organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 10| October 2015| Pages o743-o744

Crystal structure of borated N,N,N′,N′-tetra­methyldi­amino­methane

CROSSMARK_Color_square_no_text.svg

aFakultät für Chemie und Chemische Biologie, Technische Universität Dortmund, Otto-Hahn-Strasse 6, 44221 Dortmund, Germany
*Correspondence e-mail: carsten.strohmann@tu-dortmund.de

Edited by O. Blacque, University of Zürich, Switzerland (Received 25 August 2015; accepted 8 September 2015; online 12 September 2015)

In the title compound, {[(di­methyl­amino)­meth­yl]di­methyl­amine}­trihydridoboron, C5H17BN2, the tetra­hedral geometry of the N—C—N unit is slightly disorted. As a result of the bulky amine substituents, a wider N—C—N angle of 113.6 (1)° is observed. The bond lengths between the N atom and methyl groups are slighly elongated to 1.481 (2) and 1.482 (2) Å at the borated N atom, whereas the distances between the other N atom and its methyl groups are only 1.461 (2) and 1.462 (2) Å. The studied crystal was twinned. The twin data refinement was subsequently carried out with a scale factor of 0.263 (1). The two lattices of the twin domains were rotated by 179.84°.

1. Related literature

For background to boranes, see: Falbe & Regitz (1999[Falbe, J. & Regitz, M. (1999). RÖMPP Lexikon Chemie Band 6 T-Z, p. 4991, Stuttgart New York: Georg Thieme Verlag.]). Burg & Schlesinger (1937[Burg, A. B. & Schlesinger, H. I. (1937). J. Am. Chem. Soc. 59, 780-787.]) reported the first borane amine complex. A feature of boranes is their metal character and pronounced Lewis acidity (Huheey et al., 1995[Huheey, J. E., Keiter, E. A. & Keiter, R. L. (1995). Anorganische Chemie - Prinzipien von Struktur und Reaktivität, pp. 923-935, Berlin: Walter de Gruyter & Co.]). This Lewis acidity is used to enable the α-deprotonation of tertiary amines (Kessar et al., 1991[Kessar, S. V., Singh, P., Vohra, R., Kaur, N. P. & Singh, K. N. (1991). J. Chem. Soc. Chem. Commun. pp. 568-570.]; Ebden et al., 1995[Ebden, M. R., Simpkins, N. S. & Fox, D. N. A. (1995). Tetrahedron Lett. 36, 8697-8700.]). Our group frequently uses methods to deprotonate compounds in α-position (Strohmann & Gessner, 2007[Strohmann, C. & Gessner, V. (2007). Angew. Chem. Int. Ed. 46, 4566-4569.]; Gessner & Strohmann, 2012[Gessner, V. H. & Strohmann, C. (2012). Dalton Trans. 41, 3452-3460.]). For crystal structures containing the borated N,N,N′,N′-tetra­methyldi­amino­methane motif, see: Fang et al. (1994[Fang, C.-L., Horne, S., Taylor, N. & Rodrigo, R. (1994). J. Am. Chem. Soc. 116, 9480-9486.]); Hanic & Šubrtová (1969[Hanic, F. & Šubrtová, V. (1969). Acta Cryst. B25, 405-409.]); Flores-Parra et al. (1999[Flores-Parra, A., Sánchez-Ruiz, S. A., Guadarrama, C., Nöth, H. & Contreras, R. (1999). Eur. J. Inorg. Chem. pp. 2069-2073.]); Rojas-Lima et al. (2000[Rojas-Lima, S., Farfán, N., Santillan, R., Castillo, D., Sosa-Torres, M. E. & Höpfl, H. (2000). Tetrahedron, 56, 6427-6433.]). For comparison with other structures with di­methyl­amino­borane moiety, see: Gollas et al. (2013[Gollas, P., Christmann, M. & Strochmann, C. (2013). Angew. Chem. Int. Ed. 52, 9836-9840.]); Bera et al. (2011[Bera, B., Patil, Y. P., Nethaji, M. & Jagirdar, B. R. (2011). Dalton Trans. 40, 10592-10597.]); Ramachandran et al. (2004[Ramachandran, B. M., Carroll, P. J. & Sneddon, L. G. (2004). Inorg. Chem. 43, 3467-3474.]); Netz et al. (2005[Netz, A., Polborn, K., Noth, H. & Muller, T. J. J. (2005). Eur. J. Org. Chem. pp. 1823-1833.]). For diborated tetra­methyl­ethylenedi­amine, see: Chitsaz et al. (2001[Chitsaz, S., Breyhan, T., Pauls, J. & Neumüller, B. (2002). Z. Anorg. Allg. Chem. 628, 956-964.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C5H17BN2

  • Mr = 116.01

  • Triclinic, [P \overline 1]

  • a = 6.0464 (8) Å

  • b = 7.6987 (9) Å

  • c = 9.5896 (11) Å

  • α = 69.602 (10)°

  • β = 76.519 (11)°

  • γ = 74.912 (10)°

  • V = 398.95 (9) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.06 mm−1

  • T = 173 K

  • 0.2 × 0.15 × 0.15 mm

2.2. Data collection

  • AgilentXcalibur, Sapphire3 diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2014[Agilent (2014). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.983, Tmax = 1.000

  • 3232 measured reflections

  • 3232 independent reflections

  • 1828 reflections with I > 2σ(I)

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.099

  • S = 0.87

  • 3232 reflections

  • 90 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.22 e Å−3

Data collection: CrysAlis PRO (Agilent, 2014[Agilent (2014). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS96 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL96 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Comment top

Boranes are a useful substance in today's chemistry. In 1979, Herbert C. Brown received the Nobel Prize in chemistry for his studies on these inter­esting compounds (Falbe & Regitz, 1999). Special about boranes is their metal character and pronounced Lewis acidity (Huheey et al., 1995). This Lewis acidity is used to enable the α-deprotonation of tertiary amines (Kessar et al., 1991; Ebden et al., 1995). Our group frequently uses methods to deprotonate compounds in α-position (Gessner & Strohmann, 2007; Gessner & Strohmann, 2012). Here, BH3 was added to N,N,N',N'-tetra­methyldi­amino­methane (TMMDA) in order to deplete the nitro­gen's +M-effect, smoothing the way for α-li­thia­tion. We isolated and structurally characterized the borated TMMDA for the first time. Li­thia­tion of the product however was not successful.

The title compound crystallizes in the triclinic crystal system with space group P-1. The N–C–N-bonds are not equidistant. Longer N–C-bonds are observed for the borated nitro­gen [N1–C1 1.4806 (17) Å, N1–C2 1.4818 (17) Å, N1–C3 1.5039 (16) Å] than for the other [N2–C3 1.4393 (17) Å, N2–C4 1.4612 (18) Å, N2–C5 1.4622 (18) Å]. Furthermore, bond angles at the nitro­gen atoms differ. Due to steric hindrance of the methyl groups, angles on N2 are found to be broader [C3–N2–C4 112.82 (11)°, C3–N2–C5 112.85 (12)°, C4–N2–C5 110.31 (11)°] than the ideal sp3-angle of 109.5°. A torsion angle of 179.82 (13)° can be observed for B1–N1–C3–N2, placing B1 as far away from C3 and its hydrogen atoms as possible.

Experimental top

BH3-solution (11.7 mL, 1 M in thf, 11.7 mmol) was added to N,N,N',N'-tetra­methyldi­amino­methane (9.79 mmol, 1.00 g) at 0 °C. The reaction mixture was stirred for 3 h at room temperature after which saturated K2CO3-solution (7 mL) was added. The reaction was allowed to continue for 72 h at room temperature. After extraction with Et2O (3x10 mL), the combined extracts were dried (Na2SO4). After evaporation under reduced pressure, colorless crystals precipitated (694 mg, 5.98 mmol, 61% yield).

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 1. Hydrogen atoms linked to carbon were placed and refined by using the riding model (C–H = 0.95-0.99 Å, Uiso(H) = 1.2 Ueq(C) and Uiso(H) = 1.5 Ueq(C) for terminal groups). Hydrogen atoms linked to boron were taken from difference Fourier maps.

Twin domains were found in the crystal and refined to a ratio of 0.26/0.74. The two lattices were rotated by 179.84°. HKLF5 refletion file was used for refinement.

Related literature top

For background to boranes, see: Falbe & Regitz (1999). Burg & Schlesinger (1937) reported the first borane amine complex. A feature of boranes is their metal character and pronounced Lewis acidity (Huheey et al., 1995). This Lewis acidity is used to enable the α-deprotonation of tertiary amines (Kessar et al., 1991; Ebden et al., 1995). Our group frequently uses methods to deprotonate compounds in α-position (Strohmann & Gessner, 2007; Gessner & Strohmann, 2012). For crystal structures containing the borated N,N,N',N'-tetramethyldiaminomethane motif, see: Fang et al. (1994); Hanic & Šubrtová (1969); Flores-Parra et al. (1999); Rojas-Lima et al. (2000). For comparison with other structures with dimethylaminoborane moiety, see: Gollas et al. (2013); Bera et al. (2011); Ramachandran et al. (2004); Netz et al. (2005). For diborated tetramethylethylenediamine, see: Chitsaz et al. (2001).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2014); cell refinement: CrysAlis PRO (Agilent, 2014); data reduction: CrysAlis PRO (Agilent, 2014); program(s) used to solve structure: SHELXS96 (Sheldrick, 2008); program(s) used to refine structure: SHELXL96 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: Olex2 (Dolomanov et al., 2009).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound with displacement ellipsoids drawn at 50% probability level.
[Figure 2] Fig. 2. Molecular packing viewed along the a axis.
{[(Dimethylamino)methyl]dimethylamine}trihydridoboron top
Crystal data top
C5H17BN2Z = 2
Mr = 116.01F(000) = 132
Triclinic, P1Dx = 0.966 Mg m3
a = 6.0464 (8) ÅMo Kα radiation, λ = 0.71073 Å
b = 7.6987 (9) ÅCell parameters from 1858 reflections
c = 9.5896 (11) Åθ = 3.0–28.3°
α = 69.602 (10)°µ = 0.06 mm1
β = 76.519 (11)°T = 173 K
γ = 74.912 (10)°Block, clear light colourless
V = 398.95 (9) Å30.2 × 0.15 × 0.15 mm
Data collection top
AgilentXcalibur, Sapphire3
diffractometer
3232 measured reflections
Radiation source: Enhance (Mo) X-ray Source3232 independent reflections
Graphite monochromator1828 reflections with I > 2σ(I)
Detector resolution: 16.0560 pixels mm-1θmax = 27.0°, θmin = 3.1°
ω scansh = 77
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2014)
k = 99
Tmin = 0.983, Tmax = 1.000l = 1212
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.041H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.099 w = 1/[σ2(Fo2) + (0.0498P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.87(Δ/σ)max = 0.001
3232 reflectionsΔρmax = 0.18 e Å3
90 parametersΔρmin = 0.22 e Å3
0 restraints
Crystal data top
C5H17BN2γ = 74.912 (10)°
Mr = 116.01V = 398.95 (9) Å3
Triclinic, P1Z = 2
a = 6.0464 (8) ÅMo Kα radiation
b = 7.6987 (9) ŵ = 0.06 mm1
c = 9.5896 (11) ÅT = 173 K
α = 69.602 (10)°0.2 × 0.15 × 0.15 mm
β = 76.519 (11)°
Data collection top
AgilentXcalibur, Sapphire3
diffractometer
3232 measured reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2014)
3232 independent reflections
Tmin = 0.983, Tmax = 1.0001828 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.099H atoms treated by a mixture of independent and constrained refinement
S = 0.87Δρmax = 0.18 e Å3
3232 reflectionsΔρmin = 0.22 e Å3
90 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refined as a 2-component twin. 1. Twinned data refinement Scales: 0.7367 (11) 0.2633 (11) 2. Fixed Uiso At 1.2 times of: All C(H,H) groups At 1.5 times of: All C(H,H,H) groups 3.a Secondary CH2 refined with riding coordinates: C3(H3A,H3B) 3.b Idealized Me refined as rotating group: C2(H2A,H2B,H2C), C1(H1A,H1B,H1C), C5(H5A,H5B,H5C), C4(H4A,H4B,H4C)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.17275 (18)0.17659 (15)0.69988 (12)0.0182 (3)
C30.2336 (2)0.00477 (18)0.82279 (15)0.0214 (3)
H3A0.27560.02460.90480.026*
H3B0.09510.06340.86480.026*
N20.42225 (19)0.13895 (16)0.77307 (13)0.0226 (3)
C20.1062 (3)0.1356 (2)0.57701 (16)0.0274 (4)
H2A0.23890.05680.53260.041*
H2B0.05910.25450.49950.041*
H2C0.02330.06850.61770.041*
C10.3751 (2)0.2702 (2)0.63738 (18)0.0293 (4)
H1A0.42300.29590.71790.044*
H1B0.33280.38940.55890.044*
H1C0.50360.18730.59390.044*
C50.3510 (3)0.3102 (2)0.78120 (19)0.0340 (4)
H5A0.29240.37450.88610.051*
H5B0.48440.39460.74320.051*
H5C0.22840.27620.71970.051*
B10.0405 (3)0.3123 (3)0.7713 (2)0.0289 (4)
C40.6200 (3)0.1878 (2)0.85213 (18)0.0333 (4)
H4A0.66930.07210.84290.050*
H4B0.74830.26980.80770.050*
H4C0.57490.25420.95880.050*
H1D0.083 (2)0.4427 (19)0.6758 (15)0.032 (4)*
H1E0.189 (2)0.2332 (19)0.8155 (16)0.034 (4)*
H1F0.023 (2)0.3383 (19)0.8634 (17)0.036 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0196 (6)0.0158 (6)0.0184 (6)0.0027 (5)0.0032 (5)0.0047 (5)
C30.0245 (8)0.0191 (7)0.0183 (7)0.0020 (6)0.0041 (6)0.0041 (6)
N20.0222 (7)0.0187 (6)0.0260 (7)0.0015 (5)0.0044 (5)0.0072 (5)
C20.0311 (9)0.0279 (9)0.0229 (8)0.0000 (7)0.0093 (7)0.0081 (7)
C10.0259 (9)0.0240 (8)0.0347 (9)0.0071 (7)0.0007 (7)0.0066 (7)
C50.0367 (10)0.0230 (8)0.0421 (10)0.0019 (7)0.0055 (8)0.0131 (8)
B10.0284 (10)0.0236 (9)0.0273 (10)0.0026 (8)0.0018 (8)0.0063 (8)
C40.0255 (9)0.0317 (9)0.0404 (10)0.0024 (7)0.0102 (8)0.0107 (8)
Geometric parameters (Å, º) top
N1—C31.5039 (16)C1—H1A0.9800
N1—C21.4818 (17)C1—H1B0.9800
N1—C11.4806 (17)C1—H1C0.9800
N1—B11.615 (2)C5—H5A0.9800
C3—H3A0.9900C5—H5B0.9800
C3—H3B0.9900C5—H5C0.9800
C3—N21.4393 (17)B1—H1D1.117 (13)
N2—C51.4622 (18)B1—H1E1.131 (14)
N2—C41.4612 (18)B1—H1F1.137 (14)
C2—H2A0.9800C4—H4A0.9800
C2—H2B0.9800C4—H4B0.9800
C2—H2C0.9800C4—H4C0.9800
C3—N1—B1108.16 (10)N1—C1—H1C109.5
C2—N1—C3109.62 (10)H1A—C1—H1B109.5
C2—N1—B1110.43 (11)H1A—C1—H1C109.5
C1—N1—C3110.11 (10)H1B—C1—H1C109.5
C1—N1—C2108.59 (10)N2—C5—H5A109.5
C1—N1—B1109.93 (12)N2—C5—H5B109.5
N1—C3—H3A108.8N2—C5—H5C109.5
N1—C3—H3B108.8H5A—C5—H5B109.5
H3A—C3—H3B107.7H5A—C5—H5C109.5
N2—C3—N1113.61 (10)H5B—C5—H5C109.5
N2—C3—H3A108.8N1—B1—H1D105.7 (7)
N2—C3—H3B108.8N1—B1—H1E106.1 (7)
C3—N2—C5112.85 (12)N1—B1—H1F106.4 (7)
C3—N2—C4112.82 (11)H1D—B1—H1E111.1 (10)
C4—N2—C5110.31 (11)H1D—B1—H1F113.7 (10)
N1—C2—H2A109.5H1E—B1—H1F113.2 (10)
N1—C2—H2B109.5N2—C4—H4A109.5
N1—C2—H2C109.5N2—C4—H4B109.5
H2A—C2—H2B109.5N2—C4—H4C109.5
H2A—C2—H2C109.5H4A—C4—H4B109.5
H2B—C2—H2C109.5H4A—C4—H4C109.5
N1—C1—H1A109.5H4B—C4—H4C109.5
N1—C1—H1B109.5
N1—C3—N2—C5114.53 (13)C1—N1—C3—N260.04 (14)
N1—C3—N2—C4119.61 (12)B1—N1—C3—N2179.82 (13)
C2—N1—C3—N259.36 (14)

Experimental details

Crystal data
Chemical formulaC5H17BN2
Mr116.01
Crystal system, space groupTriclinic, P1
Temperature (K)173
a, b, c (Å)6.0464 (8), 7.6987 (9), 9.5896 (11)
α, β, γ (°)69.602 (10), 76.519 (11), 74.912 (10)
V3)398.95 (9)
Z2
Radiation typeMo Kα
µ (mm1)0.06
Crystal size (mm)0.2 × 0.15 × 0.15
Data collection
DiffractometerAgilentXcalibur, Sapphire3
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2014)
Tmin, Tmax0.983, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
3232, 3232, 1828
Rint?
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.099, 0.87
No. of reflections3232
No. of parameters90
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.18, 0.22

Computer programs: CrysAlis PRO (Agilent, 2014), SHELXS96 (Sheldrick, 2008), SHELXL96 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), Olex2 (Dolomanov et al., 2009).

 

Acknowledgements

We thank the Deutsche Forschungsgemeinschaft (DFG) for financial support.

References

First citationAgilent (2014). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationBera, B., Patil, Y. P., Nethaji, M. & Jagirdar, B. R. (2011). Dalton Trans. 40, 10592–10597.  CSD CrossRef CAS PubMed Google Scholar
First citationBurg, A. B. & Schlesinger, H. I. (1937). J. Am. Chem. Soc. 59, 780–787.  CrossRef CAS Google Scholar
First citationChitsaz, S., Breyhan, T., Pauls, J. & Neumüller, B. (2002). Z. Anorg. Allg. Chem. 628, 956–964.  CSD CrossRef CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationEbden, M. R., Simpkins, N. S. & Fox, D. N. A. (1995). Tetrahedron Lett. 36, 8697–8700.  CrossRef CAS Google Scholar
First citationFalbe, J. & Regitz, M. (1999). RÖMPP Lexikon Chemie Band 6 TZ, p. 4991, Stuttgart New York: Georg Thieme Verlag.  Google Scholar
First citationFang, C.-L., Horne, S., Taylor, N. & Rodrigo, R. (1994). J. Am. Chem. Soc. 116, 9480–9486.  CSD CrossRef CAS Google Scholar
First citationFlores-Parra, A., Sánchez-Ruiz, S. A., Guadarrama, C., Nöth, H. & Contreras, R. (1999). Eur. J. Inorg. Chem. pp. 2069–2073.  Google Scholar
First citationGessner, V. H. & Strohmann, C. (2012). Dalton Trans. 41, 3452–3460.  CSD CrossRef CAS PubMed Google Scholar
First citationGollas, P., Christmann, M. & Strochmann, C. (2013). Angew. Chem. Int. Ed. 52, 9836–9840.  Google Scholar
First citationHanic, F. & Šubrtová, V. (1969). Acta Cryst. B25, 405–409.  CSD CrossRef IUCr Journals Google Scholar
First citationHuheey, J. E., Keiter, E. A. & Keiter, R. L. (1995). Anorganische Chemie – Prinzipien von Struktur und Reaktivität, pp. 923–935, Berlin: Walter de Gruyter & Co.  Google Scholar
First citationKessar, S. V., Singh, P., Vohra, R., Kaur, N. P. & Singh, K. N. (1991). J. Chem. Soc. Chem. Commun. pp. 568–570.  CrossRef Google Scholar
First citationNetz, A., Polborn, K., Noth, H. & Muller, T. J. J. (2005). Eur. J. Org. Chem. pp. 1823–1833.  CSD CrossRef Google Scholar
First citationRamachandran, B. M., Carroll, P. J. & Sneddon, L. G. (2004). Inorg. Chem. 43, 3467–3474.  CSD CrossRef PubMed CAS Google Scholar
First citationRojas-Lima, S., Farfán, N., Santillan, R., Castillo, D., Sosa-Torres, M. E. & Höpfl, H. (2000). Tetrahedron, 56, 6427–6433.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStrohmann, C. & Gessner, V. (2007). Angew. Chem. Int. Ed. 46, 4566–4569.  CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 10| October 2015| Pages o743-o744
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds