research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 10| October 2015| Pages 1242-1244

Crystal structure of 5-[4-(di­ethyl­amino)­benzyl­­idene]-2,2-di­methyl-1,3-dioxane-4,6-dione

CROSSMARK_Color_square_no_text.svg

aFaculty of Materials Science and Applied Chemistry, Riga Technical University, Str. P. Valdena 3/7, Riga, LV 1048, Latvia, and bLatvian Institute of Organic Synthesis, Str. Aizkraukles 21, Riga, LV 1006, Latvia
*Correspondence e-mail: d_stepanovs@osi.lv, mara@ktf.rtu.lv

Edited by D.-J. Xu, Zhejiang University (Yuquan Campus), China (Received 17 September 2015; accepted 21 September 2015; online 26 September 2015)

The title compound, C17H21NO4, consists of substituted Meldrum's acid with a [4-(di­ethyl­amino)­phen­yl]methyl­idene fragment attached to the fifth position. The heterocycle assumes a distorted boat conformation. The planar part of heterocycle is almost coplanar with the benzene ring due to the presence of a long conjugated system in the mol­ecule. This leads to the formation of C—H⋯O-type intra­molecular contacts. As a result of the absence of hydrogen-bond donors in the structure, the crystal packing is controlled by van der Waals forces and weak C—H⋯O inter­actions, which associate the mol­ecules into inversion dimers.

1. Chemical context

Aryl­idene Meldrum's acids (5-aryl­methyl­idene-2,2-dimethyl-1,3-dioxane-4,6-diones) are attractive building blocks in organic chemistry: these compounds are used for the synthesis of different heterocycles. Recent examples include: pyrazolidinones (Pair et al., 2014[Pair, E., Berini, C., Noël, R., Sanselme, M., Levacher, V. & Brière, J.-F. (2014). Chem. Commun. 50, 10218-10221.]), lactames (Zhang et al., 2013[Zhang, J.-P., Ding, J., Ma, N., Jiang, B., Xu, L.-C. & Tu, S.-J. (2013). J. Hetercycl. Chem. 50, 66-70.]), carbocycles (e.g. Trost & Maruniak, 2013[Trost, B. M. & Maruniak, A. (2013). Angew. Chem. Int. Ed. 52, 6262-6264.]) and aliphatic compounds (e.g. Mohite & Bhat, 2013[Mohite, A. & Bhat, R. G. (2013). Org. Lett. 15, 4564-4567.]). Aryl­idene Meldrum's acids can be easily converted to aryl­methyl Meldrum`s acids [for a description of a typical procedure, see Mierina et al. (2015[Mierina, I., Mishnev, A. & Jure, M. (2015). Acta Cryst. C71, 752-758.])], which serve as starting compounds for the synthesis of various valuable compounds [for a mini-review, see Mierina (2014[Mierina, I. (2014). Synlett. 25, 155-156.])]. Apart from their wide application in syntheses, these derivatives of Meldrum's acid have been studied as platelet aggregation inhibitors (El Maatougui et al., 2012[El Maatougui, A., JhonnyAzuaje, B. S. P., Coelho, A., Cano, E., Yanez, M., Lopez, C., Yaziji, V., Carbajales, C. & Sotelo, E. (2012). Combin. Chem. High Throughput Screen. 15, 551-554.]), anti­malarial agents and anti-oxidants (Sandhu et al., 2010[Sandhu, H. S., Sapra, S., Gupta, M., Nepali, K., Gautam, R., Yadav, S., Kumar, R., Jachak, S. M., Chugh, M., Gupta, M. K., Suri, O. P. & Dhar, K. L. (2010). Bioorg. Med. Chem. 18, 5626-5633.]) and photostable UV-filters for cosmetic applications (Habeck & Krause, 1999[Habeck, T. & Krause, A. (1999). German Patent 19806241.]).

[Scheme 1]

2. Structural commentary

The title compound, C17H21NO4, consists of substituted Meldrum's acid with a [4-(di­ethyl­amino)­phen­yl]methyl­idene fragment attached to fifth position (Fig. 1[link].). The heterocycle assumes a distorted boat conformation. Atoms C2 and C5 deviate from the least-squares plane [maximum deviations ±0.013 (1) Å] calculated for the other four atoms of the heterocycle by 0.549 (3) and 0.154 (3) Å, respectively. The planar part of heterocycle is nearly coplanar with the benzene ring [dihedral angle = 8.05 (10)°] due to the presence of a long conjugated system in the mol­ecule. This leads to the formation of C—H⋯O-type intra­molecular contacts (Table 1[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C13—H13⋯O19 0.93 2.13 2.915 (2) 141
C17—H17B⋯O20i 0.97 2.39 3.268 (3) 151
Symmetry code: (i) -x, -y+1, -z+1.
[Figure 1]
Figure 1
The mol­ecular structure the title compound, showing 50% probability displacement ellipsoids and the atomic numbering

ππ stacking inter­actions are also observed between conjugated systems of the mol­ecules. The distance between the corresponding least-square planes is 3.54 (su?) Å.

The crystal structure of the zwitterionic form of 5-[4-(di­eth­ylamino)­benz­yl]-2,2-dimethyl-1,3-dioxane-4,6-dione has been already reported (Mierina et al., 2015[Mierina, I., Mishnev, A. & Jure, M. (2015). Acta Cryst. C71, 752-758.]). The title compound differs from this by the presence of a double bond between atoms C5 and C7.

3. Supra­molecular features

Because of the absence of hydrogen-bond donors in the structure, the crystal packing is controlled by van der Waals forces and weak C—H⋯O inter­actions, which associate mol­ecules into inversion dimers (Fig. 2[link], Table 1[link]).

[Figure 2]
Figure 2
The crystal packing of the title compound, viewed along the b axis. Hydrogen bonds are shown as dashed lines (see Table 1[link] for details).

4. Database survey

Several 5-aryl­idene-2,2-dimethyl-1,3-dioxane-4,6-diones (Huck et al., 1995[Huck, N. P. M., Meetsma, A., Zijlstra, R. & Feringa, B. L. (1995). Tetrahedron Lett. 36, 9381-9384.]; Gould et al., 1998[Gould, R. O., Harris, S. G., McNab, H., Parsons, S. & Withell, K. (1998). Acta Cryst. C54, 234-236.]; Novoa de Armas et al., 2000[Novoa de Armas, H., Blaton, N. M., Peeters, O. M., De Ranter, C. J., Suárez, M., Ochoa, E., Verdecia, Y. & Salfrán, E. (2000). J. Chem. Crystallogr. 30, 189-194.]; O'Leary et al., 2001[O'Leary, J., Bell, P. C., Wallis, J. D. & Schweizer, W. B. (2001). J. Chem. Soc. Perkin Trans. 2, pp. 133-139.]; O'Leary & Wallis 2006[O'Leary, J. & Wallis, J. D. (2006). Chem. Eur. J. 12, 7724-7732.]; Crawford & McNab, 2009[Crawford, L. A. & McNab, H. (2009). Collect. Czech. Chem. Commun. 74, 995-1009.]; Wilsily & Fillion, 2009[Wilsily, A. & Fillion, E. (2009). J. Org. Chem. 74, 8583-8594.]; Zeng, 2010a[Zeng, W.-L. (2010a). Acta Cryst. E66, o2319.],b[Zeng, W.-L. (2010b). Acta Cryst. E66, o2366.], 2011a[Zeng, W.-L. (2011a). Acta Cryst. E67, o276.],b[Zeng, W.-L. (2011b). Acta Cryst. E67, o1351.],c[Zeng, W.-L. (2011c). Acta Cryst. E67, o1937.], 2013[Zeng, W. (2013). Asian J. Chem. 25, 864-866.]; Jie, 2012[Jie, Y. (2012). Z. Kristallogr. New Cryst. Struct. 227, 347-348.]; García-Álvarez et al., 2013[García-Álvarez, F., Romero, N., Lobato-García, C. E., Terán, J. L. & Mendoza, A. (2013). Acta Cryst. E69, o50.]; Dey et al., 2015[Dey, T., Ghosh, S., Ghosh, S. & Mukherjee, A. K. (2015). J. Mol. Struct. 1092, 51-62.]) and their spiro-analogues (Sato et al., 1989[Sato, M., Hisamichi, H., Kaneko, C., Suzaki, N., Furuya, T. & Inukai, N. (1989). Tetrahedron Lett. 30, 5281-5284.]; Zeng, 2011d[Zeng, W. (2011d). Asian J. Chem. 23, 4145-4147.],e[Zeng, W.-L. (2011e). Acta Cryst. E67, o426.],f[Zeng, W.-L. (2011f). Acta Cryst. E67, o1362.]; Zeng et al. 2013[Zeng, W., Li, Y. & Guo, H. (2013). J. Chem. Crystallogr. 43, 223-227.]) have been characterized by X-ray analysis. However, information on the crystal structure of 5-aryl­methyl­idene-2,2-dimethyl-1,3-dioxane-4,6-diones containing an amino functionality on the aromatic ring is not available.

