metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 10| October 2015| Pages m185-m186

Crystal structure of [3-amino-2-(phenyl­diazenyl)­pyridine]chlorido­(η6-p-cymene)­ruthenium(II) chloride

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand, and bDepartment of Chemistry, Youngstown State University, 1 University Plaza, 44555, Youngstown, OH, USA
*Correspondence e-mail: kanidtha.h@gmail.com

Edited by O. Blacque, University of Zürich, Switzerland (Received 9 September 2015; accepted 18 September 2015; online 26 September 2015)

The title compound, [RuCl(C10H14)(C11H10N4)]Cl is an RuII complex in which an η6-p-cymene ligand, two N atoms of 3-amino-2-(phenyl­azo)pyridine and one Cl ion form a piano-stool coordination environment around the metal ion. In the crystal structure, N—H⋯Cl hydrogen bonds play an important role in the formation of the supramolecular zigzag chain along the a-axis direction. Disorder is observed for the isopropyl group with site-occupancy factors refined to 0.78 (5) and 0.22 (5).

1. Related literature

For anti­cancer activity of organometallic ruthenium complexes, see: Almodares et al. (2014[Almodares, Z., Lucas, S. J., Crossley, B. D., Basri, A. M., Pask, C. M., Hebden, A. J., Phillips, R. M. & McGowan, P. C. (2014). Inorg. Chem. 53, 727-736.]); Stepanenko et al. (2011[Stepanenko, I. N., Novak, M. S., Mühlgassner, M., Roller, A., Hejl, M., Arion, V. B., Jakupec, M. A. & Keppler, B. K. (2011). Inorg. Chem. 50, 11715-11728.]). For the use of a similar azo­pyridine ligand to stabilize ruthenium complexes, see: Velders et al. (2000[Velders, A. H., Kooijman, H., Spek, A. L., Haasnoot, J. G., de Vos, D. & Reedijk, J. (2000). Inorg. Chem. 39, 2966-2967.]). For related η6-p-cymene ruthenium complexes, see: Singh et al. (2002[Singh, A., Singh, N. & Pandey, D. S. (2002). J. Organomet. Chem. 642, 48-57.]), Kumar et al. (2008[Kumar, K. N., Venkatachalam, G., Ramesh, R. & Liu, Y. (2008). Polyhedron, 27, 157-166.]). For the crystal structure of an η6-p-cymene ruthenium complex with an azo­pyridine ligand, see: Dougan et al. (2006[Dougan, S. J., Melchart, M., Habtemariam, A., Parsons, S. & Sadler, P. J. (2006). Inorg. Chem. 45, 10882-10894.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • [RuCl(C10H14)(C11H10N4)]Cl

  • Mr = 504.41

  • Orthorhombic, P b c a

  • a = 8.9642 (8) Å

  • b = 17.6283 (16) Å

  • c = 26.976 (3) Å

  • V = 4262.8 (7) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 1.00 mm−1

  • T = 293 K

  • 0.44 × 0.10 × 0.07 mm

2.2. Data collection

  • Bruker SMART APEX CCD Diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2003[Bruker (2003). SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.693, Tmax = 1.000

  • 40186 measured reflections

  • 5127 independent reflections

  • 4242 reflections with I > 2σ(I)

  • Rint = 0.069

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.074

  • wR(F2) = 0.136

  • S = 1.12

  • 5127 reflections

  • 265 parameters

  • 15 restraints

  • H-atom parameters constrained

  • Δρmax = 0.71 e Å−3

  • Δρmin = −1.61 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H4A⋯Cl2 0.86 2.34 3.200 (5) 176
N4—H4B⋯Cl2i 0.86 2.37 3.152 (5) 151
Symmetry code: (i) [x-{\script{1\over 2}}, y, -z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2003[Bruker (2003). SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2012 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and SHELXLE (Hübschle et al., 2011[Hübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281-1284.]); molecular graphics: Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Synthesis and crystallization top

3-amino-2-(phenyl­azo)pyridine (3aazpy) was prepared by condensation of 2,3-di­amino-pyridine (14 mg, 2 mmol) with nitroso­benzene (217 mg, 2.1 mmol) in a mixture of 30 M NaOH (3 mL) and 35 mL of benzene solution. The reaction mixture was stirred and heated under reflux for 14 h. The product was extracted many times with benzene to obtain the brown solution. Then the volume was reduced to 3 mL. The residue was purified by column chromatography. The red-orange band was collected and evaporated to dryness (yield : 37%).

The title compound was obtained by the following procedure: [(η6-p-cym)RuCl2]2 (0.05 mmol) was added to a THF solution of 3aazpy (0.1 mmol); the solution color change from red to purple. The solution was stirred at ambient temperature for 2 h. The precipitate was collected by filtration, washed with a small amount of THF. Monocrystals were obtained by diffusion of ether into a di­chloro­methane solution of the complex (yield: 82%).

Refinement top

H atoms bonded to C and N atoms were included in calculated positions and were refined with a riding model using distances of 0.93 Å (aryl H), and Uiso(H) = 1.2Ueq(C); 0.98 Å (CH) and Uiso(H) = 1.5Ueq(C); 0.96 Å (CH3) and Uiso(H) = 1.5Ueq(C); 0.86 Å (NH2), and Uiso(H) = 1.2Ueq(N). A disorder is observed for the iso­propyl group with site-occupancy factors refined to 0.78 (5) and 0.22 (5).

Results and discussion top

Organometallic ruthenium complexes have gained much inter­est due to promising anti­cancer activity (Almodares et al., 2014; Stepanenko et al., 2011). These arene complexes consist of a chelating ligand and one chloride ion. In this work, a new ruthenium(II) complex of this type is reported.

The title complex exists as a half sandwich complex with the neutral arene ring bonded to the ruthenium center along with two N atoms from 3-amino-2-(phenyl­azo)pyridine (3aazpy) and one chloride ion (Fig. 1). The 3aazpy ligand contains the –N=N—C=N linkage which is similar to 2-(phenyl­azo)pyridine (azpy). Azo ligands of this type can stabilize metals in their lower oxidation states (Velders et al., 2000). The ruthenium atom is π-bonded to the p-cymene ligand with an average Ru—C bond length of 2.215 (6) Å (range 2.185 (6) - 2.243 (5) Å) similar to those observed in related η6-p-cymene ruthenium complexes (Singh et al., 2002, Kumar et al., 2008). The p-cymene ring is almost planar and the C—C bond lengths within the ring are in the range 1.376 – 1.435 Å. The ruthenium center is also coordinated to N1 (azo moiety, 2.078 (4) Å) and to N3 (pyridine, 2.077 (4) Å) of 3aazpy. These Ru—N bond lengths are longer than those in [(η6-p-cymene)Ru(azpy)Cl](PF6) (Dougan et al., 2006). It indicates that azpy is a better ligand to stabilize the ruthenium(II) center than 3aazpy. Meanwhile, the bite angle of 75.6 (2)° of the chelate ligand and the Ru—Cl bond distance of 2.3938 (15) Å are comparable to those in [(η6-p-cym)Ru(azpy)Cl](PF6). In the crystal structure, chloride ions are linked with the complex molecule through N4—H4A···Cl2i and N4—H4B···Cl2 hydrogen bonds leading to the formation of a 1-D zigzag chain along the a-axis (see Table 1 and Fig. 2). A disorder is observed for the iso­propyl group with site-occupancy factors refined to 0.78 (5) and 0.22 (5).

Related literature top

For anticancer activity of organometallic ruthenium complexes, see: Almodares et al. (2014); Stepanenko et al. (2011). For the use of a similar azopyridine ligand to stabilize ruthenium complexes, see: Velders et al. (2000). For related η6-p-cymene ruthenium complexes, see: Singh et al. (2002), Kumar et al. (2008). For the crystal structure of an η6-p-cymene ruthenium complex with an azopyridine ligand, see: Dougan et al. (2006).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT (Bruker, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2012 (Sheldrick, 2015) and SHELXLE (Hübschle et al., 2011); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. Crystal packing of the title compound showing the N—H···Cl hydrogen bonds along the a axis.
[3-Amino-2-(phenyldiazenyl)pyridine]chlorido(η6-p-cymene)ruthenium(II) chloride top
Crystal data top
[RuCl(C10H14)(C11H10N4)]ClDx = 1.572 Mg m3
Mr = 504.41Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PbcaCell parameters from 7302 reflections
a = 8.9642 (8) Åθ = 2.3–27.9°
b = 17.6283 (16) ŵ = 1.00 mm1
c = 26.976 (3) ÅT = 293 K
V = 4262.8 (7) Å3Block, colorless
Z = 80.44 × 0.10 × 0.07 mm
F(000) = 2048
Data collection top
Bruker SMART APEX CCD Diffractometer4242 reflections with I > 2σ(I)
Radiation source: sealed tubeRint = 0.069
φ and ω scansθmax = 28.0°, θmin = 1.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
h = 1111
Tmin = 0.693, Tmax = 1.000k = 2323
40186 measured reflectionsl = 3535
5127 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.074Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.136H-atom parameters constrained
S = 1.12 w = 1/[σ2(Fo2) + (0.0276P)2 + 25.095P]
where P = (Fo2 + 2Fc2)/3
5127 reflections(Δ/σ)max = 0.002
265 parametersΔρmax = 0.71 e Å3
15 restraintsΔρmin = 1.61 e Å3
Crystal data top
[RuCl(C10H14)(C11H10N4)]ClV = 4262.8 (7) Å3
Mr = 504.41Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 8.9642 (8) ŵ = 1.00 mm1
b = 17.6283 (16) ÅT = 293 K
c = 26.976 (3) Å0.44 × 0.10 × 0.07 mm
Data collection top
Bruker SMART APEX CCD Diffractometer5127 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
4242 reflections with I > 2σ(I)
Tmin = 0.693, Tmax = 1.000Rint = 0.069
40186 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.07415 restraints
wR(F2) = 0.136H-atom parameters constrained
S = 1.12 w = 1/[σ2(Fo2) + (0.0276P)2 + 25.095P]
where P = (Fo2 + 2Fc2)/3
5127 reflectionsΔρmax = 0.71 e Å3
265 parametersΔρmin = 1.61 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ru10.62601 (5)0.03668 (2)0.38760 (2)0.03006 (13)
Cl10.73313 (19)0.03312 (8)0.45488 (5)0.0473 (4)
Cl20.98928 (17)0.30554 (8)0.21404 (6)0.0434 (4)
N10.5259 (5)0.0663 (2)0.37034 (16)0.0298 (9)
N20.5993 (5)0.1133 (2)0.34347 (16)0.0310 (10)
N30.7791 (5)0.0169 (2)0.34159 (16)0.0283 (9)
N40.7774 (5)0.2032 (3)0.28221 (19)0.0450 (13)
H4A0.83220.22960.26250.054*
H4B0.69550.22180.29350.054*
C10.3803 (6)0.0944 (3)0.3838 (2)0.0352 (12)
C20.3052 (7)0.0609 (3)0.4228 (2)0.0410 (14)
H20.35270.02490.44230.049*
C30.1594 (7)0.0812 (4)0.4325 (3)0.0511 (17)
H30.10650.05640.45740.061*
C40.0923 (8)0.1376 (4)0.4057 (3)0.0571 (19)
H40.00570.15140.41250.069*
C50.1712 (8)0.1743 (4)0.3684 (3)0.0542 (18)
H50.12730.21400.35100.065*
C60.3139 (7)0.1520 (3)0.3573 (2)0.0413 (14)
H60.36580.17570.33180.050*
C70.7341 (6)0.0871 (3)0.32750 (18)0.0270 (10)
C80.8194 (6)0.1338 (3)0.2952 (2)0.0311 (11)
C90.9527 (6)0.1018 (3)0.2774 (2)0.0389 (13)
H91.01310.12910.25580.047*
C100.9932 (7)0.0306 (3)0.2921 (2)0.0477 (15)
H101.08010.00900.27960.057*
C110.9061 (6)0.0096 (3)0.3252 (2)0.0396 (14)
H110.93880.05680.33610.048*
C120.6938 (7)0.1496 (3)0.4186 (2)0.0374 (13)
C130.5524 (8)0.1272 (3)0.4388 (3)0.0495 (17)
H130.54590.11580.47430.059*
C140.4329 (8)0.1095 (3)0.4089 (3)0.0565 (19)
H140.34560.08530.42400.068*
C150.4465 (8)0.1082 (3)0.3565 (3)0.0549 (18)
C160.5835 (7)0.1301 (3)0.3363 (2)0.0447 (15)
H160.60120.12230.30080.054*
C170.7038 (7)0.1516 (3)0.3669 (2)0.0382 (13)
H170.80280.15680.35180.046*
C180.3198 (8)0.0843 (5)0.3244 (3)0.081 (3)
H18A0.35750.06760.29290.121*
H18B0.25360.12640.31950.121*
H18C0.26670.04360.34010.121*
C190.8212 (9)0.1721 (4)0.4513 (3)0.0580 (19)0.78 (5)
H190.79990.15220.48450.070*0.78 (5)
C200.9735 (12)0.1408 (13)0.4358 (7)0.066 (4)0.78 (5)
H20A0.96820.08650.43350.099*0.78 (5)
H20B1.04710.15470.46000.099*0.78 (5)
H20C1.00060.16140.40410.099*0.78 (5)
C210.824 (3)0.2586 (7)0.4555 (12)0.111 (8)0.78 (5)
H21A0.90160.27350.47810.167*0.78 (5)
H21B0.72980.27630.46750.167*0.78 (5)
H21C0.84370.28020.42340.167*0.78 (5)
C19B0.8212 (9)0.1721 (4)0.4513 (3)0.0580 (19)0.22 (5)
H19B0.82450.13390.47770.070*0.22 (5)
C20B0.974 (4)0.169 (4)0.426 (2)0.066 (4)0.22 (5)
H20D0.98450.12150.40940.099*0.22 (5)
H20E1.05040.17380.45100.099*0.22 (5)
H20F0.98190.20980.40300.099*0.22 (5)
C21B0.791 (9)0.247 (3)0.477 (3)0.111 (8)0.22 (5)
H21D0.87990.26370.49390.167*0.22 (5)
H21E0.71250.24050.50110.167*0.22 (5)
H21F0.76180.28440.45330.167*0.22 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ru10.0334 (2)0.02129 (19)0.0355 (2)0.00223 (18)0.00250 (19)0.00160 (17)
Cl10.0641 (10)0.0363 (7)0.0414 (8)0.0089 (7)0.0093 (7)0.0017 (6)
Cl20.0424 (8)0.0322 (7)0.0558 (9)0.0014 (6)0.0150 (7)0.0051 (6)
N10.033 (2)0.024 (2)0.032 (2)0.0030 (19)0.0057 (19)0.0007 (17)
N20.030 (2)0.023 (2)0.040 (2)0.0006 (18)0.0072 (19)0.0019 (18)
N30.028 (2)0.021 (2)0.036 (2)0.0013 (17)0.0003 (19)0.0040 (17)
N40.039 (3)0.031 (3)0.065 (3)0.004 (2)0.019 (3)0.011 (2)
C10.032 (3)0.032 (3)0.041 (3)0.002 (2)0.009 (3)0.006 (2)
C20.043 (3)0.036 (3)0.044 (3)0.002 (3)0.011 (3)0.001 (3)
C30.049 (4)0.050 (4)0.054 (4)0.006 (3)0.023 (3)0.009 (3)
C40.036 (4)0.069 (5)0.066 (5)0.005 (3)0.006 (3)0.020 (4)
C50.047 (4)0.047 (4)0.069 (5)0.016 (3)0.002 (3)0.001 (3)
C60.038 (3)0.037 (3)0.049 (4)0.008 (3)0.009 (3)0.004 (3)
C70.025 (2)0.024 (2)0.032 (3)0.001 (2)0.000 (2)0.000 (2)
C80.034 (3)0.025 (3)0.035 (3)0.004 (2)0.004 (2)0.002 (2)
C90.031 (3)0.040 (3)0.046 (3)0.008 (2)0.010 (3)0.004 (3)
C100.036 (3)0.045 (3)0.062 (4)0.011 (3)0.014 (3)0.006 (3)
C110.032 (3)0.034 (3)0.053 (4)0.004 (2)0.010 (3)0.011 (3)
C120.060 (4)0.015 (2)0.037 (3)0.001 (2)0.004 (3)0.002 (2)
C130.076 (5)0.021 (3)0.052 (4)0.006 (3)0.020 (4)0.004 (3)
C140.050 (4)0.026 (3)0.093 (6)0.011 (3)0.019 (4)0.005 (3)
C150.048 (4)0.030 (3)0.087 (5)0.011 (3)0.014 (4)0.002 (3)
C160.055 (4)0.031 (3)0.049 (4)0.010 (3)0.007 (3)0.008 (3)
C170.045 (3)0.024 (3)0.045 (3)0.003 (3)0.002 (3)0.006 (2)
C180.053 (5)0.064 (5)0.126 (8)0.007 (4)0.038 (5)0.020 (5)
C190.089 (6)0.036 (3)0.049 (4)0.013 (4)0.013 (4)0.012 (3)
C200.066 (6)0.064 (10)0.068 (8)0.018 (6)0.016 (5)0.002 (7)
C210.147 (15)0.048 (6)0.14 (2)0.010 (8)0.054 (14)0.032 (9)
C19B0.089 (6)0.036 (3)0.049 (4)0.013 (4)0.013 (4)0.012 (3)
C20B0.066 (6)0.064 (10)0.068 (8)0.018 (6)0.016 (5)0.002 (7)
C21B0.147 (15)0.048 (6)0.14 (2)0.010 (8)0.054 (14)0.032 (9)
Geometric parameters (Å, º) top
Ru1—N32.077 (4)C10—H100.9300
Ru1—N12.078 (4)C11—H110.9300
Ru1—C162.185 (6)C12—C171.398 (8)
Ru1—C152.210 (6)C12—C131.435 (9)
Ru1—C132.211 (6)C12—C191.498 (9)
Ru1—C172.215 (5)C13—C141.376 (10)
Ru1—C142.231 (6)C13—H130.9800
Ru1—C122.243 (5)C14—C151.419 (10)
Ru1—Cl12.3938 (15)C14—H140.9800
N1—N21.283 (6)C15—C161.398 (9)
N1—C11.442 (7)C15—C181.489 (10)
N2—C71.363 (6)C16—C171.411 (8)
N3—C111.307 (7)C16—H160.9800
N3—C71.356 (6)C17—H170.9800
N4—C81.327 (7)C18—H18A0.9600
N4—H4A0.8600C18—H18B0.9600
N4—H4B0.8600C18—H18C0.9600
C1—C61.376 (8)C19—C211.529 (12)
C1—C21.381 (8)C19—C201.531 (12)
C2—C31.381 (8)C19—H190.9800
C2—H20.9300C20—H20A0.9600
C3—C41.368 (10)C20—H20B0.9600
C3—H30.9300C20—H20C0.9600
C4—C51.389 (10)C21—H21A0.9600
C4—H40.9300C21—H21B0.9600
C5—C61.371 (8)C21—H21C0.9600
C5—H50.9300C20B—H20D0.9600
C6—H60.9300C20B—H20E0.9600
C7—C81.422 (7)C20B—H20F0.9600
C8—C91.406 (8)C21B—H21D0.9600
C9—C101.365 (8)C21B—H21E0.9600
C9—H90.9300C21B—H21F0.9600
C10—C111.382 (8)
N3—Ru1—N175.80 (16)C9—C10—C11120.6 (5)
N3—Ru1—C1694.5 (2)C9—C10—H10119.7
N1—Ru1—C16116.2 (2)C11—C10—H10119.7
N3—Ru1—C15120.9 (2)N3—C11—C10121.8 (5)
N1—Ru1—C1595.7 (2)N3—C11—H11119.1
C16—Ru1—C1537.1 (2)C10—C11—H11119.1
N3—Ru1—C13153.9 (2)C17—C12—C13116.3 (6)
N1—Ru1—C13129.9 (2)C17—C12—C19122.2 (6)
C16—Ru1—C1378.4 (2)C13—C12—C19121.5 (6)
C15—Ru1—C1366.9 (3)C17—C12—Ru170.6 (3)
N3—Ru1—C1793.25 (19)C13—C12—Ru170.0 (3)
N1—Ru1—C17151.50 (19)C19—C12—Ru1131.4 (4)
C16—Ru1—C1737.4 (2)C14—C13—C12121.9 (6)
C15—Ru1—C1767.1 (2)C14—C13—Ru172.7 (4)
C13—Ru1—C1765.9 (2)C12—C13—Ru172.4 (3)
N3—Ru1—C14158.2 (2)C14—C13—H13118.6
N1—Ru1—C14103.0 (2)C12—C13—H13118.6
C16—Ru1—C1466.1 (3)Ru1—C13—H13118.6
C15—Ru1—C1437.3 (3)C13—C14—C15121.3 (7)
C13—Ru1—C1436.1 (3)C13—C14—Ru171.2 (4)
C17—Ru1—C1477.5 (2)C15—C14—Ru170.6 (4)
N3—Ru1—C12116.54 (19)C13—C14—H14118.5
N1—Ru1—C12167.39 (19)C15—C14—H14118.5
C16—Ru1—C1267.3 (2)Ru1—C14—H14118.5
C15—Ru1—C1280.3 (2)C16—C15—C14117.4 (7)
C13—Ru1—C1237.6 (2)C16—C15—C18121.3 (7)
C17—Ru1—C1236.5 (2)C14—C15—C18121.2 (7)
C14—Ru1—C1266.6 (2)C16—C15—Ru170.5 (3)
N3—Ru1—Cl187.39 (12)C14—C15—Ru172.2 (4)
N1—Ru1—Cl183.92 (13)C18—C15—Ru1127.9 (5)
C16—Ru1—Cl1159.70 (18)C15—C16—C17121.1 (6)
C15—Ru1—Cl1150.8 (2)C15—C16—Ru172.4 (4)
C13—Ru1—Cl191.00 (19)C17—C16—Ru172.5 (3)
C17—Ru1—Cl1122.36 (16)C15—C16—H16119.1
C14—Ru1—Cl1114.3 (2)C17—C16—H16119.1
C12—Ru1—Cl193.73 (15)Ru1—C16—H16119.1
N2—N1—C1112.6 (4)C12—C17—C16121.9 (6)
N2—N1—Ru1118.0 (3)C12—C17—Ru172.8 (3)
C1—N1—Ru1129.4 (3)C16—C17—Ru170.1 (3)
N1—N2—C7114.5 (4)C12—C17—H17118.3
C11—N3—C7119.4 (4)C16—C17—H17118.3
C11—N3—Ru1128.0 (4)Ru1—C17—H17118.3
C7—N3—Ru1112.7 (3)C15—C18—H18A109.5
C8—N4—H4A120.0C15—C18—H18B109.5
C8—N4—H4B120.0H18A—C18—H18B109.5
H4A—N4—H4B120.0C15—C18—H18C109.5
C6—C1—C2120.0 (5)H18A—C18—H18C109.5
C6—C1—N1120.9 (5)H18B—C18—H18C109.5
C2—C1—N1119.0 (5)C12—C19—C21108.7 (9)
C3—C2—C1119.8 (6)C12—C19—C20115.0 (7)
C3—C2—H2120.1C21—C19—C20111.3 (10)
C1—C2—H2120.1C12—C19—H19107.2
C4—C3—C2120.2 (6)C21—C19—H19107.2
C4—C3—H3119.9C20—C19—H19107.2
C2—C3—H3119.9C19—C20—H20A109.5
C3—C4—C5119.8 (6)C19—C20—H20B109.5
C3—C4—H4120.1H20A—C20—H20B109.5
C5—C4—H4120.1C19—C20—H20C109.5
C6—C5—C4120.0 (7)H20A—C20—H20C109.5
C6—C5—H5120.0H20B—C20—H20C109.5
C4—C5—H5120.0C19—C21—H21A109.5
C5—C6—C1120.0 (6)C19—C21—H21B109.5
C5—C6—H6120.0H21A—C21—H21B109.5
C1—C6—H6120.0C19—C21—H21C109.5
N3—C7—N2119.0 (4)H21A—C21—H21C109.5
N3—C7—C8122.7 (5)H21B—C21—H21C109.5
N2—C7—C8118.2 (4)H20D—C20B—H20E109.5
N4—C8—C9121.4 (5)H20D—C20B—H20F109.5
N4—C8—C7123.0 (5)H20E—C20B—H20F109.5
C9—C8—C7115.7 (5)H21D—C21B—H21E109.5
C10—C9—C8119.8 (5)H21D—C21B—H21F109.5
C10—C9—H9120.1H21E—C21B—H21F109.5
C8—C9—H9120.1
C1—N1—N2—C7176.3 (4)C19—C12—C13—C14177.3 (6)
Ru1—N1—N2—C73.0 (6)Ru1—C12—C13—C1455.7 (5)
N2—N1—C1—C619.8 (7)C17—C12—C13—Ru155.0 (4)
Ru1—N1—C1—C6159.5 (4)C19—C12—C13—Ru1127.0 (5)
N2—N1—C1—C2162.6 (5)C12—C13—C14—C153.7 (9)
Ru1—N1—C1—C218.2 (7)Ru1—C13—C14—C1551.8 (5)
C6—C1—C2—C35.1 (9)C12—C13—C14—Ru155.5 (5)
N1—C1—C2—C3172.7 (5)C13—C14—C15—C163.7 (9)
C1—C2—C3—C44.1 (10)Ru1—C14—C15—C1655.8 (5)
C2—C3—C4—C50.3 (10)C13—C14—C15—C18176.1 (6)
C3—C4—C5—C62.5 (11)Ru1—C14—C15—C18124.0 (6)
C4—C5—C6—C11.5 (10)C13—C14—C15—Ru152.1 (5)
C2—C1—C6—C52.3 (9)C14—C15—C16—C170.7 (9)
N1—C1—C6—C5175.4 (6)C18—C15—C16—C17179.1 (6)
C11—N3—C7—N2177.9 (5)Ru1—C15—C16—C1755.9 (5)
Ru1—N3—C7—N21.0 (6)C14—C15—C16—Ru156.6 (5)
C11—N3—C7—C80.1 (8)C18—C15—C16—Ru1123.2 (6)
Ru1—N3—C7—C8178.8 (4)C13—C12—C17—C162.3 (8)
N1—N2—C7—N31.3 (7)C19—C12—C17—C16179.7 (5)
N1—N2—C7—C8176.6 (4)Ru1—C12—C17—C1652.4 (5)
N3—C7—C8—N4178.4 (5)C13—C12—C17—Ru154.7 (4)
N2—C7—C8—N43.8 (8)C19—C12—C17—Ru1127.4 (5)
N3—C7—C8—C91.8 (7)C15—C16—C17—C122.3 (9)
N2—C7—C8—C9176.0 (5)Ru1—C16—C17—C1253.6 (5)
N4—C8—C9—C10179.2 (6)C15—C16—C17—Ru155.9 (5)
C7—C8—C9—C100.9 (8)C17—C12—C19—C2181.0 (17)
C8—C9—C10—C111.6 (10)C13—C12—C19—C2196.8 (16)
C7—N3—C11—C102.9 (9)Ru1—C12—C19—C21172.9 (15)
Ru1—N3—C11—C10175.8 (5)C17—C12—C19—C2044.5 (14)
C9—C10—C11—N33.7 (10)C13—C12—C19—C20137.7 (12)
C17—C12—C13—C140.7 (8)Ru1—C12—C19—C2047.4 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4A···Cl20.862.343.200 (5)176
N4—H4B···Cl2i0.862.373.152 (5)151
Symmetry code: (i) x1/2, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4A···Cl20.862.343.200 (5)175.8
N4—H4B···Cl2i0.862.373.152 (5)150.7
Symmetry code: (i) x1/2, y, z+1/2.
 

Acknowledgements

Financial support from the Center of Excellence for Innovation of Chemistry (PERCH–CIC), Office of the Higher Education Commission, Ministry of Education, Department of Chemistry, and Graduate School, Prince of Songkla University are gratefully acknowledged.

References

First citationAlmodares, Z., Lucas, S. J., Crossley, B. D., Basri, A. M., Pask, C. M., Hebden, A. J., Phillips, R. M. & McGowan, P. C. (2014). Inorg. Chem. 53, 727–736.  CSD CrossRef CAS PubMed Google Scholar
First citationBruker (1998). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2003). SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDougan, S. J., Melchart, M., Habtemariam, A., Parsons, S. & Sadler, P. J. (2006). Inorg. Chem. 45, 10882–10894.  CSD CrossRef PubMed CAS Google Scholar
First citationHübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281–1284.  Web of Science CrossRef IUCr Journals Google Scholar
First citationKumar, K. N., Venkatachalam, G., Ramesh, R. & Liu, Y. (2008). Polyhedron, 27, 157–166.  CSD CrossRef CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSingh, A., Singh, N. & Pandey, D. S. (2002). J. Organomet. Chem. 642, 48–57.  Web of Science CSD CrossRef CAS Google Scholar
First citationStepanenko, I. N., Novak, M. S., Mühlgassner, M., Roller, A., Hejl, M., Arion, V. B., Jakupec, M. A. & Keppler, B. K. (2011). Inorg. Chem. 50, 11715–11728.  CSD CrossRef CAS PubMed Google Scholar
First citationVelders, A. H., Kooijman, H., Spek, A. L., Haasnoot, J. G., de Vos, D. & Reedijk, J. (2000). Inorg. Chem. 39, 2966–2967.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 10| October 2015| Pages m185-m186
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds