organic compounds
N,N,N′,N′-tetramethyldiaminomethane
of boratedaFakultät für Chemie und Chemische Biologie, Technische Universität Dortmund, Otto-Hahn-Strasse 6, 44221 Dortmund, Germany
*Correspondence e-mail: carsten.strohmann@tu-dortmund.de
In the title compound, {[(dimethylamino)methyl]dimethylamine}trihydridoboron, C5H17BN2, the tetrahedral geometry of the N—C—N unit is slightly disorted. As a result of the bulky amine substituents, a wider N—C—N angle of 113.6 (1)° is observed. The bond lengths between the N atom and methyl groups are slighly elongated to 1.481 (2) and 1.482 (2) Å at the borated N atom, whereas the distances between the other N atom and its methyl groups are only 1.461 (2) and 1.462 (2) Å. The studied crystal was twinned. The twin data was subsequently carried out with a scale factor of 0.263 (1). The two lattices of the twin domains were rotated by 179.84°.
Keywords: crystal structure; borane; amine; twin.
CCDC reference: 1422998
1. Related literature
For background to ). Burg & Schlesinger (1937) reported the first borane amine complex. A feature of is their metal character and pronounced (Huheey et al., 1995). This is used to enable the α-deprotonation of tertiary (Kessar et al., 1991; Ebden et al., 1995). Our group frequently uses methods to deprotonate compounds in α-position (Strohmann & Gessner, 2007; Gessner & Strohmann, 2012). For crystal structures containing the borated N,N,N′,N′-tetramethyldiaminomethane motif, see: Fang et al. (1994); Hanic & Šubrtová (1969); Flores-Parra et al. (1999); Rojas-Lima et al. (2000). For comparison with other structures with dimethylaminoborane moiety, see: Gollas et al. (2013); Bera et al. (2011); Ramachandran et al. (2004); Netz et al. (2005). For diborated tetramethylethylenediamine, see: Chitsaz et al. (2001).
see: Falbe & Regitz (19992. Experimental
2.1. Crystal data
|
2.3. Refinement
|
Data collection: CrysAlis PRO (Agilent, 2014); cell CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS96 (Sheldrick, 2008); program(s) used to refine structure: SHELXL96 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).
Supporting information
CCDC reference: 1422998
10.1107/S2056989015016813/zq2234sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S2056989015016813/zq2234Isup2.hkl
Boranes are a useful substance in today's chemistry. In 1979, Herbert C. Brown received the Nobel Prize in chemistry for his studies on these interesting compounds (Falbe & Regitz, 1999). Special about α-deprotonation of tertiary (Kessar et al., 1991; Ebden et al., 1995). Our group frequently uses methods to deprotonate compounds in α-position (Gessner & Strohmann, 2007; Gessner & Strohmann, 2012). Here, BH3 was added to N,N,N',N'-tetramethyldiaminomethane (TMMDA) in order to deplete the nitrogen's +M-effect, smoothing the way for α-lithiation. We isolated and structurally characterized the borated TMMDA for the first time. Lithiation of the product however was not successful.
is their metal character and pronounced (Huheey et al., 1995). This is used to enable theThe title compound crystallizes in the triclinic
with P-1. The N–C–N-bonds are not equidistant. Longer N–C-bonds are observed for the borated nitrogen [N1–C1 1.4806 (17) Å, N1–C2 1.4818 (17) Å, N1–C3 1.5039 (16) Å] than for the other [N2–C3 1.4393 (17) Å, N2–C4 1.4612 (18) Å, N2–C5 1.4622 (18) Å]. Furthermore, bond angles at the nitrogen atoms differ. Due to of the methyl groups, angles on N2 are found to be broader [C3–N2–C4 112.82 (11)°, C3–N2–C5 112.85 (12)°, C4–N2–C5 110.31 (11)°] than the ideal sp3-angle of 109.5°. A torsion angle of 179.82 (13)° can be observed for B1–N1–C3–N2, placing B1 as far away from C3 and its hydrogen atoms as possible.BH3-solution (11.7 mL, 1 M in thf, 11.7 mmol) was added to N,N,N',N'-tetramethyldiaminomethane (9.79 mmol, 1.00 g) at 0 °C. The reaction mixture was stirred for 3 h at room temperature after which saturated K2CO3-solution (7 mL) was added. The reaction was allowed to continue for 72 h at room temperature. After extraction with Et2O (3x10 mL), the combined extracts were dried (Na2SO4). After evaporation under reduced pressure, colorless crystals precipitated (694 mg, 5.98 mmol, 61% yield).
Crystal data, data collection and structure
details are summarized in Table 1. Hydrogen atoms linked to carbon were placed and refined by using the riding model (C–H = 0.95-0.99 Å, Uiso(H) = 1.2 Ueq(C) and Uiso(H) = 1.5 Ueq(C) for terminal groups). Hydrogen atoms linked to boron were taken from difference Fourier maps.Twin domains were found in the crystal and refined to a ratio of 0.26/0.74. The two lattices were rotated by 179.84°. HKLF5 refletion file was used for refinement.
Data collection: CrysAlis PRO (Agilent, 2014); cell
CrysAlis PRO (Agilent, 2014); data reduction: CrysAlis PRO (Agilent, 2014); program(s) used to solve structure: SHELXS96 (Sheldrick, 2008); program(s) used to refine structure: SHELXL96 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: Olex2 (Dolomanov et al., 2009).Fig. 1. Molecular structure of the title compound with displacement ellipsoids drawn at 50% probability level. | |
Fig. 2. Molecular packing viewed along the a axis. |
C5H17BN2 | Z = 2 |
Mr = 116.01 | F(000) = 132 |
Triclinic, P1 | Dx = 0.966 Mg m−3 |
a = 6.0464 (8) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 7.6987 (9) Å | Cell parameters from 1858 reflections |
c = 9.5896 (11) Å | θ = 3.0–28.3° |
α = 69.602 (10)° | µ = 0.06 mm−1 |
β = 76.519 (11)° | T = 173 K |
γ = 74.912 (10)° | Block, clear light colourless |
V = 398.95 (9) Å3 | 0.2 × 0.15 × 0.15 mm |
AgilentXcalibur, Sapphire3 diffractometer | 3232 measured reflections |
Radiation source: Enhance (Mo) X-ray Source | 3232 independent reflections |
Graphite monochromator | 1828 reflections with I > 2σ(I) |
Detector resolution: 16.0560 pixels mm-1 | θmax = 27.0°, θmin = 3.1° |
ω scans | h = −7→7 |
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2014) | k = −9→9 |
Tmin = 0.983, Tmax = 1.000 | l = −12→12 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.041 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.099 | w = 1/[σ2(Fo2) + (0.0498P)2] where P = (Fo2 + 2Fc2)/3 |
S = 0.87 | (Δ/σ)max = 0.001 |
3232 reflections | Δρmax = 0.18 e Å−3 |
90 parameters | Δρmin = −0.22 e Å−3 |
0 restraints |
C5H17BN2 | γ = 74.912 (10)° |
Mr = 116.01 | V = 398.95 (9) Å3 |
Triclinic, P1 | Z = 2 |
a = 6.0464 (8) Å | Mo Kα radiation |
b = 7.6987 (9) Å | µ = 0.06 mm−1 |
c = 9.5896 (11) Å | T = 173 K |
α = 69.602 (10)° | 0.2 × 0.15 × 0.15 mm |
β = 76.519 (11)° |
AgilentXcalibur, Sapphire3 diffractometer | 3232 measured reflections |
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2014) | 3232 independent reflections |
Tmin = 0.983, Tmax = 1.000 | 1828 reflections with I > 2σ(I) |
R[F2 > 2σ(F2)] = 0.041 | 0 restraints |
wR(F2) = 0.099 | H atoms treated by a mixture of independent and constrained refinement |
S = 0.87 | Δρmax = 0.18 e Å−3 |
3232 reflections | Δρmin = −0.22 e Å−3 |
90 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refined as a 2-component twin. 1. Twinned data refinement Scales: 0.7367 (11) 0.2633 (11) 2. Fixed Uiso At 1.2 times of: All C(H,H) groups At 1.5 times of: All C(H,H,H) groups 3.a Secondary CH2 refined with riding coordinates: C3(H3A,H3B) 3.b Idealized Me refined as rotating group: C2(H2A,H2B,H2C), C1(H1A,H1B,H1C), C5(H5A,H5B,H5C), C4(H4A,H4B,H4C) |
x | y | z | Uiso*/Ueq | ||
N1 | 0.17275 (18) | 0.17659 (15) | 0.69988 (12) | 0.0182 (3) | |
C3 | 0.2336 (2) | −0.00477 (18) | 0.82279 (15) | 0.0214 (3) | |
H3A | 0.2756 | 0.0246 | 0.9048 | 0.026* | |
H3B | 0.0951 | −0.0634 | 0.8648 | 0.026* | |
N2 | 0.42225 (19) | −0.13895 (16) | 0.77307 (13) | 0.0226 (3) | |
C2 | 0.1062 (3) | 0.1356 (2) | 0.57701 (16) | 0.0274 (4) | |
H2A | 0.2389 | 0.0568 | 0.5326 | 0.041* | |
H2B | 0.0591 | 0.2545 | 0.4995 | 0.041* | |
H2C | −0.0233 | 0.0685 | 0.6177 | 0.041* | |
C1 | 0.3751 (2) | 0.2702 (2) | 0.63738 (18) | 0.0293 (4) | |
H1A | 0.4230 | 0.2959 | 0.7179 | 0.044* | |
H1B | 0.3328 | 0.3894 | 0.5589 | 0.044* | |
H1C | 0.5036 | 0.1873 | 0.5939 | 0.044* | |
C5 | 0.3510 (3) | −0.3102 (2) | 0.78120 (19) | 0.0340 (4) | |
H5A | 0.2924 | −0.3745 | 0.8861 | 0.051* | |
H5B | 0.4844 | −0.3946 | 0.7432 | 0.051* | |
H5C | 0.2284 | −0.2762 | 0.7197 | 0.051* | |
B1 | −0.0405 (3) | 0.3123 (3) | 0.7713 (2) | 0.0289 (4) | |
C4 | 0.6200 (3) | −0.1878 (2) | 0.85213 (18) | 0.0333 (4) | |
H4A | 0.6693 | −0.0721 | 0.8429 | 0.050* | |
H4B | 0.7483 | −0.2698 | 0.8077 | 0.050* | |
H4C | 0.5749 | −0.2542 | 0.9588 | 0.050* | |
H1D | −0.083 (2) | 0.4427 (19) | 0.6758 (15) | 0.032 (4)* | |
H1E | −0.189 (2) | 0.2332 (19) | 0.8155 (16) | 0.034 (4)* | |
H1F | 0.023 (2) | 0.3383 (19) | 0.8634 (17) | 0.036 (4)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
N1 | 0.0196 (6) | 0.0158 (6) | 0.0184 (6) | −0.0027 (5) | −0.0032 (5) | −0.0047 (5) |
C3 | 0.0245 (8) | 0.0191 (7) | 0.0183 (7) | −0.0020 (6) | −0.0041 (6) | −0.0041 (6) |
N2 | 0.0222 (7) | 0.0187 (6) | 0.0260 (7) | −0.0015 (5) | −0.0044 (5) | −0.0072 (5) |
C2 | 0.0311 (9) | 0.0279 (9) | 0.0229 (8) | 0.0000 (7) | −0.0093 (7) | −0.0081 (7) |
C1 | 0.0259 (9) | 0.0240 (8) | 0.0347 (9) | −0.0071 (7) | 0.0007 (7) | −0.0066 (7) |
C5 | 0.0367 (10) | 0.0230 (8) | 0.0421 (10) | −0.0019 (7) | −0.0055 (8) | −0.0131 (8) |
B1 | 0.0284 (10) | 0.0236 (9) | 0.0273 (10) | 0.0026 (8) | −0.0018 (8) | −0.0063 (8) |
C4 | 0.0255 (9) | 0.0317 (9) | 0.0404 (10) | 0.0024 (7) | −0.0102 (8) | −0.0107 (8) |
N1—C3 | 1.5039 (16) | C1—H1A | 0.9800 |
N1—C2 | 1.4818 (17) | C1—H1B | 0.9800 |
N1—C1 | 1.4806 (17) | C1—H1C | 0.9800 |
N1—B1 | 1.615 (2) | C5—H5A | 0.9800 |
C3—H3A | 0.9900 | C5—H5B | 0.9800 |
C3—H3B | 0.9900 | C5—H5C | 0.9800 |
C3—N2 | 1.4393 (17) | B1—H1D | 1.117 (13) |
N2—C5 | 1.4622 (18) | B1—H1E | 1.131 (14) |
N2—C4 | 1.4612 (18) | B1—H1F | 1.137 (14) |
C2—H2A | 0.9800 | C4—H4A | 0.9800 |
C2—H2B | 0.9800 | C4—H4B | 0.9800 |
C2—H2C | 0.9800 | C4—H4C | 0.9800 |
C3—N1—B1 | 108.16 (10) | N1—C1—H1C | 109.5 |
C2—N1—C3 | 109.62 (10) | H1A—C1—H1B | 109.5 |
C2—N1—B1 | 110.43 (11) | H1A—C1—H1C | 109.5 |
C1—N1—C3 | 110.11 (10) | H1B—C1—H1C | 109.5 |
C1—N1—C2 | 108.59 (10) | N2—C5—H5A | 109.5 |
C1—N1—B1 | 109.93 (12) | N2—C5—H5B | 109.5 |
N1—C3—H3A | 108.8 | N2—C5—H5C | 109.5 |
N1—C3—H3B | 108.8 | H5A—C5—H5B | 109.5 |
H3A—C3—H3B | 107.7 | H5A—C5—H5C | 109.5 |
N2—C3—N1 | 113.61 (10) | H5B—C5—H5C | 109.5 |
N2—C3—H3A | 108.8 | N1—B1—H1D | 105.7 (7) |
N2—C3—H3B | 108.8 | N1—B1—H1E | 106.1 (7) |
C3—N2—C5 | 112.85 (12) | N1—B1—H1F | 106.4 (7) |
C3—N2—C4 | 112.82 (11) | H1D—B1—H1E | 111.1 (10) |
C4—N2—C5 | 110.31 (11) | H1D—B1—H1F | 113.7 (10) |
N1—C2—H2A | 109.5 | H1E—B1—H1F | 113.2 (10) |
N1—C2—H2B | 109.5 | N2—C4—H4A | 109.5 |
N1—C2—H2C | 109.5 | N2—C4—H4B | 109.5 |
H2A—C2—H2B | 109.5 | N2—C4—H4C | 109.5 |
H2A—C2—H2C | 109.5 | H4A—C4—H4B | 109.5 |
H2B—C2—H2C | 109.5 | H4A—C4—H4C | 109.5 |
N1—C1—H1A | 109.5 | H4B—C4—H4C | 109.5 |
N1—C1—H1B | 109.5 | ||
N1—C3—N2—C5 | −114.53 (13) | C1—N1—C3—N2 | −60.04 (14) |
N1—C3—N2—C4 | 119.61 (12) | B1—N1—C3—N2 | 179.82 (13) |
C2—N1—C3—N2 | 59.36 (14) |
Experimental details
Crystal data | |
Chemical formula | C5H17BN2 |
Mr | 116.01 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 173 |
a, b, c (Å) | 6.0464 (8), 7.6987 (9), 9.5896 (11) |
α, β, γ (°) | 69.602 (10), 76.519 (11), 74.912 (10) |
V (Å3) | 398.95 (9) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 0.06 |
Crystal size (mm) | 0.2 × 0.15 × 0.15 |
Data collection | |
Diffractometer | AgilentXcalibur, Sapphire3 diffractometer |
Absorption correction | Multi-scan (CrysAlis PRO; Agilent, 2014) |
Tmin, Tmax | 0.983, 1.000 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 3232, 3232, 1828 |
Rint | ? |
(sin θ/λ)max (Å−1) | 0.639 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.041, 0.099, 0.87 |
No. of reflections | 3232 |
No. of parameters | 90 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.18, −0.22 |
Computer programs: CrysAlis PRO (Agilent, 2014), SHELXS96 (Sheldrick, 2008), SHELXL96 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), Olex2 (Dolomanov et al., 2009).
Acknowledgements
We thank the Deutsche Forschungsgemeinschaft (DFG) for financial support.
References
Agilent (2014). CrysAlis PRO. Agilent Technologies, Yarnton, England. Google Scholar
Bera, B., Patil, Y. P., Nethaji, M. & Jagirdar, B. R. (2011). Dalton Trans. 40, 10592–10597. CSD CrossRef CAS PubMed Google Scholar
Burg, A. B. & Schlesinger, H. I. (1937). J. Am. Chem. Soc. 59, 780–787. CrossRef CAS Google Scholar
Chitsaz, S., Breyhan, T., Pauls, J. & Neumüller, B. (2002). Z. Anorg. Allg. Chem. 628, 956–964. CSD CrossRef CAS Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Ebden, M. R., Simpkins, N. S. & Fox, D. N. A. (1995). Tetrahedron Lett. 36, 8697–8700. CrossRef CAS Google Scholar
Falbe, J. & Regitz, M. (1999). RÖMPP Lexikon Chemie Band 6 T–Z, p. 4991, Stuttgart New York: Georg Thieme Verlag. Google Scholar
Fang, C.-L., Horne, S., Taylor, N. & Rodrigo, R. (1994). J. Am. Chem. Soc. 116, 9480–9486. CSD CrossRef CAS Google Scholar
Flores-Parra, A., Sánchez-Ruiz, S. A., Guadarrama, C., Nöth, H. & Contreras, R. (1999). Eur. J. Inorg. Chem. pp. 2069–2073. Google Scholar
Gessner, V. H. & Strohmann, C. (2012). Dalton Trans. 41, 3452–3460. CSD CrossRef CAS PubMed Google Scholar
Gollas, P., Christmann, M. & Strochmann, C. (2013). Angew. Chem. Int. Ed. 52, 9836–9840. Google Scholar
Hanic, F. & Šubrtová, V. (1969). Acta Cryst. B25, 405–409. CSD CrossRef IUCr Journals Google Scholar
Huheey, J. E., Keiter, E. A. & Keiter, R. L. (1995). Anorganische Chemie – Prinzipien von Struktur und Reaktivität, pp. 923–935, Berlin: Walter de Gruyter & Co. Google Scholar
Kessar, S. V., Singh, P., Vohra, R., Kaur, N. P. & Singh, K. N. (1991). J. Chem. Soc. Chem. Commun. pp. 568–570. CrossRef Google Scholar
Netz, A., Polborn, K., Noth, H. & Muller, T. J. J. (2005). Eur. J. Org. Chem. pp. 1823–1833. CSD CrossRef Google Scholar
Ramachandran, B. M., Carroll, P. J. & Sneddon, L. G. (2004). Inorg. Chem. 43, 3467–3474. CSD CrossRef PubMed CAS Google Scholar
Rojas-Lima, S., Farfán, N., Santillan, R., Castillo, D., Sosa-Torres, M. E. & Höpfl, H. (2000). Tetrahedron, 56, 6427–6433. CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Strohmann, C. & Gessner, V. (2007). Angew. Chem. Int. Ed. 46, 4566–4569. CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.