5. Synthesis and crystallization

5-[4-(Di­ethyl­amino)­phenyl­methyl­idene]-2,2-dimethyl-1,3-dioxane-4,6-dione was obtained from Meldrum's acid (1.00 g, 6.9 mmol) and 4-di­ethyl­amino­benzaldehyde (1.27 g, 6.9 mmol) by heating in water (50 ml) at 348 K for 2 h, followed by cooling to room temperature and filtration of the formed precipitate and recrystallization from ethanol (1.62 g, 80%) analogously to the method described previously (Mierina et al., 2015[Mierina, I., Mishnev, A. & Jure, M. (2015). Acta Cryst. C71, 752-758.]). The spectroscopic and physical data correspond to those in the literature (Mierina et al., 2015[Mierina, I., Mishnev, A. & Jure, M. (2015). Acta Cryst. C71, 752-758.]). X-ray quality single crystals were obtained by slow evaporation from ethanol.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The C-bound H atoms were positioned geometrically and refined as riding on their parent atoms: C—H = 0.93–0.98Å with Uiso(H) = 1.5Ueq(C) for methyl H atoms and 1.2Ueq(C) for other H atoms.

Table 2
Experimental details

Crystal data
Chemical formula C17H21NO4
Mr 303.35
Crystal system, space group Monoclinic, P21/c
Temperature (K) 173
a, b, c (Å) 7.8662 (2), 11.4601 (3), 18.1517 (6)
β (°) 96.858 (1)
V3) 1624.62 (8)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.09
Crystal size (mm) 0.26 × 0.19 × 0.09
 
Data collection
Diffractometer Nonius KappaCCD
No. of measured, independent and observed [I > 2σ(I)] reflections 6627, 3705, 2183
Rint 0.054
(sin θ/λ)max−1) 0.649
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.055, 0.127, 1.00
No. of reflections 3705
No. of parameters 203
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.18, −0.19
Computer programs: KappaCCD Server Software (Nonius, 1997[Nonius (1997). KappaCCD Server Software. Nonius BV, Delft, The Netherlands.]), HKL DENZO and SCALEPACK (Otwinovski & Minor, 1997[Otwinovski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]), SIR2011 (Burla et al., 2012[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Mallamo, M., Mazzone, A., Polidori, G. & Spagna, R. (2012). J. Appl. Cryst. 45, 357-361.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Chemical context top

Aryl­idene Meldrum's acids (5-aryl­methyl­idene-2,2-di­methyl-1,3-dioxane-4,6-diones) are attractive building blocks in organic chemistry: these compounds are used for the synthesis of different heterocycles. Recent examples include: pyrazolidinones (Pair et al., 2014), la­cta­mes (Zhang et al., 2013), carbocycles (e.g. Trost & Maruniak, 2013) and aliphatic compounds (e.g. Mohite & Bhat, 2013). Aryl­idene Meldrum's acids can be easily converted to aryl­methyl Meldrum`s acids [for a description of a typical procedure, see Mierina et al. (2015)], which serve as starting compounds for the synthesis of various valuable compounds [for a mini-review, see Mierina (2014)]. Apart from their wide application in syntheses, these derivatives of Meldrum's acid have been studied as platelet aggregation inhibitors (El Maatougui et al., 2012), anti­malarial agents and anti-oxidants (Sandhu et al., 2010) and photostable UV-filters for cosmetic applications (Habeck & Krause, 1999).

Structural commentary top

\ The title compound, C17H21NO4, consists of the substituted Meldrum's acid with a [4-(di­ethyl­amino)­phenyl]­methyl­idene fragment attached to fifth position (Fig. 1.). The heterocycle assumes a distorted boat conformation. Atoms C2 and C5 deviate from the least-squares plane [±0.013 (1) Å] calculated for the other four atoms of the heterocycle by 0.549 (3) and 0.154 (3) Å, respectively. The planar part of heterocycle is nearly coplanar with the benzene ring due to the presence of a long conjugated system in the molecule. This leads to the formation of C—H···O-type intra­molecular contacts (Table 1).

ππ stacking inter­actions have been also observed between conjugated systems of the molecules. The distance between the corresponding least-square planes is 3.54 (su?) Å.

The crystal structure of the zwitterionic form of 5-[4-(di­ethyl­amino)­benz­yl]-2,2-di­methyl-\ 1,3-dioxane-4,6-dione has been already reported (Mierina et al., 2015). The title compound differs from this by the presence of a double bond between atoms C5 and C7.

Supra­molecular features top

Because of the absence of hydrogen-bond donors in the structure, the crystal packing is controlled by van der Waals forces and weak C—H···O inter­actions, which associate molecules into dimers (Fig. 2, Table 1).

Database survey top

Several 5-aryl­idene-2,2-di­methyl-1,3-dioxane-4,6-diones (Huck et al., 1995; Gould et al., 1998; Novoa de Armas et al., 2000; O'Leary et al., 2001; O'Leary & Wallis 2006; Crawford & McNab, 2009; Wilsily & Fillion, 2009; Zeng, 2010a,b, 2011a,b,c, 2013; Jie, 2012; García-Álvarez et al., 2013; Dey et al., 2015) and their spiro-analogues (Sato et al., 1989; Zeng, 2011d,e,f; Zeng et al. 2013) have been characterized by X-ray analysis; in most of the cases X-ray diffraction was used only to determine the structure. However, information on the crystal structure of 5-aryl­methyl­idene-2,2-di­methyl-1,3-dioxane-4,6-diones containing an amino functionality on the aromatic ring is not available.

Synthesis and crystallization top

5-[4-(Di­ethyl­amino)­phenyl­methyl­idene]-2,2-di­methyl-1,3-dioxane-4,6-dione was obtained from Meldrum`s acid (1.00 g, 6.9 mmol) and 4-di­ethyl­amino­benzaldehyde (1.27 g, 6.9 mmol) by heating in water (50 ml) at 348 K for 2 h, followed by cooling to room temperature and filtration of the formed precipitate and recrystallization from ethanol (1.62 g, 80%) analogously to the method described previously (Mierina et al., 2015). The spectroscopic and physical data correspond to those in the literature (Mierina et al., 2015). X-ray quality single crystals were obtained by slow evaporation from ethanol.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 2. The C-bound H atoms were positioned geometrically and refined as riding on their parent atoms: C—H = 0.93–0.98Å with Uiso(H) = 1.5Ueq(C) for methyl H atoms and 1.2Ueq(C) for other H atoms.

Related literature top

For related literature, see: Crawford & McNab (2009); Dey et al. (2015); El Maatougui, Azuaje, Coelho, Cano, Yanez, Lopez, Yaziji, Carbajales & Sotelo (2012); Gould et al. (1998); Habeck & Krause (1999); Huck et al. (1995); Jie (2012); Mierina (2014); Mierina et al. (2015); Mohite & Bhat (2013); Novoa de Armas, Blaton, Peeters, De Ranter, Suarez, Ochoa, Verdecia & Salfran (2000); O'Leary & Wallis (2006); O'Leary et al. (2001); Pair et al. (2014); Sandhu et al. (2010); Sato et al. (1989); Trost & Maruniak (2013); Wilsily & Fillion (2009); Zeng (2010a, 2010b, 2011a, 2011b, 2011c, 2011d, 2011e, 2011f, 2013a); Zeng et al. (2013b); Zhang et al. (2013).

Computing details top

Data collection: KappaCCD Server Software (Nonius, 1997); cell refinement: HKL SCALEPACK (Otwinovski & Minor, 1997); data reduction: HKL DENZO and SCALEPACK (Otwinovski & Minor, 1997); program(s) used to solve structure: SIR2011 (Burla et al., 2012); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure the title compound, showing 50% probability displacement ellipsoids and the atomic numbering
[Figure 2] Fig. 2. The crystal packing of the title compound, viewed along the b axis. Hydrogen bonds are shown as dashed lines (see Table 1 for details).
5-[4-(Diethylamino)benzylidene]-2,2-dimethyl-1,3-dioxane-4,6-dione top
Crystal data top
C17H21NO4F(000) = 648
Mr = 303.35Dx = 1.240 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 15405 reflections
a = 7.8662 (2) Åθ = 1.0–27.5°
b = 11.4601 (3) ŵ = 0.09 mm1
c = 18.1517 (6) ÅT = 173 K
β = 96.858 (1)°Plate, red
V = 1624.62 (8) Å30.26 × 0.19 × 0.09 mm
Z = 4
Data collection top
Nonius KappaCCD
diffractometer
2183 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.054
Graphite monochromatorθmax = 27.5°, θmin = 2.3°
CCD scansh = 1010
6627 measured reflectionsk = 1413
3705 independent reflectionsl = 2323
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.055Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.127H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0534P)2 + 0.0774P]
where P = (Fo2 + 2Fc2)/3
3705 reflections(Δ/σ)max < 0.001
203 parametersΔρmax = 0.18 e Å3
0 restraintsΔρmin = 0.19 e Å3
Crystal data top
C17H21NO4V = 1624.62 (8) Å3
Mr = 303.35Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.8662 (2) ŵ = 0.09 mm1
b = 11.4601 (3) ÅT = 173 K
c = 18.1517 (6) Å0.26 × 0.19 × 0.09 mm
β = 96.858 (1)°
Data collection top
Nonius KappaCCD
diffractometer
2183 reflections with I > 2σ(I)
6627 measured reflectionsRint = 0.054
3705 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0550 restraints
wR(F2) = 0.127H-atom parameters constrained
S = 1.00Δρmax = 0.18 e Å3
3705 reflectionsΔρmin = 0.19 e Å3
203 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.57779 (16)0.16291 (12)0.51388 (7)0.0404 (4)
O190.65514 (15)0.45154 (13)0.40080 (8)0.0407 (4)
O30.73309 (14)0.27588 (11)0.43789 (8)0.0390 (4)
C80.2432 (2)0.50423 (15)0.40398 (10)0.0252 (4)
C100.0015 (2)0.63516 (16)0.37433 (10)0.0266 (4)
H100.11380.65450.38040.032*
O200.33160 (19)0.21986 (13)0.54631 (9)0.0584 (5)
N140.02179 (17)0.80169 (13)0.29384 (9)0.0307 (4)
C120.2607 (2)0.66959 (17)0.32158 (11)0.0317 (5)
H120.32420.71240.29100.038*
C90.0729 (2)0.53919 (16)0.40930 (10)0.0259 (4)
H90.00780.49440.43820.031*
C110.0910 (2)0.70529 (16)0.32900 (10)0.0266 (4)
C40.6131 (2)0.36263 (18)0.42864 (11)0.0310 (5)
C130.3340 (2)0.57427 (17)0.35789 (11)0.0309 (5)
H130.44650.55500.35210.037*
C70.3028 (2)0.40397 (16)0.44569 (10)0.0275 (4)
H70.21880.37450.47250.033*
C150.1135 (2)0.86883 (18)0.24297 (11)0.0386 (5)
H15A0.03110.90750.20700.046*
H15B0.18010.81590.21610.046*
C50.4505 (2)0.33863 (16)0.45730 (10)0.0292 (4)
C60.4436 (3)0.23885 (18)0.50801 (11)0.0377 (5)
C20.6814 (2)0.16029 (17)0.45458 (12)0.0363 (5)
C180.2946 (2)0.7988 (2)0.25955 (13)0.0473 (6)
H18A0.27520.80570.20850.071*
H18B0.39670.84060.26730.071*
H18C0.30770.71800.27160.071*
C170.1429 (2)0.84969 (17)0.30887 (12)0.0349 (5)
H17A0.14150.93360.30190.042*
H17B0.15770.83480.36030.042*
C210.8427 (3)0.0962 (2)0.48418 (14)0.0551 (6)
H21A0.89670.13570.52740.083*
H21B0.91950.09430.44690.083*
H21C0.81460.01790.49710.083*
C220.5872 (3)0.1025 (2)0.38720 (12)0.0460 (6)
H22A0.55550.02470.39970.069*
H22B0.66000.09940.34840.069*
H22C0.48600.14650.37060.069*
C160.2319 (3)0.9596 (2)0.28194 (14)0.0533 (6)
H16A0.16561.01660.30470.080*
H16B0.29500.99710.24650.080*
H16C0.31020.92240.31940.080*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0464 (8)0.0385 (9)0.0367 (8)0.0179 (6)0.0058 (6)0.0069 (7)
O190.0303 (7)0.0382 (9)0.0546 (10)0.0026 (6)0.0093 (6)0.0078 (7)
O30.0274 (7)0.0354 (8)0.0538 (9)0.0093 (6)0.0033 (6)0.0008 (7)
C80.0267 (9)0.0252 (10)0.0236 (10)0.0011 (7)0.0025 (7)0.0030 (8)
C100.0229 (9)0.0296 (11)0.0276 (10)0.0014 (7)0.0039 (7)0.0005 (9)
O200.0643 (10)0.0510 (11)0.0666 (11)0.0218 (8)0.0352 (9)0.0286 (9)
N140.0289 (8)0.0294 (9)0.0341 (10)0.0030 (7)0.0042 (7)0.0077 (7)
C120.0287 (9)0.0320 (12)0.0357 (12)0.0004 (8)0.0096 (8)0.0068 (9)
C90.0263 (9)0.0292 (11)0.0229 (10)0.0026 (7)0.0058 (7)0.0004 (8)
C110.0291 (9)0.0257 (10)0.0241 (10)0.0014 (8)0.0003 (7)0.0027 (8)
C40.0285 (10)0.0321 (12)0.0315 (11)0.0051 (8)0.0000 (8)0.0043 (10)
C130.0243 (9)0.0335 (11)0.0359 (12)0.0028 (8)0.0077 (8)0.0029 (9)
C70.0292 (9)0.0266 (11)0.0279 (11)0.0007 (8)0.0082 (7)0.0034 (9)
C150.0417 (11)0.0358 (12)0.0389 (12)0.0026 (9)0.0070 (9)0.0156 (10)
C50.0303 (9)0.0279 (11)0.0293 (11)0.0026 (8)0.0033 (7)0.0022 (9)
C60.0430 (11)0.0346 (12)0.0364 (12)0.0103 (9)0.0086 (9)0.0034 (10)
C20.0360 (11)0.0324 (12)0.0403 (13)0.0108 (9)0.0033 (9)0.0005 (10)
C180.0347 (11)0.0472 (14)0.0580 (15)0.0033 (9)0.0029 (10)0.0115 (12)
C170.0342 (10)0.0286 (11)0.0421 (12)0.0069 (8)0.0057 (8)0.0037 (10)
C210.0446 (12)0.0548 (16)0.0634 (17)0.0220 (11)0.0038 (11)0.0016 (13)
C220.0522 (12)0.0397 (14)0.0441 (14)0.0123 (10)0.0023 (10)0.0057 (11)
C160.0518 (13)0.0419 (14)0.0670 (17)0.0090 (10)0.0103 (11)0.0091 (12)
Geometric parameters (Å, º) top
O1—C61.363 (2)C7—H70.9300
O1—C21.426 (2)C15—C161.514 (3)
O19—C41.201 (2)C15—H15A0.9700
O3—C41.368 (2)C15—H15B0.9700
O3—C21.429 (2)C5—C61.473 (3)
C8—C91.413 (2)C2—C221.506 (3)
C8—C131.413 (2)C2—C211.509 (3)
C8—C71.424 (2)C18—C171.519 (3)
C10—C91.366 (2)C18—H18A0.9600
C10—C111.413 (3)C18—H18B0.9600
C10—H100.9300C18—H18C0.9600
O20—C61.205 (2)C17—H17A0.9700
N14—C111.357 (2)C17—H17B0.9700
N14—C151.457 (2)C21—H21A0.9600
N14—C171.463 (2)C21—H21B0.9600
C12—C131.367 (3)C21—H21C0.9600
C12—C111.418 (2)C22—H22A0.9600
C12—H120.9300C22—H22B0.9600
C9—H90.9300C22—H22C0.9600
C4—C51.463 (2)C16—H16A0.9600
C13—H130.9300C16—H16B0.9600
C7—C51.377 (2)C16—H16C0.9600
C6—O1—C2117.50 (15)O20—C6—C5125.78 (18)
C4—O3—C2119.35 (14)O1—C6—C5117.29 (17)
C9—C8—C13115.46 (16)O1—C2—O3110.09 (15)
C9—C8—C7116.56 (16)O1—C2—C22110.63 (16)
C13—C8—C7127.97 (16)O3—C2—C22111.13 (17)
C9—C10—C11120.46 (16)O1—C2—C21105.88 (17)
C9—C10—H10119.8O3—C2—C21106.15 (16)
C11—C10—H10119.8C22—C2—C21112.74 (18)
C11—N14—C15121.78 (15)C17—C18—H18A109.5
C11—N14—C17122.20 (15)C17—C18—H18B109.5
C15—N14—C17115.86 (15)H18A—C18—H18B109.5
C13—C12—C11122.18 (17)C17—C18—H18C109.5
C13—C12—H12118.9H18A—C18—H18C109.5
C11—C12—H12118.9H18B—C18—H18C109.5
C10—C9—C8123.61 (16)N14—C17—C18113.34 (17)
C10—C9—H9118.2N14—C17—H17A108.9
C8—C9—H9118.2C18—C17—H17A108.9
N14—C11—C10122.12 (16)N14—C17—H17B108.9
N14—C11—C12121.31 (16)C18—C17—H17B108.9
C10—C11—C12116.57 (16)H17A—C17—H17B107.7
O19—C4—O3116.57 (16)C2—C21—H21A109.5
O19—C4—C5127.27 (17)C2—C21—H21B109.5
O3—C4—C5116.09 (17)H21A—C21—H21B109.5
C12—C13—C8121.68 (16)C2—C21—H21C109.5
C12—C13—H13119.2H21A—C21—H21C109.5
C8—C13—H13119.2H21B—C21—H21C109.5
C5—C7—C8137.58 (17)C2—C22—H22A109.5
C5—C7—H7111.2C2—C22—H22B109.5
C8—C7—H7111.2H22A—C22—H22B109.5
N14—C15—C16112.95 (18)C2—C22—H22C109.5
N14—C15—H15A109.0H22A—C22—H22C109.5
C16—C15—H15A109.0H22B—C22—H22C109.5
N14—C15—H15B109.0C15—C16—H16A109.5
C16—C15—H15B109.0C15—C16—H16B109.5
H15A—C15—H15B107.8H16A—C16—H16B109.5
C7—C5—C4126.92 (18)C15—C16—H16C109.5
C7—C5—C6115.10 (16)H16A—C16—H16C109.5
C4—C5—C6117.86 (16)H16B—C16—H16C109.5
O20—C6—O1116.90 (18)
C11—C10—C9—C80.8 (3)C8—C7—C5—C44.4 (4)
C13—C8—C9—C101.4 (3)C8—C7—C5—C6179.8 (2)
C7—C8—C9—C10178.19 (17)O19—C4—C5—C713.2 (3)
C15—N14—C11—C10175.52 (17)O3—C4—C5—C7170.14 (18)
C17—N14—C11—C109.3 (3)O19—C4—C5—C6162.49 (19)
C15—N14—C11—C124.1 (3)O3—C4—C5—C614.2 (2)
C17—N14—C11—C12171.03 (17)C2—O1—C6—O20160.50 (19)
C9—C10—C11—N14179.51 (17)C2—O1—C6—C521.3 (2)
C9—C10—C11—C120.8 (3)C7—C5—C6—O2010.3 (3)
C13—C12—C11—N14178.48 (18)C4—C5—C6—O20166.0 (2)
C13—C12—C11—C101.8 (3)C7—C5—C6—O1171.75 (17)
C2—O3—C4—O19165.89 (17)C4—C5—C6—O112.0 (3)
C2—O3—C4—C517.1 (2)C6—O1—C2—O350.5 (2)
C11—C12—C13—C81.3 (3)C6—O1—C2—C2272.7 (2)
C9—C8—C13—C120.4 (3)C6—O1—C2—C21164.84 (18)
C7—C8—C13—C12179.18 (18)C4—O3—C2—O148.8 (2)
C9—C8—C7—C5179.1 (2)C4—O3—C2—C2274.2 (2)
C13—C8—C7—C51.4 (4)C4—O3—C2—C21162.94 (17)
C11—N14—C15—C1685.9 (2)C11—N14—C17—C1889.7 (2)
C17—N14—C15—C1689.6 (2)C15—N14—C17—C1894.8 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C13—H13···O190.932.132.915 (2)141
C17—H17B···O20i0.972.393.268 (3)151
Symmetry code: (i) x, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C13—H13···O190.932.132.915 (2)141
C17—H17B···O20i0.972.393.268 (3)151
Symmetry code: (i) x, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC17H21NO4
Mr303.35
Crystal system, space groupMonoclinic, P21/c
Temperature (K)173
a, b, c (Å)7.8662 (2), 11.4601 (3), 18.1517 (6)
β (°) 96.858 (1)
V3)1624.62 (8)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.26 × 0.19 × 0.09
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
6627, 3705, 2183
Rint0.054
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.055, 0.127, 1.00
No. of reflections3705
No. of parameters203
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.18, 0.19

Computer programs: KappaCCD Server Software (Nonius, 1997), HKL SCALEPACK (Otwinovski & Minor, 1997), HKL DENZO and SCALEPACK (Otwinovski & Minor, 1997), SIR2011 (Burla et al., 2012), ORTEP-3 for Windows (Farrugia, 2012), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

 

Acknowledgements

IM thanks the European Social Fund for a scholarship within the project `Support for the implementation of doctoral studies at Riga Technical University'.

References

First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Mallamo, M., Mazzone, A., Polidori, G. & Spagna, R. (2012). J. Appl. Cryst. 45, 357–361.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationCrawford, L. A. & McNab, H. (2009). Collect. Czech. Chem. Commun. 74, 995–1009.  CSD CrossRef CAS Google Scholar
First citationDey, T., Ghosh, S., Ghosh, S. & Mukherjee, A. K. (2015). J. Mol. Struct. 1092, 51–62.  CSD CrossRef CAS Google Scholar
First citationEl Maatougui, A., JhonnyAzuaje, B. S. P., Coelho, A., Cano, E., Yanez, M., Lopez, C., Yaziji, V., Carbajales, C. & Sotelo, E. (2012). Combin. Chem. High Throughput Screen. 15, 551–554.  CrossRef CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGarcía-Álvarez, F., Romero, N., Lobato-García, C. E., Terán, J. L. & Mendoza, A. (2013). Acta Cryst. E69, o50.  CSD CrossRef IUCr Journals Google Scholar
First citationGould, R. O., Harris, S. G., McNab, H., Parsons, S. & Withell, K. (1998). Acta Cryst. C54, 234–236.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationHabeck, T. & Krause, A. (1999). German Patent 19806241.  Google Scholar
First citationHuck, N. P. M., Meetsma, A., Zijlstra, R. & Feringa, B. L. (1995). Tetrahedron Lett. 36, 9381–9384.  CSD CrossRef CAS Google Scholar
First citationJie, Y. (2012). Z. Kristallogr. New Cryst. Struct. 227, 347–348.  CSD CrossRef CAS Google Scholar
First citationMierina, I. (2014). Synlett. 25, 155-156.  CAS Google Scholar
First citationMierina, I., Mishnev, A. & Jure, M. (2015). Acta Cryst. C71, 752–758.  CSD CrossRef IUCr Journals Google Scholar
First citationMohite, A. & Bhat, R. G. (2013). Org. Lett. 15, 4564–4567.  CrossRef CAS PubMed Google Scholar
First citationNonius (1997). KappaCCD Server Software. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationNovoa de Armas, H., Blaton, N. M., Peeters, O. M., De Ranter, C. J., Suárez, M., Ochoa, E., Verdecia, Y. & Salfrán, E. (2000). J. Chem. Crystallogr. 30, 189–194.  CSD CrossRef CAS Google Scholar
First citationO'Leary, J., Bell, P. C., Wallis, J. D. & Schweizer, W. B. (2001). J. Chem. Soc. Perkin Trans. 2, pp. 133–139.  Google Scholar
First citationO'Leary, J. & Wallis, J. D. (2006). Chem. Eur. J. 12, 7724–7732.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationOtwinovski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.  Google Scholar
First citationPair, E., Berini, C., Noël, R., Sanselme, M., Levacher, V. & Brière, J.-F. (2014). Chem. Commun. 50, 10218–10221.  CSD CrossRef CAS Google Scholar
First citationSandhu, H. S., Sapra, S., Gupta, M., Nepali, K., Gautam, R., Yadav, S., Kumar, R., Jachak, S. M., Chugh, M., Gupta, M. K., Suri, O. P. & Dhar, K. L. (2010). Bioorg. Med. Chem. 18, 5626–5633.  CrossRef CAS PubMed Google Scholar
First citationSato, M., Hisamichi, H., Kaneko, C., Suzaki, N., Furuya, T. & Inukai, N. (1989). Tetrahedron Lett. 30, 5281–5284.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTrost, B. M. & Maruniak, A. (2013). Angew. Chem. Int. Ed. 52, 6262–6264.  CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWilsily, A. & Fillion, E. (2009). J. Org. Chem. 74, 8583–8594.  CSD CrossRef PubMed CAS Google Scholar
First citationZeng, W.-L. (2010a). Acta Cryst. E66, o2319.  CSD CrossRef IUCr Journals Google Scholar
First citationZeng, W.-L. (2010b). Acta Cryst. E66, o2366.  CSD CrossRef IUCr Journals Google Scholar
First citationZeng, W.-L. (2011a). Acta Cryst. E67, o276.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZeng, W.-L. (2011b). Acta Cryst. E67, o1351.  CSD CrossRef IUCr Journals Google Scholar
First citationZeng, W.-L. (2011c). Acta Cryst. E67, o1937.  CSD CrossRef IUCr Journals Google Scholar
First citationZeng, W. (2011d). Asian J. Chem. 23, 4145-4147.  CAS Google Scholar
First citationZeng, W.-L. (2011e). Acta Cryst. E67, o426.  CSD CrossRef IUCr Journals Google Scholar
First citationZeng, W.-L. (2011f). Acta Cryst. E67, o1362.  CSD CrossRef IUCr Journals Google Scholar
First citationZeng, W. (2013). Asian J. Chem. 25, 864-866.  CrossRef CAS Google Scholar
First citationZeng, W., Li, Y. & Guo, H. (2013). J. Chem. Crystallogr. 43, 223-227.  CSD CrossRef CAS Google Scholar
First citationZhang, J.-P., Ding, J., Ma, N., Jiang, B., Xu, L.-C. & Tu, S.-J. (2013). J. Hetercycl. Chem. 50, 66–70.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 10| October 2015| Pages 1242-1244
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds