research communications
of 5-[4-(diethylamino)benzylidene]-2,2-dimethyl-1,3-dioxane-4,6-dione
aFaculty of Materials Science and Applied Chemistry, Riga Technical University, Str. P. Valdena 3/7, Riga, LV 1048, Latvia, and bLatvian Institute of Organic Synthesis, Str. Aizkraukles 21, Riga, LV 1006, Latvia
*Correspondence e-mail: d_stepanovs@osi.lv, mara@ktf.rtu.lv
The title compound, C17H21NO4, consists of substituted Meldrum's acid with a [4-(diethylamino)phenyl]methylidene fragment attached to the fifth position. The heterocycle assumes a distorted boat conformation. The planar part of heterocycle is almost coplanar with the benzene ring due to the presence of a long in the molecule. This leads to the formation of C—H⋯O-type intramolecular contacts. As a result of the absence of hydrogen-bond donors in the structure, the crystal packing is controlled by and weak C—H⋯O interactions, which associate the molecules into inversion dimers.
Keywords: crystal structure; arylidene Meldrum's acid; 5-arylmethylene-2,2-dimethyl-1,3-dioxan-4,6-dione; organic synthesis; intramolecular hydrogen bonding.
CCDC reference: 1426237
1. Chemical context
Arylidene Meldrum's acids (5-arylmethylidene-2,2-dimethyl-1,3-dioxane-4,6-diones) are attractive building blocks in organic chemistry: these compounds are used for the synthesis of different heterocycles. Recent examples include: pyrazolidinones (Pair et al., 2014), lactames (Zhang et al., 2013), carbocycles (e.g. Trost & Maruniak, 2013) and (e.g. Mohite & Bhat, 2013). Arylidene Meldrum's acids can be easily converted to arylmethyl Meldrum`s acids [for a description of a typical procedure, see Mierina et al. (2015)], which serve as starting compounds for the synthesis of various valuable compounds [for a mini-review, see Mierina (2014)]. Apart from their wide application in syntheses, these derivatives of Meldrum's acid have been studied as platelet aggregation inhibitors (El Maatougui et al., 2012), antimalarial agents and anti-oxidants (Sandhu et al., 2010) and photostable UV-filters for cosmetic applications (Habeck & Krause, 1999).
2. Structural commentary
The title compound, C17H21NO4, consists of substituted Meldrum's acid with a [4-(diethylamino)phenyl]methylidene fragment attached to fifth position (Fig. 1.). The heterocycle assumes a distorted boat conformation. Atoms C2 and C5 deviate from the least-squares plane [maximum deviations ±0.013 (1) Å] calculated for the other four atoms of the heterocycle by 0.549 (3) and 0.154 (3) Å, respectively. The planar part of heterocycle is nearly coplanar with the benzene ring [dihedral angle = 8.05 (10)°] due to the presence of a long in the molecule. This leads to the formation of C—H⋯O-type intramolecular contacts (Table 1).
|
π–π stacking interactions are also observed between conjugated systems of the molecules. The distance between the corresponding least-square planes is 3.54 (su?) Å.
The et al., 2015). The title compound differs from this by the presence of a double bond between atoms C5 and C7.
of the zwitterionic form of 5-[4-(diethylamino)benzyl]-2,2-dimethyl-1,3-dioxane-4,6-dione has been already reported (Mierina3. Supramolecular features
Because of the absence of hydrogen-bond donors in the structure, the crystal packing is controlled by , Table 1).
and weak C—H⋯O interactions, which associate molecules into inversion dimers (Fig. 24. Database survey
Several 5-arylidene-2,2-dimethyl-1,3-dioxane-4,6-diones (Huck et al., 1995; Gould et al., 1998; Novoa de Armas et al., 2000; O'Leary et al., 2001; O'Leary & Wallis 2006; Crawford & McNab, 2009; Wilsily & Fillion, 2009; Zeng, 2010a,b, 2011a,b,c, 2013; Jie, 2012; García-Álvarez et al., 2013; Dey et al., 2015) and their spiro-analogues (Sato et al., 1989; Zeng, 2011d,e,f; Zeng et al. 2013) have been characterized by X-ray analysis. However, information on the of 5-arylmethylidene-2,2-dimethyl-1,3-dioxane-4,6-diones containing an amino functionality on the aromatic ring is not available.
5. Synthesis and crystallization
5-[4-(Diethylamino)phenylmethylidene]-2,2-dimethyl-1,3-dioxane-4,6-dione was obtained from Meldrum's acid (1.00 g, 6.9 mmol) and 4-diethylaminobenzaldehyde (1.27 g, 6.9 mmol) by heating in water (50 ml) at 348 K for 2 h, followed by cooling to room temperature and filtration of the formed precipitate and recrystallization from ethanol (1.62 g, 80%) analogously to the method described previously (Mierina et al., 2015). The spectroscopic and physical data correspond to those in the literature (Mierina et al., 2015). X-ray quality single crystals were obtained by slow evaporation from ethanol.
6. Refinement
Crystal data, data collection and structure . The C-bound H atoms were positioned geometrically and refined as riding on their parent atoms: C—H = 0.93–0.98Å with Uiso(H) = 1.5Ueq(C) for methyl H atoms and 1.2Ueq(C) for other H atoms.
details are summarized in Table 2Supporting information
CCDC reference: 1426237
10.1107/S2056989015017673/xu5872sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S2056989015017673/xu5872Isup2.hkl
Supporting information file. DOI: 10.1107/S2056989015017673/xu5872Isup3.cml
Arylidene Meldrum's acids (5-arylmethylidene-2,2-dimethyl-1,3-dioxane-4,6-diones) are attractive building blocks in organic chemistry: these compounds are used for the synthesis of different heterocycles. Recent examples include: pyrazolidinones (Pair et al., 2014), lactames (Zhang et al., 2013), carbocycles (e.g. Trost & Maruniak, 2013) and
(e.g. Mohite & Bhat, 2013). Arylidene Meldrum's acids can be easily converted to arylmethyl Meldrum`s acids [for a description of a typical procedure, see Mierina et al. (2015)], which serve as starting compounds for the synthesis of various valuable compounds [for a mini-review, see Mierina (2014)]. Apart from their wide application in syntheses, these derivatives of Meldrum's acid have been studied as platelet aggregation inhibitors (El Maatougui et al., 2012), antimalarial agents and anti-oxidants (Sandhu et al., 2010) and photostable UV-filters for cosmetic applications (Habeck & Krause, 1999).\ The title compound, C17H21NO4, consists of the substituted Meldrum's acid with a [4-(diethylamino)phenyl]methylidene fragment attached to fifth position (Fig. 1.). The heterocycle assumes a distorted boat conformation. Atoms C2 and C5 deviate from the least-squares plane [±0.013 (1) Å] calculated for the other four atoms of the heterocycle by 0.549 (3) and 0.154 (3) Å, respectively. The planar part of heterocycle is nearly coplanar with the benzene ring due to the presence of a long
in the molecule. This leads to the formation of C—H···O-type intramolecular contacts (Table 1).π–π stacking interactions have been also observed between conjugated systems of the molecules. The distance between the corresponding least-square planes is 3.54 (su?) Å.
The
of the zwitterionic form of 5-[4-(diethylamino)benzyl]-2,2-dimethyl-\ 1,3-dioxane-4,6-dione has been already reported (Mierina et al., 2015). The title compound differs from this by the presence of a double bond between atoms C5 and C7.Because of the absence of hydrogen-bond donors in the structure, the crystal packing is controlled by
and weak C—H···O interactions, which associate molecules into dimers (Fig. 2, Table 1).Several 5-arylidene-2,2-dimethyl-1,3-dioxane-4,6-diones (Huck et al., 1995; Gould et al., 1998; Novoa de Armas et al., 2000; O'Leary et al., 2001; O'Leary & Wallis 2006; Crawford & McNab, 2009; Wilsily & Fillion, 2009; Zeng, 2010a,b, 2011a,b,c, 2013; Jie, 2012; García-Álvarez et al., 2013; Dey et al., 2015) and their spiro-analogues (Sato et al., 1989; Zeng, 2011d,e,f; Zeng et al. 2013) have been characterized by X-ray analysis; in most of the cases X-ray diffraction was used only to determine the structure. However, information on the
of 5-arylmethylidene-2,2-dimethyl-1,3-dioxane-4,6-diones containing an amino functionality on the aromatic ring is not available.5-[4-(Diethylamino)phenylmethylidene]-2,2-dimethyl-1,3-dioxane-4,6-dione was obtained from Meldrum`s acid (1.00 g, 6.9 mmol) and 4-diethylaminobenzaldehyde (1.27 g, 6.9 mmol) by heating in water (50 ml) at 348 K for 2 h, followed by cooling to room temperature and filtration of the formed precipitate and recrystallization from ethanol (1.62 g, 80%) analogously to the method described previously (Mierina et al., 2015). The spectroscopic and physical data correspond to those in the literature (Mierina et al., 2015). X-ray quality single crystals were obtained by slow evaporation from ethanol.
Data collection: KappaCCD Server Software (Nonius, 1997); cell
HKL SCALEPACK (Otwinovski & Minor, 1997); data reduction: HKL DENZO and SCALEPACK (Otwinovski & Minor, 1997); program(s) used to solve structure: SIR2011 (Burla et al., 2012); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009) and publCIF (Westrip, 2010).Fig. 1. The molecular structure the title compound, showing 50% probability displacement ellipsoids and the atomic numbering | |
Fig. 2. The crystal packing of the title compound, viewed along the b axis. Hydrogen bonds are shown as dashed lines (see Table 1 for details). |
C17H21NO4 | F(000) = 648 |
Mr = 303.35 | Dx = 1.240 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 15405 reflections |
a = 7.8662 (2) Å | θ = 1.0–27.5° |
b = 11.4601 (3) Å | µ = 0.09 mm−1 |
c = 18.1517 (6) Å | T = 173 K |
β = 96.858 (1)° | Plate, red |
V = 1624.62 (8) Å3 | 0.26 × 0.19 × 0.09 mm |
Z = 4 |
Nonius KappaCCD diffractometer | 2183 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.054 |
Graphite monochromator | θmax = 27.5°, θmin = 2.3° |
CCD scans | h = −10→10 |
6627 measured reflections | k = −14→13 |
3705 independent reflections | l = −23→23 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.055 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.127 | H-atom parameters constrained |
S = 1.00 | w = 1/[σ2(Fo2) + (0.0534P)2 + 0.0774P] where P = (Fo2 + 2Fc2)/3 |
3705 reflections | (Δ/σ)max < 0.001 |
203 parameters | Δρmax = 0.18 e Å−3 |
0 restraints | Δρmin = −0.19 e Å−3 |
C17H21NO4 | V = 1624.62 (8) Å3 |
Mr = 303.35 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 7.8662 (2) Å | µ = 0.09 mm−1 |
b = 11.4601 (3) Å | T = 173 K |
c = 18.1517 (6) Å | 0.26 × 0.19 × 0.09 mm |
β = 96.858 (1)° |
Nonius KappaCCD diffractometer | 2183 reflections with I > 2σ(I) |
6627 measured reflections | Rint = 0.054 |
3705 independent reflections |
R[F2 > 2σ(F2)] = 0.055 | 0 restraints |
wR(F2) = 0.127 | H-atom parameters constrained |
S = 1.00 | Δρmax = 0.18 e Å−3 |
3705 reflections | Δρmin = −0.19 e Å−3 |
203 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.57779 (16) | 0.16291 (12) | 0.51388 (7) | 0.0404 (4) | |
O19 | 0.65514 (15) | 0.45154 (13) | 0.40080 (8) | 0.0407 (4) | |
O3 | 0.73309 (14) | 0.27588 (11) | 0.43789 (8) | 0.0390 (4) | |
C8 | 0.2432 (2) | 0.50423 (15) | 0.40398 (10) | 0.0252 (4) | |
C10 | −0.0015 (2) | 0.63516 (16) | 0.37433 (10) | 0.0266 (4) | |
H10 | −0.1138 | 0.6545 | 0.3804 | 0.032* | |
O20 | 0.33160 (19) | 0.21986 (13) | 0.54631 (9) | 0.0584 (5) | |
N14 | 0.02179 (17) | 0.80169 (13) | 0.29384 (9) | 0.0307 (4) | |
C12 | 0.2607 (2) | 0.66959 (17) | 0.32158 (11) | 0.0317 (5) | |
H12 | 0.3242 | 0.7124 | 0.2910 | 0.038* | |
C9 | 0.0729 (2) | 0.53919 (16) | 0.40930 (10) | 0.0259 (4) | |
H9 | 0.0078 | 0.4944 | 0.4382 | 0.031* | |
C11 | 0.0910 (2) | 0.70529 (16) | 0.32900 (10) | 0.0266 (4) | |
C4 | 0.6131 (2) | 0.36263 (18) | 0.42864 (11) | 0.0310 (5) | |
C13 | 0.3340 (2) | 0.57427 (17) | 0.35789 (11) | 0.0309 (5) | |
H13 | 0.4465 | 0.5550 | 0.3521 | 0.037* | |
C7 | 0.3028 (2) | 0.40397 (16) | 0.44569 (10) | 0.0275 (4) | |
H7 | 0.2188 | 0.3745 | 0.4725 | 0.033* | |
C15 | 0.1135 (2) | 0.86883 (18) | 0.24297 (11) | 0.0386 (5) | |
H15A | 0.0311 | 0.9075 | 0.2070 | 0.046* | |
H15B | 0.1801 | 0.8159 | 0.2161 | 0.046* | |
C5 | 0.4505 (2) | 0.33863 (16) | 0.45730 (10) | 0.0292 (4) | |
C6 | 0.4436 (3) | 0.23885 (18) | 0.50801 (11) | 0.0377 (5) | |
C2 | 0.6814 (2) | 0.16029 (17) | 0.45458 (12) | 0.0363 (5) | |
C18 | −0.2946 (2) | 0.7988 (2) | 0.25955 (13) | 0.0473 (6) | |
H18A | −0.2752 | 0.8057 | 0.2085 | 0.071* | |
H18B | −0.3967 | 0.8406 | 0.2673 | 0.071* | |
H18C | −0.3077 | 0.7180 | 0.2716 | 0.071* | |
C17 | −0.1429 (2) | 0.84969 (17) | 0.30887 (12) | 0.0349 (5) | |
H17A | −0.1415 | 0.9336 | 0.3019 | 0.042* | |
H17B | −0.1577 | 0.8348 | 0.3603 | 0.042* | |
C21 | 0.8427 (3) | 0.0962 (2) | 0.48418 (14) | 0.0551 (6) | |
H21A | 0.8967 | 0.1357 | 0.5274 | 0.083* | |
H21B | 0.9195 | 0.0943 | 0.4469 | 0.083* | |
H21C | 0.8146 | 0.0179 | 0.4971 | 0.083* | |
C22 | 0.5872 (3) | 0.1025 (2) | 0.38720 (12) | 0.0460 (6) | |
H22A | 0.5555 | 0.0247 | 0.3997 | 0.069* | |
H22B | 0.6600 | 0.0994 | 0.3484 | 0.069* | |
H22C | 0.4860 | 0.1465 | 0.3706 | 0.069* | |
C16 | 0.2319 (3) | 0.9596 (2) | 0.28194 (14) | 0.0533 (6) | |
H16A | 0.1656 | 1.0166 | 0.3047 | 0.080* | |
H16B | 0.2950 | 0.9971 | 0.2465 | 0.080* | |
H16C | 0.3102 | 0.9224 | 0.3194 | 0.080* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0464 (8) | 0.0385 (9) | 0.0367 (8) | 0.0179 (6) | 0.0058 (6) | 0.0069 (7) |
O19 | 0.0303 (7) | 0.0382 (9) | 0.0546 (10) | 0.0026 (6) | 0.0093 (6) | 0.0078 (7) |
O3 | 0.0274 (7) | 0.0354 (8) | 0.0538 (9) | 0.0093 (6) | 0.0033 (6) | 0.0008 (7) |
C8 | 0.0267 (9) | 0.0252 (10) | 0.0236 (10) | 0.0011 (7) | 0.0025 (7) | −0.0030 (8) |
C10 | 0.0229 (9) | 0.0296 (11) | 0.0276 (10) | 0.0014 (7) | 0.0039 (7) | −0.0005 (9) |
O20 | 0.0643 (10) | 0.0510 (11) | 0.0666 (11) | 0.0218 (8) | 0.0352 (9) | 0.0286 (9) |
N14 | 0.0289 (8) | 0.0294 (9) | 0.0341 (10) | 0.0030 (7) | 0.0042 (7) | 0.0077 (7) |
C12 | 0.0287 (9) | 0.0320 (12) | 0.0357 (12) | −0.0004 (8) | 0.0096 (8) | 0.0068 (9) |
C9 | 0.0263 (9) | 0.0292 (11) | 0.0229 (10) | −0.0026 (7) | 0.0058 (7) | −0.0004 (8) |
C11 | 0.0291 (9) | 0.0257 (10) | 0.0241 (10) | 0.0014 (8) | −0.0003 (7) | −0.0027 (8) |
C4 | 0.0285 (10) | 0.0321 (12) | 0.0315 (11) | 0.0051 (8) | 0.0000 (8) | −0.0043 (10) |
C13 | 0.0243 (9) | 0.0335 (11) | 0.0359 (12) | 0.0028 (8) | 0.0077 (8) | 0.0029 (9) |
C7 | 0.0292 (9) | 0.0266 (11) | 0.0279 (11) | 0.0007 (8) | 0.0082 (7) | −0.0034 (9) |
C15 | 0.0417 (11) | 0.0358 (12) | 0.0389 (12) | 0.0026 (9) | 0.0070 (9) | 0.0156 (10) |
C5 | 0.0303 (9) | 0.0279 (11) | 0.0293 (11) | 0.0026 (8) | 0.0033 (7) | −0.0022 (9) |
C6 | 0.0430 (11) | 0.0346 (12) | 0.0364 (12) | 0.0103 (9) | 0.0086 (9) | 0.0034 (10) |
C2 | 0.0360 (11) | 0.0324 (12) | 0.0403 (13) | 0.0108 (9) | 0.0033 (9) | 0.0005 (10) |
C18 | 0.0347 (11) | 0.0472 (14) | 0.0580 (15) | 0.0033 (9) | −0.0029 (10) | 0.0115 (12) |
C17 | 0.0342 (10) | 0.0286 (11) | 0.0421 (12) | 0.0069 (8) | 0.0057 (8) | 0.0037 (10) |
C21 | 0.0446 (12) | 0.0548 (16) | 0.0634 (17) | 0.0220 (11) | −0.0038 (11) | 0.0016 (13) |
C22 | 0.0522 (12) | 0.0397 (14) | 0.0441 (14) | 0.0123 (10) | −0.0023 (10) | −0.0057 (11) |
C16 | 0.0518 (13) | 0.0419 (14) | 0.0670 (17) | −0.0090 (10) | 0.0103 (11) | 0.0091 (12) |
O1—C6 | 1.363 (2) | C7—H7 | 0.9300 |
O1—C2 | 1.426 (2) | C15—C16 | 1.514 (3) |
O19—C4 | 1.201 (2) | C15—H15A | 0.9700 |
O3—C4 | 1.368 (2) | C15—H15B | 0.9700 |
O3—C2 | 1.429 (2) | C5—C6 | 1.473 (3) |
C8—C9 | 1.413 (2) | C2—C22 | 1.506 (3) |
C8—C13 | 1.413 (2) | C2—C21 | 1.509 (3) |
C8—C7 | 1.424 (2) | C18—C17 | 1.519 (3) |
C10—C9 | 1.366 (2) | C18—H18A | 0.9600 |
C10—C11 | 1.413 (3) | C18—H18B | 0.9600 |
C10—H10 | 0.9300 | C18—H18C | 0.9600 |
O20—C6 | 1.205 (2) | C17—H17A | 0.9700 |
N14—C11 | 1.357 (2) | C17—H17B | 0.9700 |
N14—C15 | 1.457 (2) | C21—H21A | 0.9600 |
N14—C17 | 1.463 (2) | C21—H21B | 0.9600 |
C12—C13 | 1.367 (3) | C21—H21C | 0.9600 |
C12—C11 | 1.418 (2) | C22—H22A | 0.9600 |
C12—H12 | 0.9300 | C22—H22B | 0.9600 |
C9—H9 | 0.9300 | C22—H22C | 0.9600 |
C4—C5 | 1.463 (2) | C16—H16A | 0.9600 |
C13—H13 | 0.9300 | C16—H16B | 0.9600 |
C7—C5 | 1.377 (2) | C16—H16C | 0.9600 |
C6—O1—C2 | 117.50 (15) | O20—C6—C5 | 125.78 (18) |
C4—O3—C2 | 119.35 (14) | O1—C6—C5 | 117.29 (17) |
C9—C8—C13 | 115.46 (16) | O1—C2—O3 | 110.09 (15) |
C9—C8—C7 | 116.56 (16) | O1—C2—C22 | 110.63 (16) |
C13—C8—C7 | 127.97 (16) | O3—C2—C22 | 111.13 (17) |
C9—C10—C11 | 120.46 (16) | O1—C2—C21 | 105.88 (17) |
C9—C10—H10 | 119.8 | O3—C2—C21 | 106.15 (16) |
C11—C10—H10 | 119.8 | C22—C2—C21 | 112.74 (18) |
C11—N14—C15 | 121.78 (15) | C17—C18—H18A | 109.5 |
C11—N14—C17 | 122.20 (15) | C17—C18—H18B | 109.5 |
C15—N14—C17 | 115.86 (15) | H18A—C18—H18B | 109.5 |
C13—C12—C11 | 122.18 (17) | C17—C18—H18C | 109.5 |
C13—C12—H12 | 118.9 | H18A—C18—H18C | 109.5 |
C11—C12—H12 | 118.9 | H18B—C18—H18C | 109.5 |
C10—C9—C8 | 123.61 (16) | N14—C17—C18 | 113.34 (17) |
C10—C9—H9 | 118.2 | N14—C17—H17A | 108.9 |
C8—C9—H9 | 118.2 | C18—C17—H17A | 108.9 |
N14—C11—C10 | 122.12 (16) | N14—C17—H17B | 108.9 |
N14—C11—C12 | 121.31 (16) | C18—C17—H17B | 108.9 |
C10—C11—C12 | 116.57 (16) | H17A—C17—H17B | 107.7 |
O19—C4—O3 | 116.57 (16) | C2—C21—H21A | 109.5 |
O19—C4—C5 | 127.27 (17) | C2—C21—H21B | 109.5 |
O3—C4—C5 | 116.09 (17) | H21A—C21—H21B | 109.5 |
C12—C13—C8 | 121.68 (16) | C2—C21—H21C | 109.5 |
C12—C13—H13 | 119.2 | H21A—C21—H21C | 109.5 |
C8—C13—H13 | 119.2 | H21B—C21—H21C | 109.5 |
C5—C7—C8 | 137.58 (17) | C2—C22—H22A | 109.5 |
C5—C7—H7 | 111.2 | C2—C22—H22B | 109.5 |
C8—C7—H7 | 111.2 | H22A—C22—H22B | 109.5 |
N14—C15—C16 | 112.95 (18) | C2—C22—H22C | 109.5 |
N14—C15—H15A | 109.0 | H22A—C22—H22C | 109.5 |
C16—C15—H15A | 109.0 | H22B—C22—H22C | 109.5 |
N14—C15—H15B | 109.0 | C15—C16—H16A | 109.5 |
C16—C15—H15B | 109.0 | C15—C16—H16B | 109.5 |
H15A—C15—H15B | 107.8 | H16A—C16—H16B | 109.5 |
C7—C5—C4 | 126.92 (18) | C15—C16—H16C | 109.5 |
C7—C5—C6 | 115.10 (16) | H16A—C16—H16C | 109.5 |
C4—C5—C6 | 117.86 (16) | H16B—C16—H16C | 109.5 |
O20—C6—O1 | 116.90 (18) | ||
C11—C10—C9—C8 | 0.8 (3) | C8—C7—C5—C4 | 4.4 (4) |
C13—C8—C9—C10 | −1.4 (3) | C8—C7—C5—C6 | −179.8 (2) |
C7—C8—C9—C10 | 178.19 (17) | O19—C4—C5—C7 | 13.2 (3) |
C15—N14—C11—C10 | −175.52 (17) | O3—C4—C5—C7 | −170.14 (18) |
C17—N14—C11—C10 | 9.3 (3) | O19—C4—C5—C6 | −162.49 (19) |
C15—N14—C11—C12 | 4.1 (3) | O3—C4—C5—C6 | 14.2 (2) |
C17—N14—C11—C12 | −171.03 (17) | C2—O1—C6—O20 | 160.50 (19) |
C9—C10—C11—N14 | −179.51 (17) | C2—O1—C6—C5 | −21.3 (2) |
C9—C10—C11—C12 | 0.8 (3) | C7—C5—C6—O20 | −10.3 (3) |
C13—C12—C11—N14 | 178.48 (18) | C4—C5—C6—O20 | 166.0 (2) |
C13—C12—C11—C10 | −1.8 (3) | C7—C5—C6—O1 | 171.75 (17) |
C2—O3—C4—O19 | −165.89 (17) | C4—C5—C6—O1 | −12.0 (3) |
C2—O3—C4—C5 | 17.1 (2) | C6—O1—C2—O3 | 50.5 (2) |
C11—C12—C13—C8 | 1.3 (3) | C6—O1—C2—C22 | −72.7 (2) |
C9—C8—C13—C12 | 0.4 (3) | C6—O1—C2—C21 | 164.84 (18) |
C7—C8—C13—C12 | −179.18 (18) | C4—O3—C2—O1 | −48.8 (2) |
C9—C8—C7—C5 | 179.1 (2) | C4—O3—C2—C22 | 74.2 (2) |
C13—C8—C7—C5 | −1.4 (4) | C4—O3—C2—C21 | −162.94 (17) |
C11—N14—C15—C16 | −85.9 (2) | C11—N14—C17—C18 | −89.7 (2) |
C17—N14—C15—C16 | 89.6 (2) | C15—N14—C17—C18 | 94.8 (2) |
D—H···A | D—H | H···A | D···A | D—H···A |
C13—H13···O19 | 0.93 | 2.13 | 2.915 (2) | 141 |
C17—H17B···O20i | 0.97 | 2.39 | 3.268 (3) | 151 |
Symmetry code: (i) −x, −y+1, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
C13—H13···O19 | 0.93 | 2.13 | 2.915 (2) | 141 |
C17—H17B···O20i | 0.97 | 2.39 | 3.268 (3) | 151 |
Symmetry code: (i) −x, −y+1, −z+1. |
Experimental details
Crystal data | |
Chemical formula | C17H21NO4 |
Mr | 303.35 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 173 |
a, b, c (Å) | 7.8662 (2), 11.4601 (3), 18.1517 (6) |
β (°) | 96.858 (1) |
V (Å3) | 1624.62 (8) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.09 |
Crystal size (mm) | 0.26 × 0.19 × 0.09 |
Data collection | |
Diffractometer | Nonius KappaCCD diffractometer |
Absorption correction | – |
No. of measured, independent and observed [I > 2σ(I)] reflections | 6627, 3705, 2183 |
Rint | 0.054 |
(sin θ/λ)max (Å−1) | 0.649 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.055, 0.127, 1.00 |
No. of reflections | 3705 |
No. of parameters | 203 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.18, −0.19 |
Computer programs: KappaCCD Server Software (Nonius, 1997), HKL SCALEPACK (Otwinovski & Minor, 1997), HKL DENZO and SCALEPACK (Otwinovski & Minor, 1997), SIR2011 (Burla et al., 2012), ORTEP-3 for Windows (Farrugia, 2012), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009) and publCIF (Westrip, 2010).
Acknowledgements
IM thanks the European Social Fund for a scholarship within the project `Support for the implementation of doctoral studies at Riga Technical University'.
References
Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Mallamo, M., Mazzone, A., Polidori, G. & Spagna, R. (2012). J. Appl. Cryst. 45, 357–361. Web of Science CrossRef CAS IUCr Journals Google Scholar
Crawford, L. A. & McNab, H. (2009). Collect. Czech. Chem. Commun. 74, 995–1009. CSD CrossRef CAS Google Scholar
Dey, T., Ghosh, S., Ghosh, S. & Mukherjee, A. K. (2015). J. Mol. Struct. 1092, 51–62. CSD CrossRef CAS Google Scholar
El Maatougui, A., JhonnyAzuaje, B. S. P., Coelho, A., Cano, E., Yanez, M., Lopez, C., Yaziji, V., Carbajales, C. & Sotelo, E. (2012). Combin. Chem. High Throughput Screen. 15, 551–554. CrossRef CAS Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
García-Álvarez, F., Romero, N., Lobato-García, C. E., Terán, J. L. & Mendoza, A. (2013). Acta Cryst. E69, o50. CSD CrossRef IUCr Journals Google Scholar
Gould, R. O., Harris, S. G., McNab, H., Parsons, S. & Withell, K. (1998). Acta Cryst. C54, 234–236. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Habeck, T. & Krause, A. (1999). German Patent 19806241. Google Scholar
Huck, N. P. M., Meetsma, A., Zijlstra, R. & Feringa, B. L. (1995). Tetrahedron Lett. 36, 9381–9384. CSD CrossRef CAS Google Scholar
Jie, Y. (2012). Z. Kristallogr. New Cryst. Struct. 227, 347–348. CSD CrossRef CAS Google Scholar
Mierina, I. (2014). Synlett. 25, 155-156. CAS Google Scholar
Mierina, I., Mishnev, A. & Jure, M. (2015). Acta Cryst. C71, 752–758. CSD CrossRef IUCr Journals Google Scholar
Mohite, A. & Bhat, R. G. (2013). Org. Lett. 15, 4564–4567. CrossRef CAS PubMed Google Scholar
Nonius (1997). KappaCCD Server Software. Nonius BV, Delft, The Netherlands. Google Scholar
Novoa de Armas, H., Blaton, N. M., Peeters, O. M., De Ranter, C. J., Suárez, M., Ochoa, E., Verdecia, Y. & Salfrán, E. (2000). J. Chem. Crystallogr. 30, 189–194. CSD CrossRef CAS Google Scholar
O'Leary, J., Bell, P. C., Wallis, J. D. & Schweizer, W. B. (2001). J. Chem. Soc. Perkin Trans. 2, pp. 133–139. Google Scholar
O'Leary, J. & Wallis, J. D. (2006). Chem. Eur. J. 12, 7724–7732. Web of Science CSD CrossRef PubMed CAS Google Scholar
Otwinovski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press. Google Scholar
Pair, E., Berini, C., Noël, R., Sanselme, M., Levacher, V. & Brière, J.-F. (2014). Chem. Commun. 50, 10218–10221. CSD CrossRef CAS Google Scholar
Sandhu, H. S., Sapra, S., Gupta, M., Nepali, K., Gautam, R., Yadav, S., Kumar, R., Jachak, S. M., Chugh, M., Gupta, M. K., Suri, O. P. & Dhar, K. L. (2010). Bioorg. Med. Chem. 18, 5626–5633. CrossRef CAS PubMed Google Scholar
Sato, M., Hisamichi, H., Kaneko, C., Suzaki, N., Furuya, T. & Inukai, N. (1989). Tetrahedron Lett. 30, 5281–5284. CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Trost, B. M. & Maruniak, A. (2013). Angew. Chem. Int. Ed. 52, 6262–6264. CrossRef CAS Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Wilsily, A. & Fillion, E. (2009). J. Org. Chem. 74, 8583–8594. CSD CrossRef PubMed CAS Google Scholar
Zeng, W.-L. (2010a). Acta Cryst. E66, o2319. CSD CrossRef IUCr Journals Google Scholar
Zeng, W.-L. (2010b). Acta Cryst. E66, o2366. CSD CrossRef IUCr Journals Google Scholar
Zeng, W.-L. (2011a). Acta Cryst. E67, o276. Web of Science CSD CrossRef IUCr Journals Google Scholar
Zeng, W.-L. (2011b). Acta Cryst. E67, o1351. CSD CrossRef IUCr Journals Google Scholar
Zeng, W.-L. (2011c). Acta Cryst. E67, o1937. CSD CrossRef IUCr Journals Google Scholar
Zeng, W. (2011d). Asian J. Chem. 23, 4145-4147. CAS Google Scholar
Zeng, W.-L. (2011e). Acta Cryst. E67, o426. CSD CrossRef IUCr Journals Google Scholar
Zeng, W.-L. (2011f). Acta Cryst. E67, o1362. CSD CrossRef IUCr Journals Google Scholar
Zeng, W. (2013). Asian J. Chem. 25, 864-866. CrossRef CAS Google Scholar
Zeng, W., Li, Y. & Guo, H. (2013). J. Chem. Crystallogr. 43, 223-227. CSD CrossRef CAS Google Scholar
Zhang, J.-P., Ding, J., Ma, N., Jiang, B., Xu, L.-C. & Tu, S.-J. (2013). J. Hetercycl. Chem. 50, 66–70. CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.