research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 10| October 2015| Pages 1199-1202

Crystal structure of poly[[μ2-di­aqua-di­aqua-μ2-L-proline-κ2O:O′-strontium] dibromide]

CROSSMARK_Color_square_no_text.svg

aCrystal Growth Laboratory, PG and Research Department of Physics, Periyar EVR College (Autonomous), Tiruchirappalli 620 023, India, bCrystal Growth and Thin Film Laboratory, Department of Physics and Nanotechnology, SRM University, Kattankulathur 603 203, India, and cBiomolecular Crystallography Laboratory, Department of Bioinformatics, School of Chemical and Biotechnology, SASTRA University, Thanjavur 613 401, India
*Correspondence e-mail: balacrystalgrowth@gmail.com, thamu@scbt.sastra.edu

Edited by G. Smith, Queensland University of Technology, Australia (Received 2 September 2015; accepted 16 September 2015; online 26 September 2015)

In the title coordination polymer, {[Sr(C5H9NO2)(H2O)4]Br2}n, the proline mol­ecule exists in a zwitterionic form with one of the ring C atoms disordered over two sites [site-occupancy factors = 0.57 (6):0.43 (6)]. The SrII ion is nine-coordinated by six water O atoms, two monodentate and two μ2-bridging, and three carboxyl­ate O atoms of the proline ligands, with two bridging [Sr—O range = 2.524 (4)–2.800 (5) Å]. In the crystal, there is no direct inter­action between the proline mol­ecules. However, the proline and water mol­ecules associate with the bromide counter-anions through a number of inter­molecular O—H⋯Br and N—H⋯Br hydrogen-bonding inter­actions, giving a three-dimensional supra­molecular structure.

1. Chemical context

The study of coordination polymers has been an area of rapid development in recent years due to their inter­esting structures and their wide range of applications as functional materials (Lyhs et al., 2012[Lyhs, B., Bläser, D., Wölper, C., Haack, R., Jansen, G. & Schulz, S. (2012). Eur. J. Inorg. Chem. pp. 4350-4355.]). Reports of the crystal structures of alkaline earth metal ions combined with anions of amino acids are very limited. As part of our ongoing investigations of the crystal and mol­ecular structures of a series of metal complexes generated from amino acids (Revathi et al., 2015[Revathi, P., Balakrishnan, T., Ramamurthi, K. & Thamotharan, S. (2015). Acta Cryst. E71, 875-878.]; Sathiskumar et al., 2015a[Sathiskumar, S., Balakrishnan, T., Ramamurthi, K. & Thamotharan, S. (2015a). Spectrochim. Acta Part A, 138, 187-194.],b[Sathiskumar, S., Balakrishnan, T., Ramamurthi, K. & Thamotharan, S. (2015b). Acta Cryst. E71, 217-219.]; Balakrishnan et al., 2013[Balakrishnan, T., Ramamurthi, K., Jeyakanthan, J. & Thamotharan, S. (2013). Acta Cryst. E69, m60-m61.]), we report here the crystal structure of a polymeric strontium–proline complex, {[Sr(C5H9NO2)(H2O)4]2+ 2(Br)}n, (I)[link].

[Scheme 1]

2. Structural commentary

The asymmetric unit of the title complex (I)[link] contains one Sr2+ ion, one bridging proline ligand and four water mol­ecules, two of which are monodentate and two bridging, and two bromide counter-anions (Fig. 1[link]). In (I)[link], the bond lengths involving the carboxyl­ate atoms and the protonation of the amino group suggest that the proline mol­ecule exists in a zwitterionic form. The SrII ion is nine-coordinated by six water oxygen atoms [Sr—O = 2.582 (6)–2.707 (5)Å] and three carboxyl­ate oxygen atoms of zwitterionic proline ligands [Sr—O = 2.524 (4)–2.800 (4) Å; Table 1[link]]. In the strontium–glycine complex, the Sr—O (water) and Sr—O(carboxyl­ate) distances ranges are 2.526 (4)–2.661 (2) and 2.605 (2)–2.703 (2) Å, respectively (Revathi et al., 2015[Revathi, P., Balakrishnan, T., Ramamurthi, K. & Thamotharan, S. (2015). Acta Cryst. E71, 875-878.]). In (I)[link], one of the carbon atoms (C4) of the pyrrolidine ring is disordered over two sites. In the major component of the pyrrolidine ring, there is a twist conformation on the C2—C5 bond with a pseudo-rotation angle Δ = 40.1 (14)° and a maximum torsion angle φm = 43.8 (10)° for the atom sequence N1–C2–C5–C4A–C3 (Rao et al., 1981[Rao, S. T., Westhof, E. & Sundaralingam, M. (1981). Acta Cryst. A37, 421-425.]). In the minor component, the pyrrolidine ring exhibits an envelope conformation on N1 with a pseudo-rotation angle Δ = 341.5 (19)° and a maximum torsion angle φm = 36.0 (9)° for the atom sequence N1–C2–C5–C4B–C3 (Rao et al., 1981[Rao, S. T., Westhof, E. & Sundaralingam, M. (1981). Acta Cryst. A37, 421-425.]). As shown in Fig. 2[link], the title complex forms a coordination polymeric chain that lies parallel to the a axis. Adjacent SrII ions are separated by 3.9387 (7) Å within a chain.

Table 1
Selected bond lengths (Å)

Sr1—O1 2.524 (4) Sr1—O2i 2.728 (4)
Sr1—O3 2.625 (6) Sr1—O3ii 2.707 (6)
Sr1—O4 2.630 (6) Sr1—O4ii 2.651 (5)
Sr1—O5 2.593 (5) Sr1—O2iii 2.800 (5)
Sr1—O6 2.582 (6)    
Symmetry codes: (i) x+1, y, z; (ii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1]; (iii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1].
[Figure 1]
Figure 1
The coordination sphere of Sr2+ in the crystal structure of (I)[link]. Only the major components of the disordered proline ligands are shown. Displacement ellipsoids are drawn at the 50% probability level. For symmetry codes, see Table 1[link].
[Figure 2]
Figure 2
The Sr–water coordination polymeric chain substructure of (I)[link], with peripheral water O—H⋯Br hydrogen bonds shown as dashed lines.

3. Supra­molecular features

The crystal structure of (I)[link], is stabilized by inter­molecular N—H⋯Br and O—H⋯Br hydrogen bonds (Table 2[link]). One of the characteristic features observed in amino acid complexes is the head-to-tail sequence in which amino acids are self-associated through their amino and carboxyl­ate groups (Sharma et al., 2006[Sharma, A., Thamotharan, S., Roy, S. & Vijayan, M. (2006). Acta Cryst. C62, o148-o152.]; Selvaraj et al., 2007[Selvaraj, M., Thamotharan, S., Roy, S. & Vijayan, M. (2007). Acta Cryst. B63, 459-468.]; Balakrishnan et al., 2013[Balakrishnan, T., Ramamurthi, K., Jeyakanthan, J. & Thamotharan, S. (2013). Acta Cryst. E69, m60-m61.]; Revathi et al., 2015[Revathi, P., Balakrishnan, T., Ramamurthi, K. & Thamotharan, S. (2015). Acta Cryst. E71, 875-878.]). In the crystal structure of the L-proline lithium bromide monohydrate complex, there is a head-to-tail sequence observed (Sathiskumar et al., 2015a[Sathiskumar, S., Balakrishnan, T., Ramamurthi, K. & Thamotharan, S. (2015a). Spectrochim. Acta Part A, 138, 187-194.]). In contrast, there is no direct hydrogen-bonding inter­action between the proline mol­ecules in (I)[link].

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯Br2i 0.90 (6) 2.52 (5) 3.374 (7) 159 (6)
N1—H1B⋯Br3i 0.90 (7) 2.40 (7) 3.240 (7) 156 (8)
O3—H3C⋯Br3iv 0.84 (7) 2.63 (7) 3.440 (6) 163 (7)
O3—H3D⋯Br2v 0.84 (7) 2.54 (7) 3.376 (6) 172 (5)
O4—H4E⋯Br2vi 0.85 (6) 2.47 (7) 3.281 (6) 162 (7)
O4—H4F⋯Br3vii 0.83 (6) 2.52 (6) 3.347 (6) 174 (6)
O5—H5C⋯Br2i 0.86 (5) 2.54 (5) 3.369 (6) 164 (6)
O5—H5D⋯Br3vii 0.84 (6) 2.48 (6) 3.304 (6) 166 (6)
O6—H6C⋯Br2v 0.83 (6) 2.58 (6) 3.393 (6) 167 (5)
O6—H6D⋯Br3i 0.85 (7) 2.56 (6) 3.378 (6) 162 (7)
Symmetry codes: (i) x+1, y, z; (iv) [-x+{\script{3\over 2}}, -y+1, z+{\script{1\over 2}}]; (v) [-x+2, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (vi) [-x+{\script{3\over 2}}, -y, z+{\script{1\over 2}}]; (vii) [-x+2, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

As shown in Fig. 3[link], two water mol­ecules and two bromide anions along with Sr2+ ions generate a hydrogen-bonded sheet which lies parallel to the a axis. Within this sheet, two Sr2+ ions and two water oxygens form a cyclic motif. Water mol­ecules (O3 and O4) inter­connect the bromide anions, forming a chain. In (I)[link], two mol­ecules (O5 and O6) act as donors for inter­molecular O—H⋯Br hydrogen bonds. These hydrogen bonds generate a cyclic dibromide motif similar to that observed in a related structure (Revathi et al., 2015[Revathi, P., Balakrishnan, T., Ramamurthi, K. & Thamotharan, S. (2015). Acta Cryst. E71, 875-878.]). Adjacent dibromide motifs in (I)[link], which run parallel to the b axis, are inter­connected by proline ligands through inter­molecular N—H⋯Br hydrogen bonds on both sides (Fig. 3[link]). Adjacent supra­molecular arrangements of cyclic dibromide⋯proline⋯cyclic dibromide motifs are inter­linked further by water mol­ecules (O3 and O4) through O—H⋯Br hydrogen bonds. This entire arrangement forms a butterfly-like structure. The overall hydrogen-bonded supra­molecular structure (Fig. 4[link]) is three-dimensional.

[Figure 3]
Figure 3
The butterfly-like supra­molecular arrangements generated by inter­molecular N—H⋯Br and O—H⋯Br hydrogen bonds. Only atoms involved in hydrogen-bonding inter­actions are labelled.
[Figure 4]
Figure 4
The crystal packing of (I)[link] viewed along the a axis, with hydrogen bonds shown as dashed lines. C-bound H atoms have been omitted for clarity.

4. Synthesis and crystallization

Single crystals of the title complex were obtained by slow evaporation from an aqueous solution of L-proline and strontium bromide hexa­hydrate in a 1:1 stoichiometric molar ratio at 306 K. The prepared solution was stirred well and filtered. The resultant filtered solution was left undisturbed to allow evaporation. After 15 days, colourless prismatic crystals were harvested.

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. One of the carbon (C4) atoms of the pyrrolidine ring appears to be disordered over two sites. These positions were defined for this atom and constrained refinement of the site-occupation factors led to a value of 0.57 (6) for the major component. The positions of amino and water H atoms were located from difference Fourier maps. Further, the O—H distances in the water mol­ecules were restrained to 0.85 (2) Å. The N—H distances of amino group were also restrained, to 0.89 (2) Å. The remaining hydrogen atoms were placed in geometrically idealized positions (C—H = 0.97 Å with Uiso(H) = 1.2Ueq(C) and were constrained to ride on their parent atom. The Flack absolute structure parameter was determined to be 0.008 (8) (788 Friedel pairs; Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.]), indicating an S configuration for C2, consistent with that for the parent L-proline (Kayushina & Vainshtein, 1965[Kayushina, R. L. & Vainshtein, B. K. (1965). Kristallografiya, 10, 833-844.]).

Table 3
Experimental details

Crystal data
Chemical formula [Sr(C5H9NO2)(H2O)4]Br2
Mr 434.63
Crystal system, space group Orthorhombic, P212121
Temperature (K) 296
a, b, c (Å) 6.7079 (4), 12.9125 (9), 15.4499 (11)
V3) 1338.20 (16)
Z 4
Radiation type Mo Kα
μ (mm−1) 10.01
Crystal size (mm) 0.15 × 0.10 × 0.10
 
Data collection
Diffractometer Bruker Kappa APEXII CCD
Absorption correction Multi-scan (SABABS; Bruker, 2004[Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.26, 0.44
No. of measured, independent and observed [I > 2σ(I)] reflections 14183, 2345, 2081
Rint 0.068
(sin θ/λ)max−1) 0.594
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.063, 1.07
No. of reflections 2345
No. of parameters 186
No. of restraints 26
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.60, −0.86
Absolute structure Flack x determined using 788 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter 0.008 (8)
Computer programs: APEX2, SAINT and XPREP (Bruker, 2004[Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SIR92 (Altomare et al., 1993[Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]).

Supporting information


Chemical context top

The study of coordination polymers has been an area of rapid development in recent years due to their inter­esting structures and their wide range of applications as functional materials (Lyhs et al., 2012). Reports of the crystal structures of alkaline earth metal ions combined with anions of amino acids are very limited. As part of our ongoing investigations of the crystal and molecular structures of a series of metal complexes generated from amino acids (Revathi et al.,2015; Sathiskumar et al., 2015a,b; Balakrishnan et al., 2013), we report here the crystal structure of a polymeric strontium–proline complex, {[Sr(C5H9NO2)(H2O)4]2+ 2(Br-)}n, (I).

Structural commentary top

The asymmetric unit of the title complex (I) contains one Sr ion, one bridging proline ligand and four water molecules, two of which are monodentate and two bridging, and two bromide counter-anions (Fig. 1). In (I), the bond lengths involving the carboxyl­ate atoms and the protonation of the amino group suggest that the proline molecule exists in a zwitterionic form. The SrII ion is nine-coordinated by six water oxygen atoms [Sr—O = 2.582 (6)–2.707 (5)Å] and three carboxyl­ate oxygen atoms of zwitterionic proline ligands [Sr—O = 2.524 (4)–2.800 (4) Å; Table 1]. In the strontium–glycine complex, the Sr—O (water) and Sr—O(carboxyl­ate) distances ranges are 2.526 (4)–2.661 (2) and 2.605 (2)–2.703 (2)Å, respectively (Revathi et al., 2015). In (I), one of the carbon atoms (C4) of the pyrrolidine ring is disordered over two sites. In the major component of the pyrrolidine ring, there is a twist conformation on the C2—C5 bond with a pseudo-rotation angle Δ = 40.1 (14)° and a maximum torsion angle φm = 43.8 (10)° for the atom sequence N1–C2–C5–C4A–C3 (Rao et al., 1981). In the minor component, the pyrrolidine ring exhibits an envelope conformation on N1 with a pseudo-rotation angle Δ = 341.5 (19)° and a maximum torsion angle φm = 36.0 (9)° for the atom sequence N1–C2–C5–C4B–C3 (Rao et al., 1981). As shown in Fig. 2, the title complex forms a coordination polymeric chain that lies parallel to the a axis. Adjacent SrII ions are separated by 3.9387 (7) Å within a chain.

Supra­molecular features top

The crystal structure of (I), is stabilized by inter­molecular N—H···Br and O—H···Br hydrogen bonds (Table 2). One of the characteristic features observed in amino acid complexes is the head-to-tail sequence in which amino acids are self-associated through their amino and carboxyl­ate groups (Sharma et al., 2006; Selvaraj et al., 2007; Balakrishnan et al., 2013; Revathi et al., 2015). In the crystal structure of the L-proline lithium bromide monohydrate complex, there is a head-to-tail sequence observed (Sathiskumar et al., 2015a). In contrast, there is no direct hydrogen-bonding inter­action between the proline molecules in (I).

As shown in Fig. 3, two water molecules and two bromide anions along with Sr ions generate a hydrogen-bonded sheet which lies parallel to the a axis. Within this sheet, two Sr ions and two water oxygens form a cyclic motif. Water molecules (O3 and O4) inter­connect the bromide anions, forming a chain. In (I), two molecules (O5 and O6) act as donors for inter­molecular O—H···Br hydrogen bonds. These hydrogen bonds generate a cyclic dibromide motif similar to that observed in a related structure (Revathi et al., 2015). Adjacent dibromide motifs in (I), which run parallel to the b axis, are inter­connected by proline ligands through inter­molecular N—H···Br hydrogen bonds on both sides (Fig. 3). Adjacent supra­molecular arrangements of cyclic dibromide···proline···cyclic dibromide motifs are inter­linked further by water molecules (O3 and O4) through O—H···Br hydrogen bonds. This entire arrangement forms a butterfly-like structure. The overall hydrogen-bonded supra­molecular structure (Fig. 4) is three-dimensional.

Synthesis and crystallization top

Single crystals of the title complex were obtained by slow evaporation from an aqueous solution of L-proline and strontium bromide hexahydrate in a 1:1 stoichiometric molar ratio at room temperature (306 K). The prepared solution was stirred well and filtered. The resultant filtered solution was left undisturbed to allow evaporation. After 15 days, colourless prismatic crystals were harvested.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 3. One of the carbon (C4) atoms of the pyrrolidine ring appears to be disordered over two sites. These positions were defined for this atom and constrained refinement of the site-occupation factors led to a value of 0.57 (6) for the major component. The positions of amino and water H atoms were located from difference Fourier maps. Further, the O—H distances in the water molecules were restrained to 0.85 (2) Å. The N—H distances of amino group were also restrained, to 0.89 (2) Å. The remaining hydrogen atoms were placed in geometrically idealized positions (C—H = 0.97 Å with Uiso(H) = 1.2Ueq(C) and were constrained to ride on their parent atom. The Flack absolute structure parameter was determined to be 0.008 (8) (788 Friedel pairs; Parsons et al., 2013), indicating an S configuration for C2, consistent with that for the parent L-proline (Kayushina & Vainshtein, 1965).

Related literature top

For related literature, see: Balakrishnan et al. (2013); Kayushina & Vainshtein (1965); Lyhs et al. (2012); Parsons et al. (2013); Rao et al. (1981); Revathi et al. (2015); Sathiskumar et al. (2015a, 2015b); Selvaraj et al. (2007); Sharma et al. (2006).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: PLATON (Spek, 2009) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015).

Figures top
[Figure 1] Fig. 1. The coordination sphere of Sr2+ in the crystal structure of (I). Only the major components of the proline ligands are shown. Displacement ellipsoids are drawn at the 50% probability level. For symmetry codes, see Table 1.
[Figure 2] Fig. 2. The Sr–water coordination polymeric chain substructure of (I), with peripheral water O—H···Br hydrogen bonds shown as dashed lines.
[Figure 3] Fig. 3. The butterfly-like supramolecular arrangements generated by intermolecular N—H···Br and O—H···Br hydrogen bonds. Only atoms involved in hydrogen-bonding interactions are labelled.
[Figure 4] Fig. 4. The crystal packing of (I) viewed along the a axis, with hydrogen bonds shown as dashed lines. C-bound H atoms have been omitted for clarity.
Poly[[µ2-diaqua-diaqua-µ2-L-proline-κ2O:O'-\ strontium] dibromide] top
Crystal data top
[Sr(C5H9NO2)(H2O)4]Br2Dx = 2.157 Mg m3
Mr = 434.63Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121Cell parameters from 7063 reflections
a = 6.7079 (4) Åθ = 2.6–28.5°
b = 12.9125 (9) ŵ = 10.01 mm1
c = 15.4499 (11) ÅT = 296 K
V = 1338.20 (16) Å3Block, brown
Z = 40.15 × 0.10 × 0.10 mm
F(000) = 840
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2081 reflections with I > 2σ(I)
Radiation source: Sealed tubeRint = 0.068
ω nd φ scanθmax = 25.0°, θmin = 2.6°
Absorption correction: multi-scan
(SABABS; Bruker, 2004)
h = 77
Tmin = 0.26, Tmax = 0.44k = 1515
14183 measured reflectionsl = 1818
2345 independent reflections
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.032 w = 1/[σ2(Fo2) + (0.0267P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.063(Δ/σ)max < 0.001
S = 1.07Δρmax = 0.60 e Å3
2345 reflectionsΔρmin = 0.86 e Å3
186 parametersAbsolute structure: Flack x determined using 788 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
26 restraintsAbsolute structure parameter: 0.008 (8)
Crystal data top
[Sr(C5H9NO2)(H2O)4]Br2V = 1338.20 (16) Å3
Mr = 434.63Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 6.7079 (4) ŵ = 10.01 mm1
b = 12.9125 (9) ÅT = 296 K
c = 15.4499 (11) Å0.15 × 0.10 × 0.10 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2345 independent reflections
Absorption correction: multi-scan
(SABABS; Bruker, 2004)
2081 reflections with I > 2σ(I)
Tmin = 0.26, Tmax = 0.44Rint = 0.068
14183 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.032H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.063Δρmax = 0.60 e Å3
S = 1.07Δρmin = 0.86 e Å3
2345 reflectionsAbsolute structure: Flack x determined using 788 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
186 parametersAbsolute structure parameter: 0.008 (8)
26 restraints
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Sr11.34882 (8)0.24302 (5)0.43342 (4)0.0174 (2)
O11.0492 (6)0.2322 (4)0.3350 (3)0.0257 (16)
O20.7439 (6)0.2420 (4)0.3916 (3)0.0243 (16)
O31.5725 (8)0.3885 (5)0.5016 (4)0.0243 (19)
O41.5819 (8)0.1162 (4)0.5200 (4)0.0213 (17)
O51.3443 (9)0.0648 (4)0.3561 (4)0.035 (2)
O61.3860 (9)0.3899 (5)0.3212 (4)0.038 (2)
N10.9404 (8)0.2529 (6)0.1734 (4)0.026 (2)
C10.8660 (9)0.2426 (5)0.3307 (4)0.018 (2)
C20.7837 (9)0.2600 (6)0.2411 (4)0.021 (2)
C30.8370 (12)0.2347 (7)0.0890 (5)0.042 (3)
C4A0.623 (2)0.211 (3)0.1117 (11)0.034 (7)0.57 (6)
C50.6277 (12)0.1840 (7)0.2082 (5)0.042 (3)
C4B0.660 (5)0.167 (3)0.1117 (13)0.035 (8)0.43 (6)
Br20.18627 (12)0.02641 (6)0.15165 (6)0.0389 (3)
Br30.22307 (13)0.44596 (7)0.11973 (6)0.0466 (3)
H1A1.024 (9)0.199 (4)0.180 (5)0.02 (2)*
H1B1.033 (10)0.303 (5)0.175 (6)0.05 (3)*
H3C1.522 (13)0.429 (5)0.538 (4)0.06 (3)*
H3D1.622 (13)0.422 (5)0.460 (4)0.07 (4)*
H4E1.532 (12)0.085 (5)0.563 (3)0.05 (3)*
H4F1.640 (10)0.075 (4)0.487 (4)0.04 (3)*
H5C1.281 (10)0.060 (6)0.308 (3)0.06 (3)*
H5D1.450 (7)0.030 (6)0.353 (5)0.06 (3)*
H6C1.478 (8)0.432 (5)0.327 (5)0.03 (3)*
H6D1.319 (11)0.402 (7)0.276 (4)0.09 (4)*
H310.897200.177000.058500.0500*0.57 (6)
H320.844800.295800.052700.0500*0.57 (6)
H410.574400.152900.078000.0410*0.57 (6)
H420.538900.270500.101200.0410*0.57 (6)
H510.499200.195600.235300.0500*0.57 (6)
H520.668300.112800.217700.0500*0.57 (6)
H20.726300.329700.239000.0250*
H330.924500.199700.048500.0500*0.43 (6)
H340.793600.299600.063700.0500*0.43 (6)
H430.688500.094900.099600.0420*0.43 (6)
H440.543100.187900.079100.0420*0.43 (6)
H530.495100.211400.218400.0500*0.43 (6)
H540.639700.118700.238800.0500*0.43 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sr10.0142 (3)0.0215 (4)0.0165 (3)0.0003 (3)0.0010 (3)0.0006 (3)
O10.017 (2)0.041 (3)0.019 (3)0.006 (2)0.001 (2)0.003 (3)
O20.024 (2)0.033 (3)0.016 (3)0.004 (3)0.004 (2)0.002 (3)
O30.025 (3)0.029 (3)0.019 (4)0.000 (2)0.000 (3)0.003 (3)
O40.024 (3)0.024 (3)0.016 (3)0.000 (2)0.003 (3)0.000 (3)
O50.033 (3)0.044 (4)0.029 (4)0.006 (3)0.002 (3)0.010 (3)
O60.034 (4)0.043 (4)0.037 (4)0.012 (3)0.011 (3)0.017 (3)
N10.022 (3)0.035 (4)0.022 (4)0.005 (4)0.000 (3)0.004 (4)
C10.025 (4)0.011 (3)0.017 (4)0.001 (3)0.003 (3)0.004 (3)
C20.024 (3)0.026 (4)0.013 (4)0.005 (4)0.002 (3)0.000 (4)
C30.052 (5)0.059 (6)0.015 (4)0.000 (5)0.001 (4)0.001 (4)
C4A0.036 (10)0.041 (15)0.025 (9)0.001 (8)0.007 (7)0.014 (9)
C50.035 (5)0.066 (6)0.025 (5)0.025 (4)0.006 (4)0.004 (5)
C4B0.033 (13)0.042 (17)0.030 (11)0.010 (13)0.005 (10)0.023 (11)
Br20.0357 (5)0.0379 (5)0.0432 (5)0.0057 (4)0.0102 (4)0.0197 (4)
Br30.0505 (6)0.0484 (6)0.0409 (6)0.0239 (4)0.0107 (4)0.0197 (5)
Geometric parameters (Å, º) top
Sr1—O12.524 (4)N1—H1A0.90 (6)
Sr1—O32.625 (6)N1—H1B0.90 (7)
Sr1—O42.630 (6)C1—C21.507 (9)
Sr1—O52.593 (5)C2—C51.522 (11)
Sr1—O62.582 (6)C3—C4A1.509 (17)
Sr1—O2i2.728 (4)C3—C4B1.52 (4)
Sr1—O3ii2.707 (6)C4A—C51.53 (2)
Sr1—O4ii2.651 (5)C4B—C51.52 (2)
Sr1—O2iii2.800 (5)C2—H20.9800
O1—C11.238 (7)C3—H310.9700
O2—C11.248 (8)C3—H320.9700
O3—H3C0.84 (7)C3—H330.9700
O3—H3D0.84 (7)C3—H340.9700
O4—H4E0.85 (6)C4A—H410.9700
O4—H4F0.83 (6)C4A—H420.9700
O5—H5D0.84 (6)C4B—H430.9700
O5—H5C0.86 (5)C4B—H440.9700
O6—H6D0.85 (7)C5—H510.9700
O6—H6C0.83 (6)C5—H540.9700
N1—C31.496 (10)C5—H520.9700
N1—C21.486 (8)C5—H530.9700
O1—Sr1—O3137.44 (18)Sr1—O6—H6D130 (6)
O1—Sr1—O4138.19 (17)Sr1—O6—H6C119 (5)
O1—Sr1—O570.37 (18)H6C—O6—H6D111 (8)
O1—Sr1—O673.32 (18)C2—N1—C3107.2 (5)
O1—Sr1—O2i129.10 (14)C3—N1—H1B117 (6)
O1—Sr1—O3ii69.11 (17)H1A—N1—H1B97 (5)
O1—Sr1—O4ii70.35 (17)C2—N1—H1A114 (5)
O1—Sr1—O2iii112.66 (13)C2—N1—H1B115 (5)
O3—Sr1—O484.36 (18)C3—N1—H1A105 (5)
O3—Sr1—O5145.76 (18)O1—C1—C2115.4 (5)
O3—Sr1—O671.85 (19)O2—C1—C2117.0 (5)
O2i—Sr1—O362.82 (16)O1—C1—O2127.6 (6)
O3—Sr1—O3ii133.75 (19)N1—C2—C5102.2 (6)
O3—Sr1—O4ii77.67 (17)N1—C2—C1112.2 (5)
O2iii—Sr1—O372.95 (16)C1—C2—C5117.6 (6)
O4—Sr1—O571.86 (18)N1—C3—C4B104.6 (10)
O4—Sr1—O6137.87 (18)N1—C3—C4A105.7 (8)
O2i—Sr1—O462.60 (16)C3—C4A—C5104.7 (10)
O3ii—Sr1—O480.08 (17)C3—C4B—C5104.8 (19)
O4—Sr1—O4ii133.67 (19)C2—C5—C4A101.1 (12)
O2iii—Sr1—O472.62 (16)C2—C5—C4B108.8 (15)
O5—Sr1—O6110.10 (19)N1—C2—H2108.00
O2i—Sr1—O584.14 (17)C1—C2—H2108.00
O3ii—Sr1—O566.80 (19)C5—C2—H2108.00
O4ii—Sr1—O5136.53 (18)N1—C3—H31111.00
O2iii—Sr1—O5120.21 (17)N1—C3—H32111.00
O2i—Sr1—O675.56 (17)N1—C3—H33111.00
O3ii—Sr1—O6140.90 (18)N1—C3—H34111.00
O4ii—Sr1—O675.16 (19)C4A—C3—H31111.00
O2iii—Sr1—O6128.45 (18)C4A—C3—H32111.00
O2i—Sr1—O3ii138.60 (17)H31—C3—H32109.00
O2i—Sr1—O4ii136.37 (16)C4B—C3—H33111.00
O2i—Sr1—O2iii118.24 (13)C4B—C3—H34111.00
O3ii—Sr1—O4ii82.36 (17)H33—C3—H34109.00
O2iii—Sr1—O3ii60.87 (16)C3—C4A—H41111.00
O2iii—Sr1—O4ii61.37 (16)C3—C4A—H42111.00
Sr1—O1—C1144.8 (4)C5—C4A—H41111.00
Sr1iv—O2—C1144.7 (4)C5—C4A—H42111.00
Sr1ii—O2—C1124.2 (4)H41—C4A—H42109.00
Sr1iv—O2—Sr1ii90.87 (13)H43—C4B—H44109.00
Sr1—O3—Sr1iii95.2 (2)C3—C4B—H44111.00
Sr1—O4—Sr1iii96.47 (17)C5—C4B—H43111.00
H3C—O3—H3D111 (6)C3—C4B—H43111.00
Sr1iii—O3—H3C115 (5)C5—C4B—H44111.00
Sr1iii—O3—H3D110 (5)C2—C5—H52112.00
Sr1—O3—H3C119 (6)C2—C5—H53110.00
Sr1—O3—H3D107 (5)C2—C5—H51112.00
H4E—O4—H4F111 (6)C4B—C5—H54110.00
Sr1—O4—H4E117 (5)H53—C5—H54108.00
Sr1—O4—H4F111 (4)C2—C5—H54110.00
Sr1iii—O4—H4F107 (4)C4A—C5—H51112.00
Sr1iii—O4—H4E112 (5)C4A—C5—H52112.00
Sr1—O5—H5D119 (5)H51—C5—H52109.00
Sr1—O5—H5C118 (5)C4B—C5—H53110.00
H5C—O5—H5D109 (7)
O3—Sr1—O1—C176.6 (8)O5iii—Sr1iii—O3—Sr1158.1 (2)
O4—Sr1—O1—C1101.4 (8)O6iii—Sr1iii—O3—Sr164.4 (3)
O5—Sr1—O1—C1128.0 (8)O1—Sr1—O4—Sr1iii171.61 (16)
O6—Sr1—O1—C1112.8 (8)O3—Sr1—O4—Sr1iii9.71 (18)
O2i—Sr1—O1—C1167.5 (7)O5—Sr1—O4—Sr1iii145.3 (2)
O3ii—Sr1—O1—C156.1 (8)O6—Sr1—O4—Sr1iii45.1 (3)
O4ii—Sr1—O1—C133.0 (8)O2i—Sr1—O4—Sr1iii52.53 (16)
O2iii—Sr1—O1—C112.5 (8)O3ii—Sr1—O4—Sr1iii146.0 (2)
O1iv—Sr1iv—O2—C15.3 (8)O4ii—Sr1—O4—Sr1iii76.7 (3)
O3iv—Sr1iv—O2—C1125.2 (8)O2iii—Sr1—O4—Sr1iii83.58 (18)
O4iv—Sr1iv—O2—C1136.7 (8)O3—Sr1iii—O4—Sr19.45 (18)
O5iv—Sr1iv—O2—C164.1 (8)O2i—Sr1iii—O4—Sr151.45 (16)
O6iv—Sr1iv—O2—C148.4 (8)O1iii—Sr1iii—O4—Sr179.93 (18)
O2ii—Sr1iv—O2—C1174.6 (7)O3iii—Sr1iii—O4—Sr1128.6 (2)
O3iv—Sr1ii—O2—C1127.5 (6)O4iii—Sr1iii—O4—Sr158.9 (3)
O4iv—Sr1ii—O2—C1135.0 (6)O5iii—Sr1iii—O4—Sr153.5 (3)
O1ii—Sr1ii—O2—C1175.1 (5)O6iii—Sr1iii—O4—Sr1157.2 (2)
O3ii—Sr1ii—O2—C150.0 (5)Sr1—O1—C1—O219.8 (13)
O4ii—Sr1ii—O2—C139.4 (5)Sr1—O1—C1—C2158.9 (6)
O5ii—Sr1ii—O2—C195.3 (5)Sr1iv—O2—C1—O1172.8 (5)
O6ii—Sr1ii—O2—C198.7 (5)Sr1ii—O2—C1—O113.2 (10)
O2iii—Sr1ii—O2—C15.0 (6)Sr1iv—O2—C1—C28.5 (11)
O1—Sr1—O3—Sr1iii171.81 (15)Sr1ii—O2—C1—C2165.5 (4)
O4—Sr1—O3—Sr1iii9.48 (18)C2—N1—C3—C4A10.6 (17)
O5—Sr1—O3—Sr1iii36.0 (4)C3—N1—C2—C534.0 (8)
O6—Sr1—O3—Sr1iii135.3 (2)C3—N1—C2—C1160.9 (6)
O2i—Sr1—O3—Sr1iii52.54 (16)O1—C1—C2—N14.6 (9)
O3ii—Sr1—O3—Sr1iii80.0 (3)O2—C1—C2—C558.5 (9)
O4ii—Sr1—O3—Sr1iii146.5 (2)O2—C1—C2—N1176.6 (6)
O2iii—Sr1—O3—Sr1iii83.01 (17)O1—C1—C2—C5122.7 (7)
O4—Sr1iii—O3—Sr19.45 (18)N1—C2—C5—C4A43.4 (12)
O2i—Sr1iii—O3—Sr151.95 (16)C1—C2—C5—C4A166.7 (12)
O1iii—Sr1iii—O3—Sr181.27 (18)N1—C3—C4A—C517 (2)
O3iii—Sr1iii—O3—Sr155.3 (3)C3—C4A—C5—C237 (2)
O4iii—Sr1iii—O3—Sr1127.5 (2)
Symmetry codes: (i) x+1, y, z; (ii) x1/2, y+1/2, z+1; (iii) x+1/2, y+1/2, z+1; (iv) x1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···Br2i0.90 (6)2.52 (5)3.374 (7)159 (6)
N1—H1B···Br3i0.90 (7)2.40 (7)3.240 (7)156 (8)
O3—H3C···Br3v0.84 (7)2.63 (7)3.440 (6)163 (7)
O3—H3D···Br2vi0.84 (7)2.54 (7)3.376 (6)172 (5)
O4—H4E···Br2vii0.85 (6)2.47 (7)3.281 (6)162 (7)
O4—H4F···Br3viii0.83 (6)2.52 (6)3.347 (6)174 (6)
O5—H5C···Br2i0.86 (5)2.54 (5)3.369 (6)164 (6)
O5—H5D···Br3viii0.84 (6)2.48 (6)3.304 (6)166 (6)
O6—H6C···Br2vi0.83 (6)2.58 (6)3.393 (6)167 (5)
O6—H6D···Br3i0.85 (7)2.56 (6)3.378 (6)162 (7)
Symmetry codes: (i) x+1, y, z; (v) x+3/2, y+1, z+1/2; (vi) x+2, y+1/2, z+1/2; (vii) x+3/2, y, z+1/2; (viii) x+2, y1/2, z+1/2.
Selected bond lengths (Å) top
Sr1—O12.524 (4)Sr1—O2i2.728 (4)
Sr1—O32.625 (6)Sr1—O3ii2.707 (6)
Sr1—O42.630 (6)Sr1—O4ii2.651 (5)
Sr1—O52.593 (5)Sr1—O2iii2.800 (5)
Sr1—O62.582 (6)
Symmetry codes: (i) x+1, y, z; (ii) x1/2, y+1/2, z+1; (iii) x+1/2, y+1/2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···Br2i0.90 (6)2.52 (5)3.374 (7)159 (6)
N1—H1B···Br3i0.90 (7)2.40 (7)3.240 (7)156 (8)
O3—H3C···Br3iv0.84 (7)2.63 (7)3.440 (6)163 (7)
O3—H3D···Br2v0.84 (7)2.54 (7)3.376 (6)172 (5)
O4—H4E···Br2vi0.85 (6)2.47 (7)3.281 (6)162 (7)
O4—H4F···Br3vii0.83 (6)2.52 (6)3.347 (6)174 (6)
O5—H5C···Br2i0.86 (5)2.54 (5)3.369 (6)164 (6)
O5—H5D···Br3vii0.84 (6)2.48 (6)3.304 (6)166 (6)
O6—H6C···Br2v0.83 (6)2.58 (6)3.393 (6)167 (5)
O6—H6D···Br3i0.85 (7)2.56 (6)3.378 (6)162 (7)
Symmetry codes: (i) x+1, y, z; (iv) x+3/2, y+1, z+1/2; (v) x+2, y+1/2, z+1/2; (vi) x+3/2, y, z+1/2; (vii) x+2, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Sr(C5H9NO2)(H2O)4]Br2
Mr434.63
Crystal system, space groupOrthorhombic, P212121
Temperature (K)296
a, b, c (Å)6.7079 (4), 12.9125 (9), 15.4499 (11)
V3)1338.20 (16)
Z4
Radiation typeMo Kα
µ (mm1)10.01
Crystal size (mm)0.15 × 0.10 × 0.10
Data collection
DiffractometerBruker Kappa APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SABABS; Bruker, 2004)
Tmin, Tmax0.26, 0.44
No. of measured, independent and
observed [I > 2σ(I)] reflections
14183, 2345, 2081
Rint0.068
(sin θ/λ)max1)0.594
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.063, 1.07
No. of reflections2345
No. of parameters186
No. of restraints26
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.60, 0.86
Absolute structureFlack x determined using 788 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
Absolute structure parameter0.008 (8)

Computer programs: APEX2 (Bruker, 2004), APEX2 and SAINT (Bruker, 2004), SAINT and XPREP (Bruker, 2004), SIR92 (Altomare et al., 1993), SHELXL2014 (Sheldrick, 2015), PLATON (Spek, 2009) and Mercury (Macrae et al., 2008).

 

Acknowledgements

TB and SS would like to acknowledge the University Grants Commission (UGC), India for providing financial support [Project No. 41-956/2012(SR)]. ST is very grateful to the management of SASTRA University for infrastructural and financial support (Professor TRR grant).

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBalakrishnan, T., Ramamurthi, K., Jeyakanthan, J. & Thamotharan, S. (2013). Acta Cryst. E69, m60–m61.  CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationKayushina, R. L. & Vainshtein, B. K. (1965). Kristallografiya, 10, 833–844.  Google Scholar
First citationLyhs, B., Bläser, D., Wölper, C., Haack, R., Jansen, G. & Schulz, S. (2012). Eur. J. Inorg. Chem. pp. 4350–4355.  Web of Science CSD CrossRef Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationRao, S. T., Westhof, E. & Sundaralingam, M. (1981). Acta Cryst. A37, 421–425.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationRevathi, P., Balakrishnan, T., Ramamurthi, K. & Thamotharan, S. (2015). Acta Cryst. E71, 875–878.  CSD CrossRef IUCr Journals Google Scholar
First citationSathiskumar, S., Balakrishnan, T., Ramamurthi, K. & Thamotharan, S. (2015a). Spectrochim. Acta Part A, 138, 187–194.  Web of Science CSD CrossRef CAS Google Scholar
First citationSathiskumar, S., Balakrishnan, T., Ramamurthi, K. & Thamotharan, S. (2015b). Acta Cryst. E71, 217–219.  CSD CrossRef IUCr Journals Google Scholar
First citationSelvaraj, M., Thamotharan, S., Roy, S. & Vijayan, M. (2007). Acta Cryst. B63, 459–468.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSharma, A., Thamotharan, S., Roy, S. & Vijayan, M. (2006). Acta Cryst. C62, o148–o152.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 10| October 2015| Pages 1199-1202
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds