research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 10| October 2015| Pages 1165-1168

Crystal structure of bis­­(acetyl­acetonato-κ2O,O′)(tetra­hydro­furan-κO)(tri­fluoro­methane­sulfonato-κO)iron(III)

CROSSMARK_Color_square_no_text.svg

aSchool of Chemical Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
*Correspondence e-mail: jbertke@illinois.edu

Edited by G. Smith, Queensland University of Technology, Australia (Received 20 August 2015; accepted 8 September 2015; online 12 September 2015)

The mononuclear title complex, [Fe(CF3O3S)(C5H7O2)2(C4H8O)] or [Fe(acac)2(OTf)(THF)] (acac = acetyl­acetonate; OTf = tri­fluoro­methane­sulfon­ate; THF = tetrahydrofuran), (I), consists of one six-coordinate Fe3+ atom in a slightly distorted octa­hedral environment [Fe—O bond-length range = 1.9517 (11)–2.0781 (11) Å]. The triflate ligand was found to be disordered over two sets of sites, with a site-occupancy ratio of 0.622 (16):0.378 (16). Weak inter­molecular C—H⋯O and C—H⋯F hydrogen-bonding inter­actions generate a two-dimensional supra­molecular structure lying parallel to (100). This is only the second crystal structure reported of a mononuclear bis­(acetyl­acetonato)iron(III) complex.

1. Chemical context

Because of its ease-of-handling, relative stability and good solubility in most organic solvents, tris­(acetyl­acetonato)iron(III) [Fe(acac)3] is often used as a catalyst or catalyst precursor in iron-catalysed reactions (Sherry & Fürstner, 2008[Sherry, B. D. & Fürstner, A. (2008). Acc. Chem. Res. 41, 1500-1511.]; Zettler et al., 2001[Zettler, M. W., Chen, Y. & Lee, C. (2001). Encyclopedia of Reagents for Organic Synthesis. New York: John Wiley & Sons.]). In many applications, the loss or substitution of one or more acetyl­acetonate ligands from [Fe(acac)3] is expected. However, the substitution of a single acetylacetonato ligand is rarely observed. Relevant examples include protonations of Fe(acac)3 with oxalic acid (Fujino et al., 2004[Fujino, T., Hoshino, Y., Igarashi, S., Masuda, Y. & Yukawa, Y. (2004). Inorg. Chim. Acta, 357, 11-18.]) and hydro­chloric acid (Lindley & Smith, 1970[Lindley, P. F. & Smith, A. W. (1970). J. Chem. Soc. D, pp. 1355-1356.]) to form [Fe(acac)2]2(μ-C2O4) and [Fe(acac)2Cl], respectively. The dinuclear alkoxides, [Fe(acac)2(μ-OR)] are also known (Chiari et al., 1984[Chiari, B., Piovesana, O., Tarantelli, T. & Zanazzi, P. F. (1984). Inorg. Chem. 23, 3398-3404.]; Leluk et al., 1992[Leluk, M., Jeżowska-Trzebiatowska, B. & Lis, T. (1992). Polyhedron, 11, 1923-1927.]; Wu et al., 1972[Wu, C.-H. S., Rossman, G. R., Gray, H. B., Hammond, G. S. & Schugar, H. J. (1972). Inorg. Chem. 11, 990-994.]). We now report that the addition of triflic acid to a THF solution of [Fe(acac)3] results in the formation of a mononuclear bis(acetyl­acetonato)iron(III) complex, [Fe(acac)2(OTf)(THF)], the title compound (I)[link] whose structure is reported herein. This compound is a rare bis­(acetyl­acetonato)iron(III) complex that has been crystallographically characterized.

[Scheme 1]

2. Structural commentary

The mol­ecular structure of the mononuclear complex (I)[link] (Fig. 1[link]) consists of one six-coordinate Fe3+ atom in an slightly distorted octa­hedral FeO6 environment. The coordination sphere of the metal comprises four oxygen atoms from two κ2-acac ligands [Fe—Oacac range = 1.9517 (11)–1.9762 (11) Å], one oxygen atom of a THF solvate mol­ecule [Fe1—O8 = 2.0781 (11) Å] and one oxygen atom of a disordered triflate anion [Fe1—O5 = 2.063 (4) Å or Fe1—O5B = 2.066 (6) Å] (Table 1[link]). The disorder in the triflate ligand was found to be 0.622 (16):0.378 (16). The angles around Fe1 deviate from the ideal octa­hedral angles of 90 and 180°, the cis angles range from 84.63 (5)° to 98.09 (5)° and the trans angles range from 172.60 (5)° to 174.9 (6)°.

Table 1
Selected bond lengths (Å)

Fe1—O1 1.9517 (11) Fe1—O8 2.0781 (11)
Fe1—O4 1.9651 (11) Fe1—O5 2.063 (4)
Fe1—O3 1.9742 (11) Fe1—O5B 2.066 (6)
Fe1—O2 1.9762 (11)    
[Figure 1]
Figure 1
A mol­ecule plot showing the atom numbering, with 35% probability ellipsoids for non-H atoms and spheres of arbitrary size for H atoms. Only the major component of the disordered triflate ligand is shown.

3. Supra­molecular features

There are no significant supra­molecular features to discuss in the extended structure of (I)[link]. There are weak C—H⋯O and C—H⋯F inter­molecular hydrogen-bonding inter­actions resulting in the formation of two-dimensional layers parallel to the (100) plane (Fig. 2[link]a,b). A series of Cmeth­yl—H⋯Oacac, Cmeth­yl—H⋯Otriflate, Cmeth­yl—H⋯Ftriflate, CTHF—H⋯Otriflate, and CTHF—H⋯Ftriflate inter­actions make up the layers, the details of these inter­actions are presented in Table 2[link]. Each mol­ecule connects to six neighboring mol­ecules through various combinations of these inter­actions, Fig. 2[link]c,d.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1B⋯O3i 0.98 2.53 3.370 (2) 144
C5—H5A⋯O1ii 0.98 2.60 3.539 (2) 161
C5—H5B⋯O6Biii 0.98 2.56 3.471 (12) 154
C6—H6A⋯O5iv 0.98 2.63 3.429 (9) 138
C6—H6A⋯O6iv 0.98 2.58 3.436 (10) 145
C10—H10B⋯F3v 0.98 2.56 3.214 (6) 124
C12—H12A⋯O6iv 0.99 2.51 3.321 (7) 138
C12—H12A⋯O6Biv 0.99 2.60 3.423 (11) 140
C14—H14A⋯O7Bvi 0.99 2.63 3.411 (10) 136
C14—H14B⋯F2Bvii 0.99 2.50 3.316 (6) 139
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) -x+1, -y+1, -z+1; (iv) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (v) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (vi) x, y+1, z; (vii) [-x+2, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].
[Figure 2]
Figure 2
A view of the extended structure of (I)[link] (a) along the b axis showing two neighboring layers; (b) along the a axis showing one two-dimensional layer; (c) showing the highlighted mol­ecule connecting to six neighboring mol­ecules; and (d) reduced to a ball-and-stick representation, orange balls represent one mol­ecule of (I)[link] connecting to six neighbors. H⋯O inter­actions are shown as red dashed lines, H⋯F inter­actions are shown as blue dashed lines. Only the major component of the disordered triflate is shown, and all H atoms except those that participate in the inter­actions are omitted in parts (a)–(c).

4. Database survey

Only one other mononuclear bis­(acetyl­acetonato)iron(III) complex has been characterized crystallographically, [Fe(acac)2Cl] (Lindley & Smith, 1970[Lindley, P. F. & Smith, A. W. (1970). J. Chem. Soc. D, pp. 1355-1356.]). This complex comprises a five-coordinate iron(III) atom in a square-pyramidal geometry. The Fe—O distance reported is 1.95 (1) Å, which is comparable to the average Fe—Oacac distance in (I)[link] of 1.9668 Å. A search of the Cambridge Structural Database (Groom & Allen, 2014[Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662-671.]) reveals twelve bis­(acetyl­acetonato)iron(III) complexes with a Fe—Oacac range of 1.945–2.062 Å.

A survey of the database for similar complexes with other transition metals yields one mononuclear bis­(acac)-triflate complex, [Os(acac)2(C6H5)(OTf)] (Young et al., 2011[Young, K. J. H., Mironov, O. A., Nielsen, R. J., Cheng, M. J., Stewart, T., Goddard, W. A. & Periana, R. A. (2011). Organometallics, 30, 5088-5094.]). There is also only one mononuclear bis­(acac)-THF complex, [V(acac)2(Mes)(THF)] (Mes = mesityl; Imhof & Seidel, 2006[Imhof, W. & Seidel, W. (2006). Acta Cryst. E62, m571-m573.]). There are six bis­(acac)-bis­(THF) complexes; three mononuclear (Baisch & Poli, 2008[Baisch, U. & Poli, R. (2008). Polyhedron, 27, 2175-2185.]; Döring et al., 1992[Döring, M., Gorls, H., Uhlig, E., Brodersen, K., Dahlenburg, L. & Wolski, A. (1992). Z. Anorg. Allg. Chem. 614, 65-72.]; Langer et al., 2007[Langer, J., Fischer, R., Görls, H., Theyssen, N. & Walther, D. (2007). Z. Anorg. Allg. Chem. 633, 557-562.]), two dinuclear (Baisch & Poli, 2008[Baisch, U. & Poli, R. (2008). Polyhedron, 27, 2175-2185.]; Döring et al., 1992[Döring, M., Gorls, H., Uhlig, E., Brodersen, K., Dahlenburg, L. & Wolski, A. (1992). Z. Anorg. Allg. Chem. 614, 65-72.]) and one heterometallic tetra­nuclear (Döring et al., 2006[Döring, M., Hahn, G. & Imhof, W. (2006). Acta Cryst. E62, m429-m431.]).

5. Synthesis and crystallization

Triflic acid (251 µL, 0.24 g, 1 equiv) was added to a solution of [Fe(acac)3] (1 g, 2.83 mmol, 1 equiv) in dry THF (5 mL). The resulting purple–red solution was stirred at room temperature for 1 h. The reaction mixture was then concentrated under vacuum to a volume of approximately 2 mL, and 20 mL of pentane was added. A dark purple–red microcrystalline solid precipitated. The mixture was filtered through a glass-frit and the microcrystalline solid was dried under vacuum (1.25 g, 2.63 mmol, 93%). Crystals suitable for X-ray diffraction were grown by slow diffusion of pentane into a THF solution of the purple–red solid. CH analysis calculated for C15H22F3FeO8S (MW: 475.235): C 37.91%; H 4.67%. Found: C 37.69%; H, 4.45%.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. A structural model consisting of the target mol­ecule was developed. The triflate ion is disordered over two positions, with refined site-occupancies of 0.622 (16) and 0.378 (16). The equivalent Fe—O, O—S, S—C, and C—F distances were restrained to be similar (s.u. = 0.01 Å). The disordered atoms were restrained to behave relatively isotropically. Similar displacement amplitudes were imposed on disordered sites overlapping by less than the sum of van der Waals radii. Methyl H atom positions were optimized by rotation about R—C bonds with idealized C—H, R⋯H and H⋯H distances and included as riding idealized contributors [C—Hmeth­yl = 0.98 Å with Uiso = 1.5Ueq(C)]. Remaining H atoms were also included as riding idealized contributors [C—Hmethyl­ene= 0.99 Å and C—Haromatic = 0.95 Å, both with Uiso = 1.2Ueq(C)].

Table 3
Experimental details

Crystal data
Chemical formula [Fe(CF3O3S)(C5H7O2)2(C4H8O)]
Mr 475.23
Crystal system, space group Monoclinic, P21/c
Temperature (K) 103
a, b, c (Å) 15.0118 (8), 8.4523 (4), 15.9842 (9)
β (°) 100.451 (2)
V3) 1994.50 (18)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.93
Crystal size (mm) 0.77 × 0.09 × 0.08
 
Data collection
Diffractometer Bruker D8 Venture/Photon 100
Absorption correction Integration (SADABS; Bruker, 2013[Bruker (2013). APEX2, SAINT, SADABS, XCIF and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.720, 0.955
No. of measured, independent and observed [I > 2σ(I)] reflections 48981, 4417, 3800
Rint 0.058
(sin θ/λ)max−1) 0.642
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.025, 0.066, 1.06
No. of reflections 4417
No. of parameters 330
No. of restraints 344
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.29, −0.38
Computer programs: APEX2, SAINT, XPREP, SADABS, TWINABS and XCIF (Bruker, 2013[Bruker (2013). APEX2, SAINT, SADABS, XCIF and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2013 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), CrystalMaker (CrystalMaker, 1994[CrystalMaker (1994). CrystalMaker. CrystalMaker Software Ltd, Oxfordshire, England.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Chemical context top

Because of its ease-of-handling, relative stability and good solubility in most organic solvents, tris­(acetyl­acetonato)iron(III) [Fe(acac)3] is often used as a catalyst or catalyst precursor in iron-catalysed reactions (Sherry & Fürstner, 2008; Zettler et al., 2001). In many applications, the loss or substitution of one or more acetyl­acetonate ligands from [Fe(acac)3] is expected. However, the substitution of a single acetoacetonato ligand is rarely observed. Relevant examples include protonations of Fe(acac)3 with oxalic acid (Fujino et al., 2004) and hydro­chloric acid (Lindley & Smith, 1970) to form [Fe(acac)2]2(µ-C2O4) and [Fe(acac)2Cl], respectively. The dinuclear alkoxides, [Fe(acac)2(µ-OR)] are also known (Chiari et al., 1984; Leluk et al., 1992; Wu et al., 1972). We now report that the addition of triflic acid to a THF solution of [Fe(acac)3] results in the formation of a mononuclear bis­(acetyl­acetonato)iron(III) complex, [Fe(acac)2(OTf)(THF)], the title compound (I) whose structure is reported herein. This compound is a rare bis­(acetyl­acetonato)iron(III) complex that has been crystallographically characterized.

Structural commentary top

The molecular structure of the mononuclear complex (I) (Fig. 1) consists of one six-coordinate Fe3+ atom in an slightly distorted o­cta­hedral FeO6 environment. The coordination sphere of the metal comprises four oxygen atoms from two κ2-acac ligands [Fe—Oacac range = 1.9517 (11)–1.9762 (11) Å], one oxygen atom of a THF solvate molecule [Fe1—O8 = 2.0781 (11) Å] and one oxygen atom of a disordered triflate anion [Fe1—O5 = 2.063 (4) Å or Fe1—O5B = 2.066 (6) Å] (Table 1). The disorder in the triflate ligand was found to be 0.622 (16):0.378 (16). The angles around Fe1 deviate from the ideal o­cta­hedral angles of 90 and 180°, the cis angles range from 84.63 (5)° to 98.09 (5)° and the trans angles range from 172.60 (5)° to 174.9 (6)°.

Supra­molecular features top

There are no significant supra­molecular features to discuss in the extended structure of (I). There are weak C—H···O and C—H···F inter­molecular hydrogen-bonding inter­actions resulting in the formation of two-dimensional layers parallel to the (100) plane (Fig. 2a,b). A series of Cmethyl—H···Oacac, Cmethyl—H···Otriflate, Cmethyl—H···Ftriflate, CTHF—H···Otriflate, and CTHF—H···Ftriflate inter­actions make up the layers, the details of these inter­actions are presented in Table 2. Each molecule connects to six neighboring molecules through various combinations of these inter­actions, Fig. 2c,d.

Database survey top

Only one other mononuclear bis­(acetyl­acetonato)iron(III) complex has been characterized crystallographically, [Fe(acac)2Cl] (Lindley & Smith, 1970). This complex comprises a five-coordinate iron(III) atom in a square-pyramidal geometry. The Fe—O distance reported is 1.95 (1) Å, which is comparable to the average Fe—Oacac distance in (I) of 1.9668 Å. A search of the Cambridge Structural Database (Groom & Allen, 2014) reveals twelve bis­(acetyl­acetonato)iron(III) complexes with a Fe—Oacac range of 1.945–2.062 Å.

A survey of the database for similar complexes with other transition metals yields one mononuclear bis­(acac)-triflate complex, [Os(acac)2(C6H5)(OTf)] (Young et al., 2011). There is also only one mononuclear bis­(acac)-THF complex, [V(acac)2(Mes)(THF)] (Imhof & Seidel, 2006.) There are six bis­(acac)-bis­(THF) complexes; three mononuclear (Baisch & Poli, 2008; Doring et al., 1992; Langer et al., 2007), two dinuclear (Baisch & Poli, 2008; Doring et al., 1992) and one heterometallic tetra­nuclear (Doring et al., 2006).

Synthesis and crystallization top

Triflic acid (251 µL, 0.24 g, 1 equiv) was added to a solution of [Fe(acac)3] (1 g, 2.83 mmol, 1 equiv) in dry THF (5 mL). The resulting purple–red solution was stirred at room temperature for 1 h. The reaction mixture was then concentrated under vacuum to a volume of approximately 2 mL, and 20 mL of pentane was added. A dark purple–red microcrystalline solid precipitated. The mixture was filtered through a glass-frit and the microcrystalline solid was dried under vacuum (1.25 g, 2.63 mmol, 93 %). Crystals suitable for X-ray diffraction were grown by slow diffusion of pentane into a THF solution of the purple–red solid. CH analysis calculated for C15H22F3FeO8S (MW: 475.235): C 37.91%; H 4.67%. Found: C 37.69%; H, 4.45%.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 3. A structural model consisting of the target molecule was developed. The triflate ion is disordered over two positions, with refined site-occupancies of 0.622 (16) and 0.378 (16). The equivalent Fe—O, O—S, S—C, and C—F distances were restrained to be similar (s.u. = 0.01 Å). The disordered atoms were restrained to behave relatively isotropically. Similar displacement amplitudes were imposed on disordered sites overlapping by less than the sum of van der Waals radii. Methyl H atom positions were optimized by rotation about R—C bonds with idealized C—H, R···H and H···H distances and included as riding idealized contributors [C—Hmethyl = 0.98 Å with Uiso = 1.5Ueq(C)]. Remaining H atoms were also included as riding idealized contributors [C—Hmethyl­ene= 0.99 Å and C—Haromatic = 0.95 Å, both with Uiso = 1.2Ueq(C)].

Computing details top

Data collection: APEX2 (Bruker, 2013); cell refinement: SAINT (Bruker, 2013); data reduction: SAINT, XPREP, SADABS and TWINABS (Bruker, 2013); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015); molecular graphics: SHELXTL (Sheldrick, 2008) and CrystalMaker (CrystalMaker, 1994); software used to prepare material for publication: XCIF (Bruker, 2013) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. A molecule plot showing the atom numbering, with 35% probability ellipsoids for non-H atoms and circles of arbitrary size for H atoms. Only the major component of the disordered triflate ligand is shown.
[Figure 2] Fig. 2. A view of the extended structure of (I) (a) along the b axis showing two neighboring layers; (b) along the a axis showing one two-dimensional layer; (c) showing the highlighted molecule connecting to six neighboring molecules; and (d) reduced to a ball-and-stick representation, orange balls represent one molecule of (I) connecting to six neighbors. H···O interactions are shown as red dashed lines, H···F interactions are shown as blue dashed lines. Only the major component of the disordered triflate is shown, and all H atoms except those that participate in the interactions are omitted in parts (a)–(c).
Bis(acetylacetonato-κ2O,O')(tetrahydrofuran-κO)(trifluoromethanesulfonato-κO)iron(III) top
Crystal data top
[Fe(CF3O3S)(C5H7O2)2(C4H8O)]F(000) = 980
Mr = 475.23Dx = 1.583 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 15.0118 (8) ÅCell parameters from 9821 reflections
b = 8.4523 (4) Åθ = 2.6–27.1°
c = 15.9842 (9) ŵ = 0.93 mm1
β = 100.451 (2)°T = 103 K
V = 1994.50 (18) Å3Needle, red
Z = 40.77 × 0.09 × 0.08 mm
Data collection top
Bruker D8 Venture/Photon 100
diffractometer
4417 independent reflections
Radiation source: microfocus sealed tube3800 reflections with I > 2σ(I)
Multilayer mirrors monochromatorRint = 0.058
profile data from φ and ω scansθmax = 27.2°, θmin = 2.6°
Absorption correction: integration
(SADABS; Bruker, 2013)
h = 1919
Tmin = 0.720, Tmax = 0.955k = 1010
48981 measured reflectionsl = 2020
Refinement top
Refinement on F2344 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.025H-atom parameters constrained
wR(F2) = 0.066 w = 1/[σ2(Fo2) + (0.030P)2 + 1.245P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.001
4417 reflectionsΔρmax = 0.29 e Å3
330 parametersΔρmin = 0.38 e Å3
Crystal data top
[Fe(CF3O3S)(C5H7O2)2(C4H8O)]V = 1994.50 (18) Å3
Mr = 475.23Z = 4
Monoclinic, P21/cMo Kα radiation
a = 15.0118 (8) ŵ = 0.93 mm1
b = 8.4523 (4) ÅT = 103 K
c = 15.9842 (9) Å0.77 × 0.09 × 0.08 mm
β = 100.451 (2)°
Data collection top
Bruker D8 Venture/Photon 100
diffractometer
4417 independent reflections
Absorption correction: integration
(SADABS; Bruker, 2013)
3800 reflections with I > 2σ(I)
Tmin = 0.720, Tmax = 0.955Rint = 0.058
48981 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.025344 restraints
wR(F2) = 0.066H-atom parameters constrained
S = 1.06Δρmax = 0.29 e Å3
4417 reflectionsΔρmin = 0.38 e Å3
330 parameters
Special details top

Experimental. One distinct cell was identified using APEX2 (Bruker, 2013). Six frame series were integrated and filtered for statistical outliers using SAINT (Bruker, 2013) then corrected for absorption by integration using SAINT/SADABS (Bruker, 2013) to sort, merge, and scale the combined data. No decay correction was applied.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Structure was phased by direct methods (Sheldrick, 2008). Systematic conditions suggested the unambiguous space group. The space group choice was confirmed by successful convergence of the full-matrix least-squares refinement on F2. The final map had no significant features. A final analysis of variance between observed and calculated structure factors showed little dependence on amplitude or resolution.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Fe10.70581 (2)0.58797 (3)0.74733 (2)0.01158 (7)
O10.63555 (7)0.39298 (13)0.72713 (7)0.0148 (2)
O20.59623 (7)0.70589 (13)0.69469 (7)0.0149 (2)
C10.53914 (11)0.19970 (19)0.65236 (11)0.0190 (3)
H1A0.57920.15390.61670.028*
H1B0.47620.19330.62250.028*
H1C0.54570.14090.70600.028*
C20.56412 (10)0.36918 (19)0.67064 (10)0.0142 (3)
C30.51150 (11)0.48966 (19)0.62755 (10)0.0161 (3)
H30.46120.46050.58520.019*
C40.52805 (10)0.65102 (19)0.64266 (9)0.0139 (3)
C50.46288 (11)0.7717 (2)0.59819 (11)0.0189 (3)
H5A0.43580.83020.64030.028*
H5B0.41500.71830.55830.028*
H5C0.49520.84550.56700.028*
O30.68185 (7)0.60779 (13)0.86430 (7)0.0160 (2)
O40.82353 (7)0.49312 (13)0.79526 (7)0.0146 (2)
C60.69073 (12)0.5923 (2)1.01300 (10)0.0207 (4)
H6A0.68230.70581.02150.031*
H6B0.73150.54871.06250.031*
H6C0.63200.53861.00620.031*
C70.73100 (11)0.56757 (18)0.93464 (10)0.0145 (3)
C80.81768 (11)0.5026 (2)0.94177 (11)0.0205 (4)
H80.84980.47880.99720.025*
C90.85978 (11)0.47054 (18)0.87341 (10)0.0143 (3)
C100.95457 (11)0.4060 (2)0.88703 (11)0.0211 (4)
H10A0.95670.31410.85010.032*
H10B0.97300.37410.94660.032*
H10C0.99590.48780.87330.032*
S10.7575 (2)0.4546 (5)0.5659 (2)0.0133 (7)0.622 (16)
O50.7471 (8)0.5722 (10)0.6313 (4)0.0148 (14)0.622 (16)
O60.7263 (6)0.5123 (11)0.4815 (4)0.0255 (14)0.622 (16)
O70.7340 (4)0.2959 (7)0.5840 (5)0.0218 (11)0.622 (16)
C110.8807 (3)0.4490 (8)0.5760 (4)0.0251 (11)0.622 (16)
F10.9134 (4)0.5931 (7)0.5691 (5)0.0487 (14)0.622 (16)
F20.9202 (3)0.3903 (10)0.6507 (2)0.0451 (12)0.622 (16)
F30.9047 (7)0.3580 (11)0.5158 (6)0.0374 (15)0.622 (16)
S1B0.7611 (4)0.4453 (9)0.5676 (3)0.0166 (12)0.378 (16)
O5B0.7429 (13)0.5656 (16)0.6296 (7)0.014 (2)0.378 (16)
O6B0.7140 (9)0.4806 (17)0.4836 (6)0.0209 (19)0.378 (16)
O7B0.7585 (8)0.2869 (11)0.5971 (9)0.027 (2)0.378 (16)
C11B0.8794 (5)0.4866 (12)0.5638 (6)0.0249 (18)0.378 (16)
F1B0.8914 (6)0.6304 (9)0.5356 (7)0.0424 (16)0.378 (16)
F2B0.9310 (4)0.4709 (16)0.6402 (4)0.047 (2)0.378 (16)
F3B0.9104 (11)0.3852 (18)0.5118 (9)0.037 (2)0.378 (16)
O80.76794 (8)0.80858 (13)0.75681 (7)0.0171 (2)
C120.72268 (12)0.9548 (2)0.77383 (13)0.0237 (4)
H12A0.69230.94190.82350.028*
H12B0.67680.98590.72390.028*
C130.79668 (13)1.0771 (2)0.79186 (12)0.0252 (4)
H13A0.82291.08120.85330.030*
H13B0.77381.18340.77280.030*
C140.86588 (12)1.0189 (2)0.74034 (12)0.0238 (4)
H14A0.84921.05110.68000.029*
H14B0.92721.05930.76390.029*
C150.86120 (12)0.8415 (2)0.74971 (14)0.0291 (4)
H15A0.87710.78760.69940.035*
H15B0.90320.80550.80120.035*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe10.00926 (11)0.01369 (11)0.01071 (11)0.00065 (8)0.00107 (8)0.00028 (8)
O10.0115 (5)0.0167 (5)0.0150 (5)0.0007 (4)0.0010 (4)0.0020 (4)
O20.0116 (5)0.0162 (5)0.0152 (6)0.0010 (4)0.0023 (4)0.0011 (4)
C10.0140 (8)0.0176 (8)0.0242 (9)0.0032 (6)0.0002 (7)0.0022 (7)
C20.0111 (7)0.0194 (8)0.0129 (7)0.0026 (6)0.0044 (6)0.0020 (6)
C30.0118 (8)0.0206 (8)0.0142 (8)0.0003 (6)0.0021 (6)0.0024 (6)
C40.0103 (7)0.0216 (8)0.0098 (7)0.0018 (6)0.0019 (6)0.0001 (6)
C50.0155 (8)0.0207 (8)0.0182 (8)0.0039 (6)0.0027 (7)0.0004 (6)
O30.0127 (5)0.0222 (6)0.0123 (5)0.0033 (5)0.0002 (4)0.0000 (4)
O40.0117 (5)0.0179 (5)0.0132 (5)0.0025 (4)0.0006 (4)0.0004 (4)
C60.0208 (9)0.0269 (9)0.0142 (8)0.0013 (7)0.0031 (7)0.0014 (7)
C70.0154 (8)0.0140 (7)0.0133 (7)0.0024 (6)0.0002 (6)0.0011 (6)
C80.0161 (8)0.0308 (9)0.0126 (8)0.0047 (7)0.0025 (6)0.0030 (7)
C90.0118 (8)0.0116 (7)0.0178 (8)0.0010 (6)0.0017 (6)0.0015 (6)
C100.0140 (8)0.0265 (9)0.0211 (8)0.0050 (7)0.0013 (7)0.0018 (7)
S10.0083 (9)0.0132 (9)0.0184 (12)0.0024 (7)0.0027 (7)0.0013 (7)
O50.017 (2)0.015 (2)0.012 (2)0.0008 (19)0.0022 (19)0.0018 (19)
O60.031 (3)0.034 (3)0.0109 (15)0.002 (2)0.0008 (14)0.0019 (14)
O70.019 (2)0.0163 (17)0.032 (3)0.0012 (15)0.0075 (19)0.0042 (13)
C110.0187 (18)0.028 (2)0.030 (2)0.0036 (14)0.0092 (15)0.0096 (16)
F10.032 (2)0.040 (2)0.081 (3)0.0199 (16)0.030 (2)0.021 (2)
F20.0209 (13)0.076 (3)0.0348 (13)0.0163 (16)0.0044 (10)0.0075 (17)
F30.025 (2)0.047 (3)0.043 (2)0.0016 (19)0.0147 (16)0.0223 (19)
S1B0.023 (2)0.0207 (19)0.0045 (16)0.0033 (12)0.0006 (12)0.0060 (12)
O5B0.016 (4)0.013 (4)0.014 (4)0.000 (3)0.003 (3)0.002 (3)
O6B0.019 (3)0.030 (4)0.012 (3)0.009 (3)0.0012 (19)0.003 (2)
O7B0.036 (5)0.016 (2)0.029 (4)0.011 (3)0.010 (4)0.004 (2)
C11B0.018 (3)0.034 (4)0.022 (3)0.000 (3)0.001 (2)0.011 (3)
F1B0.029 (3)0.038 (3)0.065 (4)0.017 (2)0.021 (3)0.006 (2)
F2B0.019 (2)0.082 (5)0.036 (3)0.013 (3)0.0121 (17)0.020 (3)
F3B0.022 (3)0.049 (5)0.044 (4)0.002 (3)0.015 (3)0.023 (3)
O80.0116 (5)0.0136 (5)0.0260 (6)0.0004 (4)0.0029 (5)0.0043 (5)
C120.0208 (9)0.0162 (8)0.0346 (10)0.0029 (7)0.0063 (8)0.0087 (7)
C130.0318 (10)0.0166 (8)0.0279 (10)0.0043 (7)0.0075 (8)0.0068 (7)
C140.0225 (9)0.0190 (8)0.0299 (10)0.0038 (7)0.0050 (8)0.0013 (7)
C150.0131 (9)0.0202 (9)0.0541 (13)0.0033 (7)0.0066 (8)0.0066 (9)
Geometric parameters (Å, º) top
Fe1—O11.9517 (11)C10—H10A0.9800
Fe1—O41.9651 (11)C10—H10B0.9800
Fe1—O31.9742 (11)C10—H10C0.9800
Fe1—O21.9762 (11)S1—O71.430 (4)
Fe1—O82.0781 (11)S1—O61.431 (4)
Fe1—O52.063 (4)S1—O51.472 (4)
Fe1—O5B2.066 (6)S1—C111.829 (4)
O1—C21.2862 (19)C11—F11.324 (5)
O2—C41.2827 (19)C11—F21.329 (5)
C1—C21.496 (2)C11—F31.332 (4)
C1—H1A0.9800S1B—O7B1.422 (6)
C1—H1B0.9800S1B—O6B1.431 (6)
C1—H1C0.9800S1B—O5B1.479 (6)
C2—C31.392 (2)S1B—C11B1.822 (6)
C3—C41.399 (2)C11B—F1B1.319 (7)
C3—H30.9500C11B—F2B1.330 (7)
C4—C51.500 (2)C11B—F3B1.335 (6)
C5—H5A0.9800O8—C151.452 (2)
C5—H5B0.9800O8—C121.4596 (19)
C5—H5C0.9800C12—C131.506 (2)
O3—C71.2740 (19)C12—H12A0.9900
O4—C91.2830 (19)C12—H12B0.9900
C6—C71.501 (2)C13—C141.520 (3)
C6—H6A0.9800C13—H13A0.9900
C6—H6B0.9800C13—H13B0.9900
C6—H6C0.9800C14—C151.509 (2)
C7—C81.398 (2)C14—H14A0.9900
C8—C91.385 (2)C14—H14B0.9900
C8—H80.9500C15—H15A0.9900
C9—C101.503 (2)C15—H15B0.9900
O1—Fe1—O498.09 (5)C9—C10—H10A109.5
O1—Fe1—O392.44 (5)C9—C10—H10B109.5
O4—Fe1—O388.33 (5)H10A—C10—H10B109.5
O1—Fe1—O288.42 (5)C9—C10—H10C109.5
O4—Fe1—O2172.76 (5)H10A—C10—H10C109.5
O3—Fe1—O294.58 (5)H10B—C10—H10C109.5
O1—Fe1—O592.2 (3)O7—S1—O6117.4 (4)
O4—Fe1—O585.9 (3)O7—S1—O5115.3 (4)
O3—Fe1—O5173.1 (3)O6—S1—O5112.4 (4)
O2—Fe1—O590.7 (3)O7—S1—C11103.9 (3)
O1—Fe1—O5B89.9 (4)O6—S1—C11104.2 (4)
O4—Fe1—O5B86.9 (5)O5—S1—C11101.0 (4)
O3—Fe1—O5B174.9 (6)S1—O5—Fe1140.4 (5)
O2—Fe1—O5B89.9 (5)F1—C11—F2107.9 (4)
O1—Fe1—O8172.60 (5)F1—C11—F3108.5 (5)
O4—Fe1—O888.72 (5)F2—C11—F3107.4 (5)
O3—Fe1—O890.64 (5)F1—C11—S1110.6 (3)
O2—Fe1—O884.63 (5)F2—C11—S1111.6 (4)
O5—Fe1—O885.4 (2)F3—C11—S1110.7 (5)
O5B—Fe1—O887.5 (4)O7B—S1B—O6B118.0 (7)
C2—O1—Fe1127.22 (10)O7B—S1B—O5B114.0 (7)
C4—O2—Fe1126.75 (10)O6B—S1B—O5B111.4 (8)
C2—C1—H1A109.5O7B—S1B—C11B106.1 (5)
C2—C1—H1B109.5O6B—S1B—C11B104.3 (6)
H1A—C1—H1B109.5O5B—S1B—C11B101.0 (7)
C2—C1—H1C109.5S1B—O5B—Fe1141.8 (8)
H1A—C1—H1C109.5F1B—C11B—F2B108.2 (6)
H1B—C1—H1C109.5F1B—C11B—F3B107.2 (8)
O1—C2—C3123.98 (15)F2B—C11B—F3B107.3 (9)
O1—C2—C1115.74 (14)F1B—C11B—S1B112.5 (5)
C3—C2—C1120.28 (14)F2B—C11B—S1B111.0 (5)
C2—C3—C4124.09 (15)F3B—C11B—S1B110.5 (8)
C2—C3—H3118.0C15—O8—C12109.89 (12)
C4—C3—H3118.0C15—O8—Fe1126.35 (10)
O2—C4—C3124.06 (14)C12—O8—Fe1123.75 (10)
O2—C4—C5115.87 (14)O8—C12—C13105.35 (14)
C3—C4—C5120.06 (14)O8—C12—H12A110.7
C4—C5—H5A109.5C13—C12—H12A110.7
C4—C5—H5B109.5O8—C12—H12B110.7
H5A—C5—H5B109.5C13—C12—H12B110.7
C4—C5—H5C109.5H12A—C12—H12B108.8
H5A—C5—H5C109.5C12—C13—C14103.12 (14)
H5B—C5—H5C109.5C12—C13—H13A111.1
C7—O3—Fe1129.59 (10)C14—C13—H13A111.1
C9—O4—Fe1129.27 (10)C12—C13—H13B111.1
C7—C6—H6A109.5C14—C13—H13B111.1
C7—C6—H6B109.5H13A—C13—H13B109.1
H6A—C6—H6B109.5C15—C14—C13102.66 (15)
C7—C6—H6C109.5C15—C14—H14A111.2
H6A—C6—H6C109.5C13—C14—H14A111.2
H6B—C6—H6C109.5C15—C14—H14B111.2
O3—C7—C8123.95 (15)C13—C14—H14B111.2
O3—C7—C6116.28 (14)H14A—C14—H14B109.1
C8—C7—C6119.77 (15)O8—C15—C14105.13 (14)
C9—C8—C7124.32 (15)O8—C15—H15A110.7
C9—C8—H8117.8C14—C15—H15A110.7
C7—C8—H8117.8O8—C15—H15B110.7
O4—C9—C8124.44 (15)C14—C15—H15B110.7
O4—C9—C10114.74 (14)H15A—C15—H15B108.8
C8—C9—C10120.83 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1B···O3i0.982.533.370 (2)144
C5—H5A···O1ii0.982.603.539 (2)161
C5—H5B···O6Biii0.982.563.471 (12)154
C6—H6A···O5iv0.982.633.429 (9)138
C6—H6A···O6iv0.982.583.436 (10)145
C10—H10B···F3v0.982.563.214 (6)124
C12—H12A···O6iv0.992.513.321 (7)138
C12—H12A···O6Biv0.992.603.423 (11)140
C14—H14A···O7Bvi0.992.633.411 (10)136
C14—H14B···F2Bvii0.992.503.316 (6)139
Symmetry codes: (i) x+1, y1/2, z+3/2; (ii) x+1, y+1/2, z+3/2; (iii) x+1, y+1, z+1; (iv) x, y+3/2, z+1/2; (v) x, y+1/2, z+1/2; (vi) x, y+1, z; (vii) x+2, y+1/2, z+3/2.
Selected bond lengths (Å) top
Fe1—O11.9517 (11)Fe1—O82.0781 (11)
Fe1—O41.9651 (11)Fe1—O52.063 (4)
Fe1—O31.9742 (11)Fe1—O5B2.066 (6)
Fe1—O21.9762 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1B···O3i0.982.533.370 (2)144
C5—H5A···O1ii0.982.603.539 (2)161
C5—H5B···O6Biii0.982.563.471 (12)154
C6—H6A···O5iv0.982.633.429 (9)138
C6—H6A···O6iv0.982.583.436 (10)145
C10—H10B···F3v0.982.563.214 (6)124
C12—H12A···O6iv0.992.513.321 (7)138
C12—H12A···O6Biv0.992.603.423 (11)140
C14—H14A···O7Bvi0.992.633.411 (10)136
C14—H14B···F2Bvii0.992.503.316 (6)139
Symmetry codes: (i) x+1, y1/2, z+3/2; (ii) x+1, y+1/2, z+3/2; (iii) x+1, y+1, z+1; (iv) x, y+3/2, z+1/2; (v) x, y+1/2, z+1/2; (vi) x, y+1, z; (vii) x+2, y+1/2, z+3/2.

Experimental details

Crystal data
Chemical formula[Fe(CF3O3S)(C5H7O2)2(C4H8O)]
Mr475.23
Crystal system, space groupMonoclinic, P21/c
Temperature (K)103
a, b, c (Å)15.0118 (8), 8.4523 (4), 15.9842 (9)
β (°) 100.451 (2)
V3)1994.50 (18)
Z4
Radiation typeMo Kα
µ (mm1)0.93
Crystal size (mm)0.77 × 0.09 × 0.08
Data collection
DiffractometerBruker D8 Venture/Photon 100
diffractometer
Absorption correctionIntegration
(SADABS; Bruker, 2013)
Tmin, Tmax0.720, 0.955
No. of measured, independent and
observed [I > 2σ(I)] reflections
48981, 4417, 3800
Rint0.058
(sin θ/λ)max1)0.642
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.025, 0.066, 1.06
No. of reflections4417
No. of parameters330
No. of restraints344
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.29, 0.38

Computer programs: APEX2 (Bruker, 2013), SAINT (Bruker, 2013), SAINT, XPREP, SADABS and TWINABS (Bruker, 2013), SHELXS97 (Sheldrick, 2008), SHELXL2013 (Sheldrick, 2015), SHELXTL (Sheldrick, 2008) and CrystalMaker (CrystalMaker, 1994), XCIF (Bruker, 2013) and publCIF (Westrip, 2010).

 

Acknowledgements

This research was conducted under contract DEFG02-90ER14146 with the US Department of Energy by its Division of Chemical Sciences, Office of Basic Energy Sciences.

References

First citationBaisch, U. & Poli, R. (2008). Polyhedron, 27, 2175–2185.  CSD CrossRef CAS Google Scholar
First citationBruker (2013). APEX2, SAINT, SADABS, XCIF and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChiari, B., Piovesana, O., Tarantelli, T. & Zanazzi, P. F. (1984). Inorg. Chem. 23, 3398–3404.  CSD CrossRef CAS Google Scholar
First citationCrystalMaker (1994). CrystalMaker. CrystalMaker Software Ltd, Oxfordshire, England.  Google Scholar
First citationDöring, M., Gorls, H., Uhlig, E., Brodersen, K., Dahlenburg, L. & Wolski, A. (1992). Z. Anorg. Allg. Chem. 614, 65–72.  Google Scholar
First citationDöring, M., Hahn, G. & Imhof, W. (2006). Acta Cryst. E62, m429–m431.  CSD CrossRef IUCr Journals Google Scholar
First citationFujino, T., Hoshino, Y., Igarashi, S., Masuda, Y. & Yukawa, Y. (2004). Inorg. Chim. Acta, 357, 11–18.  CSD CrossRef CAS Google Scholar
First citationGroom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671.  Web of Science CSD CrossRef CAS Google Scholar
First citationImhof, W. & Seidel, W. (2006). Acta Cryst. E62, m571–m573.  CSD CrossRef IUCr Journals Google Scholar
First citationLanger, J., Fischer, R., Görls, H., Theyssen, N. & Walther, D. (2007). Z. Anorg. Allg. Chem. 633, 557–562.  CSD CrossRef CAS Google Scholar
First citationLeluk, M., Jeżowska-Trzebiatowska, B. & Lis, T. (1992). Polyhedron, 11, 1923–1927.  CSD CrossRef CAS Google Scholar
First citationLindley, P. F. & Smith, A. W. (1970). J. Chem. Soc. D, pp. 1355–1356.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSherry, B. D. & Fürstner, A. (2008). Acc. Chem. Res. 41, 1500–1511.  CrossRef PubMed CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWu, C.-H. S., Rossman, G. R., Gray, H. B., Hammond, G. S. & Schugar, H. J. (1972). Inorg. Chem. 11, 990–994.  CrossRef CAS Google Scholar
First citationYoung, K. J. H., Mironov, O. A., Nielsen, R. J., Cheng, M. J., Stewart, T., Goddard, W. A. & Periana, R. A. (2011). Organometallics, 30, 5088–5094.  CSD CrossRef CAS Google Scholar
First citationZettler, M. W., Chen, Y. & Lee, C. (2001). Encyclopedia of Reagents for Organic Synthesis. New York: John Wiley & Sons.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 10| October 2015| Pages 1165-1168
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds