)0.27546 (18)0.0513 (6)
H1A0.67271.17420.32130.062*
C10.7071 (2)0.8060 (2)0.20833 (19)0.0382 (5)
H1B0.78440.76800.24090.046*
O10.6875 (3)0.9631 (2)0.47878 (17)0.0872 (7)
N20.4265 (2)0.49916 (19)0.39447 (16)0.0465 (5)
H2A0.39870.41000.43530.056*
O20.7270 (2)0.77039 (17)0.43616 (14)0.0554 (5)
C20.6977 (2)0.9558 (2)0.2084 (2)0.0386 (5)
O30.8103 (2)0.52264 (18)0.29747 (17)0.0636 (5)
C30.6956 (2)1.0904 (2)0.1197 (2)0.0395 (6)
O40.6464 (2)0.32942 (17)0.38907 (16)0.0633 (5)
C40.7094 (3)1.1362 (2)0.0044 (2)0.0479 (6)
H4A0.71741.06990.02920.058*
F0.8690 (2)0.7816 (2)0.22102 (14)0.0854 (6)
C50.7110 (3)1.2785 (3)0.0579 (2)0.0559 (7)
H5B0.72181.30840.13420.067*
C60.6967 (3)1.3798 (3)0.0089 (3)0.0627 (8)
H6A0.69721.47570.05340.075*
C70.6819 (3)1.3414 (3)0.1023 (3)0.0587 (7)
H7A0.67171.40900.13480.070*
C80.6827 (3)1.1961 (2)0.1658 (2)0.0464 (6)
C90.6911 (3)0.9871 (2)0.3010 (2)0.0443 (6)
C100.7028 (3)0.8940 (3)0.4101 (2)0.0485 (6)
C110.7075 (5)0.8835 (4)0.5877 (3)0.1118 (15)
H11A0.69400.94280.63040.168*
H11B0.80330.85550.57730.168*
H11C0.63860.79970.62720.168*
C120.5725 (3)0.7045 (2)0.28357 (19)0.0384 (5)
C130.4254 (3)0.7349 (2)0.30284 (19)0.0408 (6)
C140.3562 (3)0.8584 (3)0.2647 (2)0.0502 (7)
H14A0.41020.94630.21790.060*
C150.2095 (3)0.8478 (3)0.2971 (2)0.0616 (8)
H15A0.16410.92950.27200.074*
C160.1249 (3)0.7167 (3)0.3675 (3)0.0649 (8)
H16A0.02500.71300.38800.078*
C170.1881 (3)0.5942 (3)0.4064 (2)0.0587 (7)
H17A0.13270.50730.45380.070*
C180.3376 (3)0.6042 (2)0.37256 (19)0.0441 (6)
C190.5672 (3)0.5583 (2)0.34119 (19)0.0399 (6)
C200.6760 (3)0.4588 (3)0.3467 (2)0.0460 (6)
C210.9232 (3)0.4299 (3)0.2909 (3)0.0868 (11)
H21A1.01520.48690.25400.130*
H21B0.90910.37510.24900.130*
H21C0.92030.36620.36530.130*
C220.7510 (2)0.8014 (2)0.09177 (19)0.0386 (6)
C230.6484 (3)0.7791 (3)0.0436 (2)0.0495 (6)
H23A0.55120.76790.08340.059*
C240.6868 (3)0.7731 (3)0.0611 (2)0.0527 (7)
H24A0.61700.75880.09240.063*
C250.8294 (3)0.7885 (3)0.1176 (2)0.0543 (7)
C260.9337 (3)0.8114 (3)0.0755 (3)0.0698 (9)
H26A1.03040.82250.11640.084*
C270.8938 (3)0.8180 (3)0.0304 (2)0.0581 (7)
H27A0.96480.83390.06000.070*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0702 (15)0.0321 (11)0.0561 (14)0.0069 (10)0.0203 (11)0.0209 (10)
C10.0363 (13)0.0298 (12)0.0485 (14)0.0036 (10)0.0142 (11)0.0142 (10)
O10.158 (2)0.0616 (13)0.0675 (14)0.0279 (14)0.0540 (15)0.0379 (12)
N20.0553 (13)0.0267 (10)0.0480 (12)0.0034 (9)0.0092 (10)0.0086 (9)
O20.0728 (13)0.0346 (10)0.0542 (11)0.0024 (8)0.0202 (9)0.0113 (8)
C20.0337 (12)0.0299 (12)0.0494 (14)0.0010 (9)0.0114 (11)0.0131 (11)
O30.0548 (12)0.0421 (10)0.0936 (15)0.0147 (9)0.0217 (11)0.0262 (10)
C30.0353 (13)0.0292 (12)0.0511 (15)0.0006 (10)0.0136 (11)0.0119 (11)
O40.0838 (14)0.0297 (10)0.0768 (13)0.0119 (9)0.0245 (11)0.0209 (9)
C40.0477 (15)0.0340 (13)0.0594 (17)0.0002 (11)0.0175 (13)0.0139 (12)
F0.0945 (14)0.1087 (15)0.0628 (11)0.0344 (11)0.0181 (10)0.0482 (11)
C50.0586 (17)0.0418 (15)0.0601 (17)0.0014 (12)0.0234 (14)0.0074 (13)
C60.071 (2)0.0319 (14)0.078 (2)0.0014 (13)0.0318 (17)0.0065 (14)
C70.076 (2)0.0311 (13)0.074 (2)0.0059 (13)0.0321 (16)0.0184 (13)
C80.0462 (15)0.0326 (13)0.0599 (17)0.0033 (11)0.0173 (12)0.0165 (12)
C90.0514 (15)0.0285 (12)0.0521 (15)0.0017 (10)0.0146 (12)0.0152 (11)
C100.0569 (17)0.0396 (14)0.0511 (16)0.0015 (12)0.0172 (13)0.0190 (12)
C110.192 (5)0.096 (3)0.071 (2)0.030 (3)0.064 (3)0.041 (2)
C120.0473 (14)0.0292 (12)0.0387 (13)0.0027 (10)0.0115 (11)0.0142 (10)
C130.0462 (14)0.0312 (12)0.0402 (13)0.0007 (10)0.0068 (11)0.0128 (10)
C140.0493 (16)0.0332 (13)0.0606 (17)0.0054 (11)0.0125 (13)0.0128 (12)
C150.0484 (17)0.0472 (16)0.080 (2)0.0104 (13)0.0138 (15)0.0185 (15)
C160.0446 (16)0.0591 (18)0.075 (2)0.0039 (13)0.0047 (14)0.0182 (16)
C170.0469 (17)0.0479 (16)0.0610 (18)0.0098 (13)0.0009 (13)0.0098 (13)
C180.0522 (16)0.0342 (13)0.0399 (14)0.0009 (11)0.0080 (12)0.0122 (11)
C190.0498 (15)0.0288 (12)0.0415 (13)0.0022 (10)0.0135 (11)0.0141 (10)
C200.0596 (17)0.0342 (13)0.0483 (15)0.0067 (12)0.0182 (13)0.0190 (11)
C210.066 (2)0.073 (2)0.130 (3)0.0350 (18)0.033 (2)0.047 (2)
C220.0382 (13)0.0279 (11)0.0464 (14)0.0021 (9)0.0085 (11)0.0137 (10)
C230.0410 (15)0.0523 (15)0.0546 (16)0.0014 (12)0.0085 (12)0.0240 (13)
C240.0574 (18)0.0510 (16)0.0564 (17)0.0068 (13)0.0199 (14)0.0259 (13)
C250.0631 (19)0.0544 (16)0.0486 (16)0.0144 (13)0.0121 (14)0.0270 (13)
C260.0444 (17)0.094 (2)0.072 (2)0.0155 (16)0.0050 (15)0.0420 (19)
C270.0397 (15)0.0742 (19)0.0661 (19)0.0057 (13)0.0142 (14)0.0345 (16)
Geometric parameters (Å, º) top
N1—C81.364 (3)C11—H11A0.9600
N1—C91.386 (3)C11—H11B0.9600
N1—H1A0.8600C11—H11C0.9600
C1—C121.513 (3)C12—C191.385 (3)
C1—C21.519 (3)C12—C131.434 (3)
C1—C221.522 (3)C13—C141.410 (3)
C1—H1B0.9800C13—C181.413 (3)
O1—C101.328 (3)C14—C151.362 (4)
O1—C111.453 (4)C14—H14A0.9300
N2—C181.366 (3)C15—C161.403 (4)
N2—C191.372 (3)C15—H15A0.9300
N2—H2A0.8600C16—C171.371 (4)
O2—C101.209 (3)C16—H16A0.9300
C2—C91.379 (3)C17—C181.389 (4)
C2—C31.443 (3)C17—H17A0.9300
O3—C201.329 (3)C19—C201.456 (3)
O3—C211.446 (3)C21—H21A0.9600
C3—C41.409 (3)C21—H21B0.9600
C3—C81.411 (3)C21—H21C0.9600
O4—C201.216 (3)C22—C271.376 (3)
C4—C51.368 (3)C22—C231.393 (3)
C4—H4A0.9300C23—C241.375 (3)
F—C251.363 (3)C23—H23A0.9300
C5—C61.398 (4)C24—C251.359 (4)
C5—H5B0.9300C24—H24A0.9300
C6—C71.362 (4)C25—C261.351 (4)
C6—H6A0.9300C26—C271.393 (4)
C7—C81.400 (3)C26—H26A0.9300
C7—H7A0.9300C27—H27A0.9300
C9—C101.454 (3)
C8—N1—C9108.9 (2)C13—C12—C1128.2 (2)
C8—N1—H1A125.6C14—C13—C18117.7 (2)
C9—N1—H1A125.6C14—C13—C12134.8 (2)
C12—C1—C2113.09 (19)C18—C13—C12107.4 (2)
C12—C1—C22110.81 (18)C15—C14—C13119.3 (2)
C2—C1—C22114.33 (18)C15—C14—H14A120.3
C12—C1—H1B106.0C13—C14—H14A120.3
C2—C1—H1B106.0C14—C15—C16121.7 (3)
C22—C1—H1B106.0C14—C15—H15A119.1
C10—O1—C11116.2 (2)C16—C15—H15A119.1
C18—N2—C19109.29 (19)C17—C16—C15120.7 (3)
C18—N2—H2A125.4C17—C16—H16A119.6
C19—N2—H2A125.4C15—C16—H16A119.6
C9—C2—C3105.93 (19)C16—C17—C18117.8 (2)
C9—C2—C1123.5 (2)C16—C17—H17A121.1
C3—C2—C1130.5 (2)C18—C17—H17A121.1
C20—O3—C21116.5 (2)N2—C18—C17129.7 (2)
C4—C3—C8117.4 (2)N2—C18—C13107.6 (2)
C4—C3—C2135.5 (2)C17—C18—C13122.7 (2)
C8—C3—C2107.1 (2)N2—C19—C12109.9 (2)
C5—C4—C3119.7 (2)N2—C19—C20116.4 (2)
C5—C4—H4A120.2C12—C19—C20133.4 (2)
C3—C4—H4A120.2O4—C20—O3123.3 (2)
C4—C5—C6121.3 (3)O4—C20—C19123.0 (2)
C4—C5—H5B119.4O3—C20—C19113.7 (2)
C6—C5—H5B119.4O3—C21—H21A109.5
C7—C6—C5121.5 (2)O3—C21—H21B109.5
C7—C6—H6A119.2H21A—C21—H21B109.5
C5—C6—H6A119.2O3—C21—H21C109.5
C6—C7—C8117.3 (3)H21A—C21—H21C109.5
C6—C7—H7A121.4H21B—C21—H21C109.5
C8—C7—H7A121.4C27—C22—C23117.5 (2)
N1—C8—C7128.8 (2)C27—C22—C1121.2 (2)
N1—C8—C3108.2 (2)C23—C22—C1121.4 (2)
C7—C8—C3122.9 (2)C24—C23—C22121.9 (2)
C2—C9—N1109.8 (2)C24—C23—H23A119.0
C2—C9—C10129.3 (2)C22—C23—H23A119.0
N1—C9—C10120.8 (2)C25—C24—C23118.2 (3)
O2—C10—O1123.1 (2)C25—C24—H24A120.9
O2—C10—C9125.4 (2)C23—C24—H24A120.9
O1—C10—C9111.4 (2)C26—C25—C24122.6 (3)
O1—C11—H11A109.5C26—C25—F118.6 (3)
O1—C11—H11B109.5C24—C25—F118.8 (3)
H11A—C11—H11B109.5C25—C26—C27118.8 (3)
O1—C11—H11C109.5C25—C26—H26A120.6
H11A—C11—H11C109.5C27—C26—H26A120.6
H11B—C11—H11C109.5C22—C27—C26121.1 (3)
C19—C12—C13105.8 (2)C22—C27—H27A119.5
C19—C12—C1125.9 (2)C26—C27—H27A119.5
C12—C1—C2—C966.6 (3)C1—C12—C13—C18175.5 (2)
C22—C1—C2—C9165.3 (2)C18—C13—C14—C150.8 (4)
C12—C1—C2—C3114.3 (3)C12—C13—C14—C15177.2 (3)
C22—C1—C2—C313.8 (3)C13—C14—C15—C160.1 (4)
C9—C2—C3—C4174.6 (3)C14—C15—C16—C170.1 (5)
C1—C2—C3—C44.6 (4)C15—C16—C17—C180.8 (4)
C9—C2—C3—C82.0 (3)C19—N2—C18—C17178.4 (3)
C1—C2—C3—C8178.8 (2)C19—N2—C18—C130.1 (3)
C8—C3—C4—C50.5 (3)C16—C17—C18—N2176.8 (3)
C2—C3—C4—C5175.8 (3)C16—C17—C18—C131.6 (4)
C3—C4—C5—C61.1 (4)C14—C13—C18—N2177.1 (2)
C4—C5—C6—C70.6 (4)C12—C13—C18—N20.2 (3)
C5—C6—C7—C80.5 (4)C14—C13—C18—C171.6 (4)
C9—N1—C8—C7176.3 (3)C12—C13—C18—C17178.8 (2)
C9—N1—C8—C30.1 (3)C18—N2—C19—C120.3 (3)
C6—C7—C8—N1174.9 (3)C18—N2—C19—C20174.2 (2)
C6—C7—C8—C31.0 (4)C13—C12—C19—N20.4 (3)
C4—C3—C8—N1176.1 (2)C1—C12—C19—N2175.7 (2)
C2—C3—C8—N11.2 (3)C13—C12—C19—C20172.8 (2)
C4—C3—C8—C70.6 (4)C1—C12—C19—C202.5 (4)
C2—C3—C8—C7177.9 (2)C21—O3—C20—O43.2 (4)
C3—C2—C9—N12.1 (3)C21—O3—C20—C19174.6 (2)
C1—C2—C9—N1178.7 (2)N2—C19—C20—O44.8 (4)
C3—C2—C9—C10173.9 (2)C12—C19—C20—O4168.0 (3)
C1—C2—C9—C105.3 (4)N2—C19—C20—O3177.5 (2)
C8—N1—C9—C21.4 (3)C12—C19—C20—O39.7 (4)
C8—N1—C9—C10175.0 (2)C12—C1—C22—C27145.7 (2)
C11—O1—C10—O22.5 (4)C2—C1—C22—C2785.1 (3)
C11—O1—C10—C9175.7 (3)C12—C1—C22—C2333.8 (3)
C2—C9—C10—O23.3 (4)C2—C1—C22—C2395.4 (3)
N1—C9—C10—O2172.3 (2)C27—C22—C23—C240.2 (4)
C2—C9—C10—O1178.5 (2)C1—C22—C23—C24179.3 (2)
N1—C9—C10—O15.9 (3)C22—C23—C24—C250.5 (4)
C2—C1—C12—C19148.6 (2)C23—C24—C25—C261.0 (4)
C22—C1—C12—C1981.6 (3)C23—C24—C25—F179.4 (2)
C2—C1—C12—C1337.2 (3)C24—C25—C26—C270.6 (5)
C22—C1—C12—C1392.7 (3)F—C25—C26—C27179.8 (2)
C19—C12—C13—C14176.2 (3)C23—C22—C27—C260.6 (4)
C1—C12—C13—C141.1 (4)C1—C22—C27—C26178.9 (2)
C19—C12—C13—C180.4 (2)C25—C26—C27—C220.1 (5)
Hydrogen-bond geometry (Å, º) top
Cg1, Cg4 and Cg5 are the centroids of the N1-ring, C14-ring and C22-ring.
D—H···AD—HH···AD···AD—H···A
N1—H1A···O4i0.862.072.903 (3)162
N2—H2A···O2ii0.862.072.892 (3)159
C4—H4A···Cg50.932.823.622 (3)146
C5—H5B···Cg4iii0.932.843.705 (3)156
C26—H26A···Cg1iv0.932.693.587 (4)161
Symmetry codes: (i) x, y+1, z; (ii) x+1, y+1, z+1; (iii) x+1, y+2, z; (iv) x+2, y+2, z.
Hydrogen-bond geometry (Å, º) top
Cg1, Cg4 and Cg5 are the centroids of the N1-ring, C14-ring and C22-ring.
D—H···AD—HH···AD···AD—H···A
N1—H1A···O4i0.862.072.903 (3)162
N2—H2A···O2ii0.862.072.892 (3)159
C4—H4A···Cg50.932.823.622 (3)146
C5—H5B···Cg4iii0.932.843.705 (3)156
C26—H26A···Cg1iv0.932.693.587 (4)161
Symmetry codes: (i) x, y+1, z; (ii) x+1, y+1, z+1; (iii) x+1, y+2, z; (iv) x+2, y+2, z.

Experimental details

Crystal data
Chemical formulaC27H21FN2O4
Mr456.46
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)9.7270 (19), 10.122 (2), 13.441 (3)
α, β, γ (°)68.15 (3), 73.69 (3), 89.73 (3)
V3)1171.4 (4)
Z2
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.30 × 0.20 × 0.10
Data collection
DiffractometerNonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.973, 0.991
No. of measured, independent and
observed [I > 2σ(I)] reflections
4587, 4311, 2756
Rint0.040
(sin θ/λ)max1)0.603
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.147, 1.00
No. of reflections4311
No. of parameters307
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.16, 0.18

Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1994), XCAD4 (Harms & Wocadlo, 1995), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

The authors thank the Center of Testing and Analysis, Nanjing University, for support. Funding for this research was provided by Nanjing Polytechnic Institute, China (NHKY-2015-01).

References

First citationChang, Y.-C., Riby, J., Chang, G. H.-F., Peng, B., Firestone, G. & Bjeldanes, L. F. (1999). Biochem. Pharmacol. 58, 825–834.  CrossRef PubMed CAS Google Scholar
First citationEnraf–Nonius (1994). CAD-4 EXPRESS. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationGe, X., Fares, F. A. & Yannai, S. (1999). Anticancer Res. 19, 3199–3203.  Web of Science PubMed CAS Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationLi, Y., Sun, H., Jiang, H., Xu, N. & Xu, H. (2014). Acta Cryst. E70, 259–261.  CSD CrossRef IUCr Journals Google Scholar
First citationLu, X.-H., Sun, H.-S. & Hu, J. (2014). Acta Cryst. E70, 593–595.  CSD CrossRef IUCr Journals Google Scholar
First citationNi, Y.-C. (2008). Curr. Med. Imaging Rev. 4, 96–112.  Web of Science CrossRef CAS Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationPorter, J. K., Bacon, C. W., Robbins, J. D., Himmelsbach, D. S. & Higman, H. C. (1977). J. Agric. Food Chem. 25, 88–93.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSun, H.-S., Li, Y.-L., Jiang, H., Xu, N. & Xu, H. (2014). Acta Cryst. E70, 370–372.  CSD CrossRef IUCr Journals Google Scholar
First citationSun, H.-S., Li, Y.-L., Xu, N., Xu, H. & Zhang, J.-D. (2012). Acta Cryst. E68, o2764.  CSD CrossRef IUCr Journals Google Scholar
First citationSun, H.-S., Li, Y.-L., Xu, N., Xu, H. & Zhang, J.-D. (2013). Acta Cryst. E69, o1516.  CSD CrossRef IUCr Journals Google Scholar
First citationSundberg, R. J. (1996). The Chemistry of Indoles, p. 113. New York: Academic Press.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 10| October 2015| Pages 1140-1142
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds