research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of tetra­aqua­(di­methyl­formamide)­tetra­kis­(μ-N,2-dioxido­benzene-1-carboximidato)tetra­kis­(μ-tri­methyl­acetato)­tetra­manganese(III)sodiumyttrium–di­methyl­formamide–water (1/8.04/0.62)

aDepartment of Chemistry, Shippensburg University, 1871 Old Main Dr., Shippensburg, PA 17257, USA, and bDepartment of Chemistry, Youngstown State University, 1 University Plaza, Youngstown, OH 44555, USA
*Correspondence e-mail: cmzaleski@ship.edu

Edited by R. F. Baggio, Comisión Nacional de Energía Atómica, Argentina (Received 1 September 2015; accepted 29 September 2015; online 10 October 2015)

The synthesis and crystal structure for the title compound, [YNaMn4(C7H4NO3)4(C5H9O2)4(H2O)3.76(C3H7NO)0.24]·8.04C3H7NO·0.62H2O or [YIIINa(OTMA)4[12-MCMn(III)N(shi)-4](H2O)3.76(DMF)0.24·8.04DMF·0.62H2O, where OTMA is tri­methyl­acetate, MC is metallacrown, shi3− is salicyl­hydroximate, and DMF is N,N-di­methyl­formamide, is reported. The macrocyclic metallacrown consists of an –[MnIII–N–O]4– ring repeat unit, and the metallacrown captures one YIII ion and one NaI ion in the central cavity on opposite faces of the metallacrown. Overall the metallacrown is domed towards the side of the NaI ion. Both the YIII and NaI ions are eight-coordinate, and the tri­methyl­acetate anions bridge the central YIII to each ring MnIII ion. The ring MnIII ions are six-coordinate with a tetra­gonally distorted octa­hedral geometry.

1. Chemical context

Since 1989 metallacrowns (MCs) have served as an excellent example of the controllable self-assembly of supra­molecular coordination complexes (Mezei et al., 2007[Mezei, G., Zaleski, C. M. & Pecoraro, V. L. (2007). Chem. Rev. 107, 4933-5003.]). Considered the structural and functional inorganic analogues to crown ethers, metallacrowns self-assemble in solution to form coordination complexes with multiple metal centers. Not only can homometallic complexes be synthesized, but heterobimetallic and heterotrimetallic metallacrowns can also be prepared through one-step reactions (Mezei et al., 2007[Mezei, G., Zaleski, C. M. & Pecoraro, V. L. (2007). Chem. Rev. 107, 4933-5003.]; Azar et al., 2014[Azar, M. R., Boron, T. T., Lutter, J. C., Daly, C. I., Zegalia, K. A., Nimthong, R., Ferrence, G. M., Zeller, M., Kampf, J. W., Pecoraro, V. L. & Zaleski, C. M. (2014). Inorg. Chem. 53, 1729-1742.]). The deliberate formation of supra­molecular coordination complexes, especially those with multiple metal types, remains a synthetic challenge (Cook & Stang, 2015[Cook, T. R. & Stang, P. J. (2015). Chem. Rev. 115, 7001-7045.]; Saalfrank et al., 2008[Saalfrank, R. W., Maid, H. & Scheurer, A. (2008). Angew. Chem. Int. Ed. 47, 8794-8824.]); however, metallacrowns provide a class of mol­ecules that allows the investigation of the formation of multi-metal supra­molecular coordination complexes.

Recently we reported the first synthetic strategy for heterotrimetallic metallacrowns: LnIIIM(OAc)4[12-MCMn(III)N(shi)-4], where LnIII is PrIII to YbIII (except PmIII) and YIII, M is NaI or KI, OAc is acetate, and shi3− is salicyl­hydroximate (Azar et al., 2014[Azar, M. R., Boron, T. T., Lutter, J. C., Daly, C. I., Zegalia, K. A., Nimthong, R., Ferrence, G. M., Zeller, M., Kampf, J. W., Pecoraro, V. L. & Zaleski, C. M. (2014). Inorg. Chem. 53, 1729-1742.]). In the previous report, we demonstrated the ability to systematically replace the central metal ions; however, the metallacrown framework has other points of alteration, in particular the bridging carboxyl­ate anion. In these alkali metal–lanthanide–manganese ion complexes, four acetate anions serve as bridges between the central lanthanide ion and the ring MnIII ions. Potentially the acetate anions could be replaced with other carboxyl­ate monoanions.

Herein we report the synthesis and crystal structure of YIIINa(OTMA)4[12-MCMn(III)N(shi)-4](H2O)3.76(DMF)0.24·8.04DMF·0.62H2O, (1), where OTMA is tri­methyl­acetate and DMF is N,N-di­methyl­formamide. This metallacrown demonstrates the ability to vary the bridging carboxyl­ate monoanion of this heterotrimetallic class of metallacrowns.

[Scheme 1]

2. Structural commentary

The structure of the title compound YIIINa(OTMA)4[12-MCMn(III)N(shi)-4](H2O)3.76(DMF)0.24·8.04DMF·0.62H2O, (1), is based on the typical [12-MCMn(III)N(shi)-4] core. Four shi3− framework ligands and four MnIII ions self-assemble to form an overall square geometry with a –[Mn-N-O]4– repeat unit. The MC ring forms a central cavity with a pseudo-fourfold rotation axis that is capable of binding central metal ions, in this structure an YIII ion and a NaI ion. The two ions are bound on opposite faces of the MC, and the metallacrown is slightly domed with the YIII ion residing on the convex side of the central cavity and the NaI ion residing on the underside of the dome. The YIII ion is also connected to the MC core by four tri­methyl­acetate monoanions that serve to bridge the YIII ion to each ring MnIII ion. The mol­ecular structure is shown in Figs. 1[link] and 2[link].

[Figure 1]
Figure 1
The mol­ecular structure of (1) in top view with displacement ellipsoids at the 50% probability level. For clarity, H atom and lattice solvent mol­ecules have been omitted, and only atom labels for all non-H atoms of the 12-MC-4 framework have been provided. Color scheme: aqua – YIII, green – MnIII, yellow – Na+, red – oxygen, blue – nitro­gen, and gray – carbon.
[Figure 2]
Figure 2
The mol­ecular structure of (1) in side view. For clarity, only atom labels for all non-H atoms of the tri­methyl­acetate anions and the coordinating water mol­ecules and of the metal ions have been provided. For the solvent coordination site to Mn4, a water mol­ecule and DMF mol­ecule are disordered with an occupancy ratio of 0.758 (8):0.242 (8). Only the water mol­ecule is displayed. See Fig. 1[link] for display details.

The ring MnIII ions and the central YIII ion are assigned a 3+ oxidation state based on average bond lengths, calculated bond-valence-sum (BVS) values (Liu & Thorp, 1993[Liu, W. & Thorp, H. H. (1993). Inorg. Chem. 32, 4102-4105.]), and overall mol­ecular charge considerations. For Mn1, Mn2, Mn3, and Mn4, the average bond lengths are 2.05, 2.04, 2.06, and 2.05 Å, respectively, and the calculated BVS values for Mn1–Mn4 are 3.04, 3.06, 3.07, and 3.05 v. u., respectively. In addition, each MnIII possesses elongated axial bond lengths, which would be expected for a high-spin d4 ion. The Y1 ion has an average bond length and BVS value of 2.35 Å and 3.32 v. u., respectively. Mol­ecular charge neutrality considerations also support the assigned oxidation states as the four shi3− ligands and four tri­methyl­acetate monoanions (total 16- charge) are balanced by the presence of four MnIII ions, one YIII ion, and one NaI ion (total 16+ charge).

The YIII ion is eight-coordinate with a distorted square anti­prismatic geometry. The first coordination sphere is provided by two planes of four oxygen atoms each. One plane consists of four carboxyl­ate oxygen atoms from the bridging tri­methyl­acetate anions, and the second plane is formed by four oxime oxygen atoms of the MC ring. The YIII ion lies closer to the mean plane of the carboxyl­ate oxygen atoms (OcarMP), 1.07 Å, than the mean plane of the oxime oxygen atoms (OoxMP), 1.57 Å. Also, the two planes are twisted relative to each other with an average skew angle of 50.02o about the YIII ion (AlDamen et al., 2008[AlDamen, M. A., Clemente-Juan, J. M., Coronado, E., Martí-Gastaldo, C. & Gaita-Ariño, A. (2008). J. Am. Chem. Soc. 130, 8874-8875.], 2009[AlDamen, M. A., Cardona-Serra, S., Clemente-Juan, J. M., Coronado, E., Gaita-Ariño, A., Martí-Gastaldo, C., Luis, F. & Montero, O. (2009). Inorg. Chem. 48, 3467-3479.]). The skew angles were calculated with the program Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]) and determined as previously described (Azar et al., 2014[Azar, M. R., Boron, T. T., Lutter, J. C., Daly, C. I., Zegalia, K. A., Nimthong, R., Ferrence, G. M., Zeller, M., Kampf, J. W., Pecoraro, V. L. & Zaleski, C. M. (2014). Inorg. Chem. 53, 1729-1742.]). For an ideal square-prismatic geometry, the skew angle is 0o, while for an ideal square-anti­prismatic geometry, the skew angle is 45o. Given the measured skew angle and the placement of the YIII ion relative to the two planes of oxygen atoms, the best description of the geometry is distorted square anti­prismatic.

The NaI ion is eight-coordinated with a severely distorted square-anti­prismatic geometry. As in the YIII ion, the first coordination sphere is supplied by two planes of four oxygen atoms each. One plane is composed of the four oxime oxygen atoms of the MC ring, and the second plane consists of oxygen atoms from solvent mol­ecules. Three of the four coordination sites are occupied by water mol­ecules, while a water mol­ecule and DMF mol­ecule are disordered over the fourth site with an occupancy ratio of 0.758 (8):0.242 (8) (complete refinement details are given below). The NaI ion lies closer to the mean plane of the solvent oxygen atoms (OsolventMP), 0.67 Å, than the mean plane of the oxime oxygen atoms, 1.97 Å. Also, the two planes are twisted relative to each other with an average skew angle of 29.18o about the NaI ion. Lastly, the solvent oxygen atoms bridge the central NaI ion to the ring MnIII ions. The water and DMF mol­ecules disordered over the coordin­ation site to the NaI ion bridge the NaI ion to Mn4.

Each ring MnIII is six-coordinate with a tetra­gonally distorted octa­hedral geometry. The equatorial plane is comprised of a six-membered chelate ring and a trans five-membered chelate ring. The six-membered chelate ring is formed from the oxime nitro­gen atom and the phenolate oxygen atom of one shi3− ligand, and the five-membered chelate ring is formed from the oxime oxygen atom and the carbonyl oxygen atom of a second shi3− ligand. Each MnIII ion possesses an elongated axial axis, which is composed of a carboxyl­ate oxygen atom from a bridging tri­methyl­acetate anion and a bridging solvent oxygen atom from either a water or a DMF mol­ecule. The MnIII—Osolvent bond lengths are rather long (2.4–2.5 Å), which is likely due to the simultaneous coordination to the central NaI ion.

The metallacrown is slightly domed toward the central NaI ion. As previously reported, the doming effect is not likely due to the presence of either central metal ion, but likely due to the displacement of each ring MnIII ion from the equatorial mean plane of its first coordination sphere ligand atoms (Azar et al., 2014[Azar, M. R., Boron, T. T., Lutter, J. C., Daly, C. I., Zegalia, K. A., Nimthong, R., Ferrence, G. M., Zeller, M., Kampf, J. W., Pecoraro, V. L. & Zaleski, C. M. (2014). Inorg. Chem. 53, 1729-1742.]). For (1), the average distance of the ring MnIII ions above the equatorial ligand atom mean plane is 0.15 Å. Another indication of the doming effect in the MC is the angle between the axial carboxyl­ate oxygen atom, the ring MnIII ion, and the calculated centroid of the oxime oxygen atoms (Mercury; Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]). In a planar MC, this angle would be 90o. For the title compound, the average angle about the MnIII ions is 101.74o, which indicates that the MC is slightly domed.

In addition to the MC, several solvent mol­ecules are located in the lattice some of which are only partially occupied (complete refinement details are given below). Three different DMF mol­ecules are flipped disordered over two sites, one DMF mol­ecule is disordered over two sites with different orientations, and two DMF mol­ecules are partially occupied. In addition, the disordered water/DMF binding site of the NaI ion is correlated to two DMF mol­ecules, one of which is disordered over two sites with different orientations, and to two partially occupied water mol­ecules. Overall there is a total of 8.04 DMF and 0.62 water mol­ecules located in the lattice.

3. Supra­molecular features

No strong directional inter­molecular inter­actions are observed between the YIIINa(OTMA)4[12-MCMn(III)N(shi)-4](H2O)3.76(DMF)0.24 mol­ecules, but inter­molecular C—H⋯O inter­actions exist between adjacent metallacrowns (Table 1[link]). The inter­actions exist between the carboxyl­ate oxygen atoms (O14 and O20) of the tri­methyl­acetate anions and the benzene carbon atoms (C18 and C25) of the shi3− ligands on adjacent metallacrowns (Fig. 3[link]). In addition, the water mol­ecules (O21, O22, O23, and O24C) coordinating to the NaI ion are hydrogen bonded to several lattice water and DMF mol­ecules (Fig. 4[link]), and the lattice DMF mol­ecules inter­act with the MC mol­ecule through C—H⋯O inter­actions (Fig. 5[link]). The C—H⋯O inter­actions occur between either a phenolate oxygen atoms (O3 and O12) of shi3− ligands, a carboxyl­ate oxygen atom (O8) of a shi3− ligand, or a coordinating water oxygen atom (O21) and carbonyl carbon atoms (C55, C61, and C64B) or a methyl carbon atom (C71B) of lattice DMF mol­ecules (Fig. 5[link]). Lastly, several C—H⋯O inter­actions exist between adjacent solvent mol­ecules (Fig. 6[link]). The carbonyl (C49) or methyl (C51, C53, C56, C59, C63B, C72B, C74, and C75) carbon atoms of DMF mol­ecules inter­act with either an oxygen atom (O34) of a lattice water mol­ecule or carbonyl oxygen atoms (O27, O29, O31, O32, and O32B) of lattice DMF mol­ecules. The hydrogen bonding and weak C—H⋯O inter­actions, in addition to pure van der Waals forces, contribute to the overall packing of the mol­ecules.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C18—H18⋯O20i 0.95 2.60 3.359 (5) 137
C25—H25⋯O14ii 0.95 2.59 3.374 (5) 141
C49—H49⋯O29 0.95 2.58 3.180 (8) 121
C51—H51B⋯O29iii 0.98 2.56 3.376 (9) 141
C53—H53B⋯O31iv 0.98 2.48 3.377 (9) 152
C55—H55⋯O8 0.95 2.36 3.098 (8) 135
C56—H56A⋯O32iv 0.98 2.56 3.499 (17) 162
C59—H59B⋯O29 0.98 2.56 3.262 (11) 129
C61—H61⋯O12 0.95 2.52 3.457 (8) 169
C63B—H63F⋯O32Biii 0.98 2.53 3.34 (6) 140
C64B—H64B⋯O3 0.95 2.50 3.40 (3) 157
C71B—H71D⋯O21 0.98 2.60 3.41 (5) 141
C72B—H72E⋯O34iv 0.98 2.36 3.31 (7) 163
C74—H74B⋯O27 0.98 2.27 2.87 (3) 119
C75—H75C⋯O31 0.98 2.15 2.99 (3) 143
O21—H21A⋯O25 0.82 (2) 2.00 (3) 2.767 (4) 155 (5)
O21—H21B⋯O28 0.83 (2) 2.05 (3) 2.792 (5) 148 (5)
O21—H21B⋯O28B 0.83 (2) 1.87 (3) 2.70 (2) 172 (5)
O22—H22A⋯O25 0.84 (2) 1.96 (3) 2.727 (4) 151 (5)
O22—H22B⋯O26 0.83 (2) 1.93 (3) 2.688 (4) 151 (5)
O23—H23A⋯O27 0.84 (2) 2.06 (3) 2.871 (7) 164 (5)
O23—H23A⋯O24B 0.84 (2) 2.06 (5) 2.696 (19) 132 (5)
O23—H23B⋯O26 0.86 (2) 1.98 (3) 2.789 (5) 155 (5)
O24C—H24A⋯O33 0.86 (2) 1.91 (4) 2.78 (3) 179 (5)
Symmetry codes: (i) -x+2, -y+1, -z+1; (ii) -x+2, -y+1, -z; (iii) -x+1, -y+1, -z; (iv) -x+1, -y+1, -z+1.
[Figure 3]
Figure 3
Inter­molecular C—H⋯O inter­actions between adjacent metallacrowns. For clarity the inter­actions have been divided into two sections (a) and (b), only the H atoms (white) involved in the inter­actions have been included, and only the atoms involved in the inter­actions have been labelled. See Fig. 1[link] for display details. [Symmetry codes: (ii) −x + 2, −y + 1; (iii) −x + 2, −y + 1, −z.]
[Figure 4]
Figure 4
Inter­molecular hydrogen bonding between the water mol­ecules coordin­ating to the Na+ ion and the water and DMF mol­ecules of the lattice. For clarity the hydrogen bonding has been divided into two sections (a) and (b), only the H atoms (white) involved in the hydrogen bonding have been included, and only the atoms involved in the hydrogen bonding have been labelled. See Fig. 1[link] for display details.
[Figure 5]
Figure 5
Inter­molecular C—H⋯O inter­actions between the metallacrown and the DMF mol­ecules of the lattice. For clarity the inter­actions have been divided into two sections (a) and (b), only the H atoms (white) involved in the inter­actions have been included, and only the atoms involved in the inter­actions have been labelled. See Fig. 1[link] for display details.
[Figure 6]
Figure 6
Inter­molecular C—H⋯O inter­actions between adjacent water and DMF mol­ecules. For clarity the inter­actions have been divided into two sections (a) and (b), only the H atoms (white) involved in the inter­actions have been included, and only the atoms involved in the inter­actions have been labelled. See Fig. 1[link] for display details. [Symmetry codes: (iv) −x + 1, −y + 1, −z; (v) −x + 1, −y + 1, −z + 1.]

4. Database survey

The crystal structure of one other yttrium-based heterotrimetallic 12-MC-4 has been reported: YIIINa(OAc)4[12-MCMn(III)N(shi)-4](H2O)4·6DMF, 2 (Azar et al., 2014[Azar, M. R., Boron, T. T., Lutter, J. C., Daly, C. I., Zegalia, K. A., Nimthong, R., Ferrence, G. M., Zeller, M., Kampf, J. W., Pecoraro, V. L. & Zaleski, C. M. (2014). Inorg. Chem. 53, 1729-1742.]). In the title compound (1), tri­methyl­acetate anions bridge the central YIII ion to the ring MnIII ions, while in the previously reported compound (2) acetate anions bridge the YIII ion and the MnIII ions. Also for the previously reported compound (2), there are two independent MCs in each unit cell; thus, the labels (2A) and (2B) will be used to distinguish the two MCs. The replacement of acetate for tri­methyl­acetate does not severely distort the [12-MCMn(III)N(shi)-4] framework. Comparing the two carboxyl­ate monoanion structures, several key features of both MCs are very similar (Table 2[link]). These features were calculated and measured using the program Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]) and in the same manner as previously described (Azar et al., 2014[Azar, M. R., Boron, T. T., Lutter, J. C., Daly, C. I., Zegalia, K. A., Nimthong, R., Ferrence, G. M., Zeller, M., Kampf, J. W., Pecoraro, V. L. & Zaleski, C. M. (2014). Inorg. Chem. 53, 1729-1742.]). Comparable measured values for the MC cavity radii, average adjacent MnIII—MnIII distances, cross cavity MnIII—MnIII distances, and cross cavity oxime oxygen (Oox—Oox) distances demonstrate that the [12-MCMn(III)N(shi)-4] framework is not significantly affected by the identity of the bridging carboxyl­ate anion. In addition, the determined metrics of the central YIII ions and Na+ ions are very similar in both (1) and (2) (Table 2[link]). The greatest deviations between the structures is the distance of the NaI ion from the mean plane of the solvent oxygen atoms. This is likely due to the difference in the first coordination sphere of the NaI ions. In (2A) and (2B) only water mol­ecules bind to the NaI ions, while in (1) a mixture of water and DMF mol­ecules bind to the NaI ion.

Table 2
Structural feature comparison (Å) of YIIINa(OTMA)4[12-MCMn(III)N(shi)-4](H2O)3.76(DMF)0.24·8.04DMF·0.62H2O (1) and YIIINa(OAc)4[12-MCMn(III)N(shi)-4](H2O)4·6DMF (2)

Compound YIII crystal radius MC cavity radius Avg. adjacent MnIII⋯MnIII distance Avg. cross-cavity MnIII⋯MnIII distance Avg. cross-cavity Oox⋯Oox distance YIII—OcarMP distance YIII—OoxMP distance YIII—MnMP distance NaI—OsolventMP distance NaI—OoxMP distance
(1) 1.05 0.55 4.62 6.53 3.71 1.07 1.57 1.91 0.67 1.97
(2A) 1.05 0.55 4.61 6.52 3.70 1.04 1.57 1.92 0.79 1.92
(2B) 1.05 0.55 4.61 6.52 3.70 1.03 1.58 1.93 0.79 1.91

The identity of the bridging ligand does not significantly alter the domed feature of the metallacrown. As stated in the Structural commentary for (1), the average distance of the ring MnIII ions above the equatorial ligand atom mean plane is 0.15 Å, and the average angle about the MnIII ions with respect to the axial carboxyl­ate oxygen atom and the calculated centroid of the oxime oxygen atoms is 101.74o. For (2A) and (2B), the MnIII ions in both structures are on average 0.17 Å above the equatorial ligand atom mean plane, and the average angles about the MnIII ions with respect to the axial carboxyl­ate oxygen atom and the calculated centroid of the oxime oxygen atoms are 102.31 and 102.04o, respectively.

5. Synthesis and crystallization

The title compound (1) was synthesized by first mixing yttrium(III) nitrate hexa­hydrate (0.125 mmol), sodium tri­methyl­acetate hydrate (4 mmol based on an assumption of three waters of hydration), and salicyl­hydroxamic acid (2 mmol) in 10 mL of DMF resulting in a cloudy, white mixture. In a separate beaker, manganese(II) acetate tetra­hydrate (2 mmol) was dissolved in 10 mL of DMF resulting in an orange–red solution. The two solutions were mixed resulting in a dark-brown solution and then allowed to stir overnight. The solution was then filtered to remove a dark-brown precipitate, which was discarded. Slow evaporation of the dark-brown filtrate yielded X-ray quality black/dark-brown crystals after 9 days. The yield was 20% based on yttrium(III) nitrate hexa­hydrate.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. The following low angle reflections were affected by the beam stop and were omitted from the refinement: 1 0 0, 0 1 0, [\overline{1}] [\overline{1}] 1, and [\overline{1}] 1 0. For all of the disordered solvate water and DMF mol­ecules, neighboring atoms were restrained to have similar Uij components of their ADPs if closer than 1.7 Å (SIMU restraints in SHELXL).

Table 3
Experimental details

Crystal data
Chemical formula [YNaMn4(C7H4NO3)4(C5H9O2)4(C3H7NO)0.24(H2O)3.76]·8.04C3H7NO·0.62H2O
Mr 2021.04
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 100
a, b, c (Å) 14.8659 (9), 17.3261 (10), 19.2709 (11)
α, β, γ (°) 83.488 (3), 82.499 (3), 72.805 (3)
V3) 4686.5 (5)
Z 2
Radiation type Cu Kα
μ (mm−1) 5.83
Crystal size (mm) 0.15 × 0.14 × 0.10
 
Data collection
Diffractometer Bruker X8 Prospector CCD
Absorption correction Multi-scan (SADABS; Bruker, 2014[Bruker (2014). APEX2, SADABS, and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.572, 0.753
No. of measured, independent and observed [I > 2σ(I)] reflections 59383, 16375, 14639
Rint 0.045
(sin θ/λ)max−1) 0.596
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.142, 1.02
No. of reflections 16375
No. of parameters 1537
No. of restraints 1505
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 1.73, −0.58
Computer programs: APEX2 and SAINT (Bruker, 2014[Bruker (2014). APEX2, SADABS, and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and SHELXLE (Hübschle et al., 2011[Hübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281-1284.]), Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

The geometries of the DMF mol­ecules associated with N7, N8B, N9, N9B, N10, N10B, N11, N12, N12B, N13, and N13B were restrained to be similar to the DMF mol­ecule associated with N5 (esd = 0.02 Å). For the DMF mol­ecules associated with N7B and N11B, the geometries were restrained to be similar to the DMF mol­ecule associated with N5 (esd = 0.001 Å). For the DMF mol­ecules associated with N8B, N11B, and N13B, the carbon, oxygen, and nitro­gen atoms were restrained to lie in the same plane (e.s.d. = 0.01 Å3).

A water mol­ecule (O24C) and DMF mol­ecule associated with N13 are disordered over a binding site to Na1. The atoms O24 and O24C were given identical coordinates, and to avoid correlation of the thermal parameters, the ADPs of O24 and O24C were constrained to be identical. Subject to these and the above conditions, the occupancy ratio of the disordered water and DMF mol­ecules refined to 0.758 (8) to 0.242 (8). Correlated to the occupation of the binding site to Na1 is a DMF mol­ecule associated with N13B and a DMF mol­ecule associated with N7 that is disordered over two sites with different orientations. Subject to the above restraints, the occupancy ratio of the DMF mol­ecule associated with N13B refined to 0.252 (5), and the occupancy ratio of the disordered DMF mol­ecule associated with N7 refined to 0.748 (5):0.252 (5). In addition, two partially occupied water mol­ecules associated with O33 and O34 are correlated to these water and DMF mol­ecules. The occupancy of the water mol­ecule of O33 and the water mol­ecule of O34 are 0.257 (14) and 0.361 (13), respectively.

Several DMF mol­ecules are disordered, and the above restraints were used to model the data. The DMF mol­ecule associated with N8 is flipped disordered over two sites, and the occupancy ratio refined to 0.813 (7):0.187 (7). The DMF mol­ecule associated with N9 is flipped disordered over two sites, and the occupancy ratio refined to 0.813 (7):0.187 (7). The DMF mol­ecule associated with N10 is disordered over two sites with different orientations, and the occupancy ratio refined to 0.795 (6):0.205 (6). The DMF mol­ecule associated with N11 is flipped disordered over two sites, and the occupancy ratio refined to 0.790 (9):0.210 (9). Two DMF mol­ecules associated with N12 and N12B are partially occupied. The occupancy of the DMF mol­ecule N12 and the DMF mol­ecule 12B are 0.662 (8) and 0.129 (7), respectively.

For the water mol­ecules, the oxygen–hydrogen bond lengths were restrained to 0.84 (2) Å. The hydrogen–hydrogen distances for the water mol­ecules associated with O24, O33, and O34 were restrained to 1.36 (2) Å. For the water mol­ecule O24C, the hydrogen atoms were restrained to a distance of at least 2.90 (2) Å from Na1. For the water mol­ecules associated with O33 and O34, the hydrogen atoms were refined as riding on the oxygen atoms.

For the methyl group carbon atoms C56B, C62B, C63B, C69, C69B, C71B, C72B, C74, C74B, C75, and C75B, hydrogen atoms were placed in tetra­hedral positions with an ideal staggered geometry (AFIX 33). All other methyl group hydrogen atoms were allowed to rotate. All other hydrogen atoms were placed in calculated positions and refined as riding on their carrier atoms with C—H distances of 0.95 Å for sp2 carbon atoms and 0.98 Å for methyl carbon atoms. The Uiso values for hydrogen atoms were set to a multiple of the value of the carrying carbon atom (1.2 times for sp2-hybridized carbon atoms or 1.5 times for methyl carbon atoms and water oxygen atoms).

Several larger than desired residual electron density peaks remain after refinement of the data, which is typical for this class of compounds. The origin of these peaks is usually caused either by minor twinning, excessive twinning with multiple components that is beyond what can be completely handled with current integration and absorption correction software, pseudosymmetry (and correlation), or additional disorder not defined well enough to be modeled. In the case of the presented structure, the residual electron density is mostly due to additional disorder. The 3rd, 4th, 5th and 7th largest residual electron density peaks are due to alternative positions of manganese atoms of a minor moiety of the metallacrown unit (whole mol­ecule disorder). The height of these peaks, 1.3 to 1.2 electrons per Å3, indicate the presence of less than 5% of the second moiety, and most other atoms (carbon, nitro­gen, and oxygen) are not resolved. The 2nd largest residual density peak (1.71 electrons per Å3) is located close to the yttrium atom and is within the typical range of residual electron density peaks close to heavy atoms. The two remaining residual electron density peaks, the largest (1.73 electrons per Å3) and 6th largest (1.23 electrons per Å3) are due to minor twinning by a 180.0 degree rotation about the 1 1 0 reciprocal lattice direction (twin law 0.215 0.785 −0.203, 1.215 −0.215 −0.203, 0 0 −1). Refinement as a non-merohedric twin does reduce these peaks to 1.14 and 0.71 electrons per Å3, respectively; however, the R1 value slightly increases to 0.0553 from 0.0525. Also, the other larger residual electron density peaks (see above) are not improved by inclusion of twinning, nor is the structural model in any way changed. Considering the very minor effect, non-merohedric twinning was not used.

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2014); cell refinement: SAINT (Bruker, 2014); data reduction: SAINT (Bruker, 2014); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2008) and SHELXLE Rev714 (Hübschle et al., 2011); molecular graphics: Mercury (Macrae et al., 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Tetraaqua(dimethylformamide)tetrakis(µ-N,2-dioxidobenzene-1-carboximidato)tetrakis(µ-trimethylacetato)tetramanganese(III)sodiumyttrium–dimethylformamide–water (1/8.04/0.62) top
Crystal data top
[YNaMn4(C7H4NO3)4(C5H9O2)4(C3H7NO)0.24(H2O)3.76]·8.04C3H7NO·0.62H2OZ = 2
Mr = 2021.04F(000) = 2106.3
Triclinic, P1Dx = 1.432 Mg m3
a = 14.8659 (9) ÅCu Kα radiation, λ = 1.54178 Å
b = 17.3261 (10) ÅCell parameters from 9921 reflections
c = 19.2709 (11) Åθ = 2.7–66.8°
α = 83.488 (3)°µ = 5.83 mm1
β = 82.499 (3)°T = 100 K
γ = 72.805 (3)°Plate, black
V = 4686.5 (5) Å30.15 × 0.14 × 0.10 mm
Data collection top
Bruker X8 Prospector CCD
diffractometer
16375 independent reflections
Radiation source: I-mu-S microsource X-ray tube14639 reflections with I > 2σ(I)
Laterally graded multilayer (Goebel) mirror monochromatorRint = 0.045
ω and phi scansθmax = 66.9°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2014)
h = 1717
Tmin = 0.572, Tmax = 0.753k = 2020
59383 measured reflectionsl = 2222
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053Hydrogen site location: mixed
wR(F2) = 0.142H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0737P)2 + 11.125P]
where P = (Fo2 + 2Fc2)/3
16375 reflections(Δ/σ)max = 0.005
1537 parametersΔρmax = 1.73 e Å3
1505 restraintsΔρmin = 0.58 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. For all of the disordered solvate water and DMF molecules, neighboring atoms were restrained to have similar Uij components of their ADPs if closter than 1.7 Angstoms (SIMU restraints in Shelxl).

The geometries of the DMF molecules associated with N7, N8B, N9, N9B, N10, N10B, N11, N12, N12B, N13, and N13B were restrained to be similar to the DMF molecule associated with N5 (esd = 0.02 Angstrom). For the DMF molecules associated with N7B and N11B, the geometries were restrained to be similar to the DMF molecule associated with N5 (esd = 0.001 Angstrom). For the DMF molecules associated with N8B, N11B, and N13B, the carbon, oxygen, and nitrogen atoms were restrained to lie in the same plane (0.01 Angstroms cubed).

A water molecule (O24C) and DMF molecule associated with N13 are disordered over a binding site to Na1. The atoms O24 and O24C were given identical coordinates, and to avoid correlation of the thermal parameters, the ADP of O24 and O24C were constrained to be identical. Subject to these and the above conditions, the occupancy ratio of the disordered water and DMF molecules refined to 0.758 (8) to 0.242 (8). Correlated to the occupation of the binding site is a DMF molecule associated with N13B and a DMF molecule associated with N7 that is disordered over two sites with different orientations. Subject to the above restraints, the occupancy ratio of the DMF molecule associated with N13B refined to 0.252 (5), and the occupancy ratio of the disordered DMF molecule associated with N7 refined to 0.748 (5) to 0.252 (5). In addition, two partially occupied water molecules associated with O33 and O34 are correlated to these water and DMF molecules. The occupancy of the water molecule of O33 and the water molecule of O34 are 0.257 (14) and 0.361 (13), respectively.

Several DMF molecules are disordered, and the above restraints were used to model the data. The DMF molecule associated with N8 is flipped disordered over two sites, and the occupancy ratio refined to 0.813 (7) to 0.187 (7). The DMF molecule associated with N9 is flipped disordered over two sites, and the occupancy ratio refined to 0.813 (7) to 0.187 (7). The DMF molecule associated with N10 is disordered over two sites with different orientations, and the occupancy ratio refined to 0.795 (6) to 0.205 (6). The DMF molecule associated with N11 is flipped disordered over two sites, and the occupancy ratio refined to 0.790 (9) to 0.210 (9). Two DMF molecules associated with N12 and N12B are partially occupied. The occupancy of the DMF molecule N12 and the DMF molecule 12B are 0.662 (8) and 0.129 (7), respectively.

For the water molecules, the oxygen-hydrogen bond distances were restrained to 0.84 (2) Angstrom. The hydrogen-hydrogen distances for the water molecules associated with O24, O33, and O34 were restrained to 1.36 (2) Angstroms. For the water molecule O24C, the hydrogen atoms were restrained to a distance of at least 2.90 (2) Angstroms from Na1. For the water molecules associated with O33 and O34, the hydrogen atoms were refined as riding on the oxygen atoms.

For the methyl group carbon atoms 56B, 62B, 63B, 69, 69B, 71B, 72B, 74, 74B, 75, and 75B, hydrogen atoms were placed in tetrahedral positions with an ideal staggered geometry (AFIX 33). All other methyl group hydrogen atoms were allowed to rotate. All other hydrogen atoms were placed in calculated positions and refined as riding on their carrier atoms with C-H distances of 0.95 Angstrom for sp2 carbon atoms and 0.98 Angstrom for methyl carbon atoms. The Uiso values for hydrogen atoms were set to a multiple of the value of the carrying carbon atom (1.2 times for sp2 hybridized carbon atoms or 1.5 times for methyl carbon atoms and water oxygen atoms).

The following low angle reflections were affected by the beam stop and were omitted from the refinement: 1 0 0, 0 1 0, -1 -1 1, and -1 1 0.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.7096 (2)0.7443 (2)0.05094 (17)0.0206 (7)
C20.6469 (3)0.7852 (2)0.00412 (18)0.0240 (7)
C30.5705 (3)0.8557 (2)0.00655 (18)0.0241 (7)
C40.5182 (3)0.8919 (2)0.05003 (19)0.0277 (8)
H40.46740.93990.04410.033*
C50.5393 (3)0.8590 (3)0.1141 (2)0.0319 (9)
H50.50320.88490.15180.038*
C60.6124 (3)0.7886 (3)0.1243 (2)0.0359 (9)
H60.62550.76560.16830.043*
C70.6660 (3)0.7522 (2)0.0695 (2)0.0302 (8)
H70.71640.70410.07630.036*
C80.5234 (2)0.9402 (2)0.26837 (18)0.0212 (7)
C90.4547 (3)0.9900 (2)0.31967 (19)0.0245 (7)
C100.4589 (3)0.9758 (2)0.39318 (19)0.0246 (7)
C110.3913 (3)1.0274 (2)0.4371 (2)0.0289 (8)
H110.39371.01850.48650.035*
C120.3214 (3)1.0907 (2)0.4107 (2)0.0340 (9)
H120.27681.12540.44180.041*
C130.3150 (3)1.1048 (3)0.3384 (2)0.0388 (10)
H130.26601.14810.32020.047*
C140.3812 (3)1.0545 (2)0.2938 (2)0.0330 (9)
H140.37711.06360.24460.040*
C150.7409 (3)0.7195 (2)0.45908 (18)0.0226 (7)
C160.7741 (3)0.6612 (2)0.51876 (18)0.0248 (8)
C170.8440 (3)0.5863 (2)0.50983 (19)0.0258 (8)
C180.8731 (3)0.5362 (2)0.5704 (2)0.0312 (8)
H180.92020.48580.56560.037*
C190.8348 (3)0.5590 (2)0.6365 (2)0.0349 (9)
H190.85640.52440.67650.042*
C200.7645 (3)0.6322 (3)0.6456 (2)0.0374 (10)
H200.73790.64730.69130.045*
C210.7344 (3)0.6823 (2)0.5869 (2)0.0315 (9)
H210.68600.73180.59270.038*
C220.9346 (2)0.5280 (2)0.24097 (18)0.0223 (7)
C230.9801 (3)0.4625 (2)0.1944 (2)0.0255 (8)
C240.9629 (3)0.4678 (2)0.12331 (19)0.0254 (8)
C251.0121 (3)0.4030 (2)0.0831 (2)0.0307 (8)
H251.00200.40590.03510.037*
C261.0744 (3)0.3355 (2)0.1116 (2)0.0357 (9)
H261.10680.29240.08310.043*
C271.0910 (3)0.3289 (2)0.1818 (2)0.0398 (10)
H271.13370.28160.20140.048*
C281.0442 (3)0.3923 (2)0.2223 (2)0.0319 (9)
H281.05550.38850.27020.038*
C290.9785 (3)0.7356 (2)0.0956 (2)0.0275 (8)
C301.0344 (3)0.7837 (3)0.0444 (2)0.0411 (11)
C311.0753 (4)0.8352 (3)0.0832 (3)0.0509 (13)
H31A1.10780.86710.04920.076*
H31B1.12040.80000.11420.076*
H31C1.02400.87190.11120.076*
C321.1134 (4)0.7254 (4)0.0017 (3)0.0678 (18)
H32A1.08620.69390.02440.102*
H32B1.15650.68860.03330.102*
H32C1.14840.75610.03140.102*
C330.9635 (5)0.8392 (3)0.0041 (3)0.0616 (16)
H33A0.91300.87650.02390.092*
H33B0.93610.80610.02830.092*
H33C0.99620.87020.03880.092*
C340.7526 (3)0.9651 (2)0.12915 (19)0.0290 (8)
C350.7756 (3)1.0463 (2)0.1244 (2)0.0371 (10)
C360.7445 (4)1.0949 (3)0.0567 (3)0.0551 (13)
H36A0.75901.14680.05350.083*
H36B0.67621.10460.05620.083*
H36C0.77821.06450.01660.083*
C370.7184 (3)1.0906 (3)0.1889 (3)0.0492 (12)
H37A0.65111.09590.18830.074*
H37B0.72761.14460.18700.074*
H37C0.74061.05930.23220.074*
C380.8809 (3)1.0344 (3)0.1280 (3)0.0458 (11)
H38A0.91751.00590.08780.069*
H38B0.90021.00230.17170.069*
H38C0.89251.08730.12700.069*
C390.7880 (3)0.9357 (2)0.3575 (2)0.0286 (8)
C400.8520 (3)0.9791 (3)0.3829 (2)0.0401 (10)
C410.9221 (3)1.0004 (3)0.3245 (3)0.0461 (11)
H41A0.96370.95070.30530.069*
H41B0.96021.02910.34340.069*
H41C0.88761.03530.28720.069*
C420.9077 (4)0.9190 (4)0.4386 (3)0.0657 (17)
H42A0.94320.86850.41750.099*
H42B0.86350.90750.47790.099*
H42C0.95190.94300.45570.099*
C430.7913 (5)1.0551 (4)0.4162 (4)0.0710 (19)
H43A0.75481.09220.38100.107*
H43B0.83211.08160.43450.107*
H43C0.74791.04060.45480.107*
C441.0183 (3)0.7055 (2)0.32290 (19)0.0292 (8)
C451.1210 (3)0.7093 (3)0.3051 (2)0.0350 (9)
C461.1251 (3)0.7950 (3)0.2804 (3)0.0467 (11)
H46A1.08800.81520.24030.070*
H46B1.19110.79440.26630.070*
H46C1.09890.83040.31870.070*
C471.1641 (3)0.6538 (3)0.2449 (3)0.0471 (11)
H47A1.12530.67160.20550.071*
H47B1.16580.59780.26150.071*
H47C1.22860.65670.22950.071*
C481.1755 (4)0.6780 (3)0.3692 (3)0.0542 (13)
H48A1.17590.62170.38280.081*
H48B1.14490.71140.40820.081*
H48C1.24080.68080.35790.081*
O260.3919 (2)0.8164 (2)0.29808 (18)0.0521 (8)
C520.3186 (3)0.8741 (3)0.3082 (3)0.0495 (12)
H520.29800.91160.26960.059*
N60.2689 (3)0.8853 (3)0.3696 (2)0.0510 (10)
C530.2997 (5)0.8315 (4)0.4300 (3)0.0709 (17)
H53A0.34430.78100.41450.106*
H53B0.24480.81960.45810.106*
H53C0.33090.85730.45850.106*
C540.1848 (4)0.9538 (4)0.3792 (4)0.0719 (19)
H54A0.19660.99100.40920.108*
H54B0.13160.93420.40130.108*
H54C0.16950.98220.33340.108*
O270.4821 (5)0.7058 (5)0.5099 (3)0.099 (2)0.748 (5)
C550.4849 (6)0.7581 (7)0.5502 (4)0.082 (2)0.748 (5)
H550.51910.79530.53080.099*0.748 (5)
N70.4468 (6)0.7670 (6)0.6144 (4)0.089 (2)0.748 (5)
C560.3832 (8)0.7197 (8)0.6489 (6)0.123 (4)0.748 (5)
H56A0.40480.69470.69430.184*0.748 (5)
H56B0.38390.67730.61900.184*0.748 (5)
H56C0.31860.75560.65630.184*0.748 (5)
C570.4594 (8)0.8258 (8)0.6569 (6)0.106 (3)0.748 (5)
H57A0.48640.86470.62700.127*0.748 (5)
H57B0.50230.79800.69230.127*0.748 (5)
H57C0.39800.85450.68040.127*0.748 (5)
O27B0.486 (2)0.7133 (14)0.7576 (9)0.175 (10)0.252 (5)
C55B0.4904 (18)0.7687 (13)0.7122 (8)0.116 (6)0.252 (5)
H55B0.51960.80750.72230.140*0.252 (5)
N7B0.4572 (12)0.7783 (8)0.6510 (7)0.098 (4)0.252 (5)
C56B0.4258 (19)0.7137 (11)0.6292 (11)0.125 (7)0.252 (5)
H56D0.40300.72960.58270.188*0.252 (5)
H56E0.47870.66410.62710.188*0.252 (5)
H56F0.37430.70400.66310.188*0.252 (5)
C57B0.4632 (18)0.8464 (12)0.6004 (10)0.096 (5)0.252 (5)
H57D0.52550.85540.59930.115*0.252 (5)
H57E0.41370.89520.61420.115*0.252 (5)
H57F0.45460.83420.55370.115*0.252 (5)
O280.7538 (3)0.4474 (3)0.2625 (3)0.0522 (12)0.813 (7)
C580.8097 (5)0.3802 (4)0.2689 (4)0.0566 (16)0.813 (7)
H580.84910.37080.30580.068*0.813 (7)
N80.8218 (5)0.3195 (4)0.2308 (4)0.0559 (14)0.813 (7)
C590.7602 (8)0.3316 (6)0.1739 (5)0.090 (3)0.813 (7)
H59A0.79930.31630.12990.134*0.813 (7)
H59B0.72350.38880.16870.134*0.813 (7)
H59C0.71700.29790.18560.134*0.813 (7)
C600.8925 (7)0.2423 (5)0.2366 (5)0.078 (2)0.813 (7)
H60A0.93090.23240.19140.117*0.813 (7)
H60B0.86130.19930.24970.117*0.813 (7)
H60C0.93310.24240.27270.117*0.813 (7)
O28B0.7439 (16)0.4344 (12)0.2246 (14)0.068 (5)0.187 (7)
C58B0.8040 (16)0.3744 (12)0.2020 (13)0.060 (3)0.187 (7)
H58B0.84330.38310.16070.072*0.187 (7)
N8B0.8185 (17)0.3000 (13)0.2296 (14)0.065 (4)0.187 (7)
C59B0.765 (3)0.276 (2)0.2927 (17)0.093 (8)0.187 (7)
H59D0.73040.32430.31780.139*0.187 (7)
H59E0.80780.23770.32320.139*0.187 (7)
H59F0.71910.25070.27970.139*0.187 (7)
C60B0.892 (2)0.2353 (17)0.198 (2)0.082 (7)0.187 (7)
H60D0.95360.24360.19960.123*0.187 (7)
H60E0.88110.23490.14840.123*0.187 (7)
H60F0.88980.18330.22280.123*0.187 (7)
O24B0.5766 (16)0.6104 (12)0.4575 (11)0.094 (5)0.252 (5)
C73B0.6222 (16)0.5394 (13)0.4589 (17)0.093 (5)0.252 (5)
H73B0.65280.52460.41390.112*0.252 (5)
N13B0.6396 (13)0.4791 (12)0.5058 (12)0.101 (4)0.252 (5)
C74B0.605 (3)0.480 (2)0.5799 (14)0.142 (11)0.252 (5)
H74D0.62890.42570.60330.213*0.252 (5)
H74E0.62590.51900.60150.213*0.252 (5)
H74F0.53520.49530.58480.213*0.252 (5)
C75B0.700 (2)0.4037 (16)0.4804 (17)0.101 (6)0.252 (5)
H75D0.70970.36150.51940.152*0.252 (5)
H75E0.67090.38750.44410.152*0.252 (5)
H75F0.76170.41110.46060.152*0.252 (5)
O290.6538 (5)0.4705 (4)0.0592 (3)0.094 (2)0.813 (7)
C610.7226 (5)0.4828 (4)0.0228 (4)0.0627 (18)0.813 (7)
H610.77290.48890.04550.075*0.813 (7)
N90.7307 (5)0.4879 (4)0.0460 (3)0.0588 (15)0.813 (7)
C620.6558 (7)0.4829 (6)0.0858 (5)0.085 (3)0.813 (7)
H62A0.65150.52170.12720.127*0.813 (7)
H62B0.59530.49560.05620.127*0.813 (7)
H62C0.67030.42790.10070.127*0.813 (7)
C630.8174 (6)0.4974 (5)0.0839 (6)0.091 (3)0.813 (7)
H63A0.85110.44800.10720.137*0.813 (7)
H63B0.85730.50710.05100.137*0.813 (7)
H63C0.80290.54360.11910.137*0.813 (7)
O29B0.593 (2)0.474 (2)0.0371 (18)0.112 (7)0.187 (7)
C61B0.670 (2)0.460 (2)0.075 (2)0.072 (4)0.187 (7)
H61B0.68430.41660.10420.087*0.187 (7)
N9B0.732 (2)0.501 (2)0.0781 (14)0.073 (4)0.187 (7)
C62B0.783 (3)0.505 (2)0.0198 (18)0.085 (6)0.187 (7)
H62D0.82500.53920.03480.128*0.187 (7)
H62E0.73760.52810.01940.128*0.187 (7)
H62F0.82030.45030.00480.128*0.187 (7)
C63B0.770 (3)0.529 (2)0.1455 (16)0.096 (8)0.187 (7)
H63D0.81490.55870.13880.144*0.187 (7)
H63E0.80240.48290.17290.144*0.187 (7)
H63F0.71830.56570.17070.144*0.187 (7)
O300.1094 (4)1.1136 (3)0.2412 (3)0.0700 (15)0.795 (6)
C640.1762 (5)1.1008 (3)0.1954 (3)0.0485 (15)0.795 (6)
H640.21321.13780.18890.058*0.795 (6)
N100.2021 (4)1.0394 (3)0.1536 (3)0.0428 (12)0.795 (6)
C650.1457 (6)0.9836 (6)0.1555 (5)0.053 (2)0.795 (6)
H65A0.09820.99180.19640.064*0.795 (6)
H65B0.18690.92780.15870.064*0.795 (6)
H65C0.11380.99350.11250.064*0.795 (6)
C660.2827 (6)1.0294 (5)0.1004 (5)0.060 (2)0.795 (6)
H66A0.26141.03140.05400.091*0.795 (6)
H66B0.32900.97690.11010.091*0.795 (6)
H66C0.31201.07300.10130.091*0.795 (6)
O30B0.315 (2)0.8658 (15)0.1790 (17)0.128 (9)0.205 (6)
C64B0.3147 (19)0.9280 (15)0.1396 (17)0.080 (5)0.205 (6)
H64B0.37010.92760.10870.096*0.205 (6)
N10B0.2436 (15)0.9936 (12)0.1381 (13)0.063 (4)0.205 (6)
C65B0.149 (2)0.996 (3)0.173 (2)0.061 (7)0.205 (6)
H65D0.12601.04200.20130.073*0.205 (6)
H65E0.15280.94540.20250.073*0.205 (6)
H65F0.10621.00080.13680.073*0.205 (6)
C66B0.253 (2)1.0673 (16)0.099 (2)0.068 (6)0.205 (6)
H66D0.21861.07730.05740.102*0.205 (6)
H66E0.32021.06200.08440.102*0.205 (6)
H66F0.22711.11280.12870.102*0.205 (6)
O320.4946 (10)0.3953 (7)0.2133 (6)0.149 (4)0.662 (8)
C700.5017 (10)0.4644 (8)0.2209 (7)0.104 (3)0.662 (8)
H700.53510.48960.18430.125*0.662 (8)
N120.4647 (8)0.5032 (6)0.2776 (6)0.097 (3)0.662 (8)
C710.4145 (10)0.4772 (9)0.3425 (7)0.119 (4)0.662 (8)
H71A0.38210.52430.36920.178*0.662 (8)
H71B0.46000.43780.37080.178*0.662 (8)
H71C0.36790.45210.33080.178*0.662 (8)
C720.4817 (9)0.5813 (7)0.2843 (8)0.104 (4)0.662 (8)
H72A0.55000.57450.27920.156*0.662 (8)
H72B0.45420.60020.33050.156*0.662 (8)
H72C0.45220.62120.24760.156*0.662 (8)
O32B0.393 (4)0.438 (3)0.258 (3)0.125 (6)0.129 (7)
C70B0.383 (3)0.489 (4)0.302 (3)0.102 (5)0.129 (7)
H70B0.33050.49850.33640.123*0.129 (7)
N12B0.447 (4)0.529 (4)0.299 (2)0.102 (4)0.129 (7)
C71B0.501 (4)0.539 (4)0.231 (2)0.104 (7)0.129 (7)
H71D0.54570.56960.23640.156*0.129 (7)
H71E0.53660.48550.21580.156*0.129 (7)
H71F0.45800.56840.19680.156*0.129 (7)
C72B0.485 (5)0.540 (4)0.362 (3)0.113 (7)0.129 (7)
H72D0.53050.57100.34890.170*0.129 (7)
H72E0.43340.56840.39470.170*0.129 (7)
H72F0.51670.48630.38360.170*0.129 (7)
N10.7053 (2)0.78168 (17)0.10739 (14)0.0199 (6)
N20.6028 (2)0.89077 (17)0.28938 (14)0.0204 (6)
N30.7847 (2)0.70711 (17)0.39560 (14)0.0206 (6)
N40.8901 (2)0.60026 (17)0.21382 (15)0.0203 (6)
O10.76938 (17)0.73567 (14)0.15509 (12)0.0214 (5)
O20.76892 (17)0.67437 (14)0.04144 (12)0.0239 (5)
O30.54324 (18)0.88879 (15)0.06758 (13)0.0281 (6)
O40.66176 (17)0.84794 (15)0.23461 (12)0.0221 (5)
O50.50616 (17)0.94708 (15)0.20380 (12)0.0244 (5)
O60.52302 (18)0.91461 (16)0.42318 (13)0.0292 (6)
O70.74262 (17)0.76747 (14)0.34465 (12)0.0212 (5)
O80.67041 (18)0.78276 (15)0.47023 (12)0.0252 (5)
O90.88376 (19)0.55938 (16)0.44801 (13)0.0314 (6)
O100.85166 (17)0.65657 (14)0.26463 (12)0.0206 (5)
O110.94163 (18)0.51425 (15)0.30769 (12)0.0259 (5)
O120.90092 (19)0.53000 (15)0.09247 (13)0.0284 (6)
O130.95902 (18)0.75362 (15)0.15842 (13)0.0259 (5)
O140.95353 (18)0.68252 (15)0.07062 (13)0.0277 (6)
O150.81358 (18)0.90155 (15)0.14887 (13)0.0277 (6)
O160.67229 (19)0.96743 (16)0.11445 (14)0.0303 (6)
O170.80583 (19)0.91298 (15)0.29535 (13)0.0296 (6)
O180.71982 (19)0.92547 (16)0.39915 (13)0.0295 (6)
O190.95190 (18)0.76711 (15)0.30493 (13)0.0274 (6)
O201.00531 (19)0.64178 (16)0.35380 (14)0.0300 (6)
O210.7043 (2)0.59229 (17)0.17790 (15)0.0327 (6)
H21A0.664 (3)0.599 (3)0.150 (2)0.049*
H21B0.715 (4)0.5427 (13)0.189 (3)0.049*
O220.5360 (2)0.76725 (18)0.19837 (15)0.0337 (6)
H22A0.518 (4)0.742 (3)0.171 (2)0.050*
H22B0.482 (2)0.778 (3)0.219 (3)0.050*
O230.5523 (2)0.74493 (19)0.36839 (16)0.0385 (7)
H23A0.534 (4)0.725 (3)0.4070 (17)0.058*
H23B0.4944 (19)0.766 (3)0.359 (3)0.058*
O24C0.7301 (2)0.57216 (17)0.34800 (16)0.0374 (7)0.758 (8)
H24A0.693 (3)0.566 (2)0.3854 (16)0.056*0.758 (8)
H24B0.742 (4)0.5272 (10)0.3291 (16)0.056*0.758 (8)
O240.7301 (2)0.57216 (17)0.34800 (16)0.0374 (7)0.242 (8)
C730.7336 (14)0.5073 (10)0.3849 (10)0.053 (3)0.242 (8)
H730.78390.46220.36990.064*0.242 (8)
N130.6797 (15)0.4908 (12)0.4407 (11)0.083 (4)0.242 (8)
C740.589 (2)0.554 (2)0.455 (2)0.086 (6)0.242 (8)
H74A0.55330.53700.49730.129*0.242 (8)
H74B0.60160.60500.46180.129*0.242 (8)
H74C0.55150.56260.41490.129*0.242 (8)
C750.672 (3)0.4096 (14)0.458 (2)0.105 (7)0.242 (8)
H75A0.62860.40870.50140.157*0.242 (8)
H75B0.64650.39260.41990.157*0.242 (8)
H75C0.73410.37230.46580.157*0.242 (8)
O330.614 (2)0.5511 (17)0.4696 (16)0.097 (4)0.257 (14)
H33E0.64740.57630.48480.145*0.257 (14)
H33F0.57170.54680.50140.145*0.257 (14)
O340.6567 (9)0.3773 (8)0.5029 (7)0.073 (4)0.361 (13)
H34A0.64070.40590.53790.109*0.361 (13)
H34B0.60560.37670.48820.109*0.361 (13)
O250.5452 (2)0.6557 (2)0.10663 (18)0.0504 (8)
C490.5246 (4)0.6532 (3)0.0472 (3)0.0533 (12)
H490.57020.61840.01670.064*
N50.4446 (3)0.6948 (3)0.0228 (2)0.0572 (11)
C500.3745 (4)0.7508 (5)0.0669 (3)0.087 (2)
H50A0.38000.80580.05460.130*
H50B0.38520.73500.11630.130*
H50C0.31100.74940.05960.130*
C510.4265 (5)0.6905 (4)0.0491 (3)0.0772 (19)
H51A0.40890.74520.07270.116*
H51B0.37480.66600.04850.116*
H51C0.48380.65730.07450.116*
O310.8265 (6)0.2547 (5)0.4425 (5)0.124 (3)0.790 (9)
C670.9164 (7)0.2283 (6)0.4274 (5)0.086 (2)0.790 (9)
H670.94190.17290.41810.104*0.790 (9)
N110.9754 (5)0.2716 (5)0.4240 (4)0.0768 (19)0.790 (9)
C680.9530 (8)0.3518 (6)0.4479 (6)0.089 (3)0.790 (9)
H68A0.97510.38770.41090.133*0.790 (9)
H68B0.98440.34920.49010.133*0.790 (9)
H68C0.88440.37290.45880.133*0.790 (9)
C691.0730 (6)0.2372 (6)0.3946 (6)0.093 (3)0.790 (9)
H69A1.10890.27620.39530.139*0.790 (9)
H69B1.10200.18720.42260.139*0.790 (9)
H69C1.07370.22490.34600.139*0.790 (9)
O31B0.9091 (16)0.1627 (9)0.4682 (14)0.123 (6)0.210 (9)
C67B0.8859 (10)0.2372 (8)0.4658 (12)0.092 (4)0.210 (9)
H67B0.82070.26450.47600.110*0.210 (9)
N11B0.9444 (10)0.2819 (8)0.4504 (12)0.091 (4)0.210 (9)
C68B1.0447 (11)0.2424 (14)0.435 (2)0.100 (7)0.210 (9)
H68D1.05340.18780.42070.150*0.210 (9)
H68E1.07730.23880.47650.150*0.210 (9)
H68F1.07100.27400.39620.150*0.210 (9)
C69B0.9116 (19)0.3701 (8)0.449 (2)0.098 (7)0.210 (9)
H69D0.96560.39220.43610.147*0.210 (9)
H69E0.86610.39110.41370.147*0.210 (9)
H69F0.88080.38640.49500.147*0.210 (9)
Na10.66419 (10)0.68887 (9)0.26918 (8)0.0300 (3)
Mn10.84339 (4)0.63331 (3)0.12120 (3)0.01926 (13)
Mn20.60623 (4)0.87295 (3)0.14702 (3)0.01915 (13)
Mn30.63617 (4)0.84893 (3)0.38408 (3)0.02020 (13)
Mn40.87530 (4)0.60976 (3)0.35842 (3)0.02184 (14)
Y10.83176 (2)0.80033 (2)0.23623 (2)0.01941 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0219 (17)0.0207 (17)0.0181 (16)0.0060 (14)0.0003 (13)0.0003 (13)
C20.0255 (18)0.0303 (19)0.0174 (17)0.0098 (15)0.0057 (14)0.0018 (14)
C30.0284 (19)0.0244 (18)0.0206 (17)0.0095 (15)0.0038 (14)0.0006 (14)
C40.0278 (19)0.0282 (19)0.0253 (19)0.0062 (16)0.0061 (15)0.0039 (15)
C50.032 (2)0.041 (2)0.0209 (18)0.0080 (18)0.0116 (16)0.0074 (16)
C60.042 (2)0.046 (2)0.0195 (18)0.010 (2)0.0057 (17)0.0055 (17)
C70.030 (2)0.033 (2)0.0254 (19)0.0042 (16)0.0035 (16)0.0047 (16)
C80.0224 (17)0.0175 (16)0.0205 (17)0.0027 (14)0.0013 (14)0.0027 (13)
C90.0219 (18)0.0208 (17)0.0249 (18)0.0022 (14)0.0018 (14)0.0048 (14)
C100.0212 (18)0.0238 (18)0.0268 (18)0.0026 (15)0.0039 (14)0.0020 (15)
C110.028 (2)0.032 (2)0.0239 (18)0.0050 (16)0.0003 (15)0.0042 (15)
C120.033 (2)0.029 (2)0.032 (2)0.0035 (17)0.0058 (17)0.0097 (17)
C130.036 (2)0.031 (2)0.036 (2)0.0115 (18)0.0021 (18)0.0039 (18)
C140.036 (2)0.030 (2)0.0242 (19)0.0041 (17)0.0035 (16)0.0010 (16)
C150.0255 (18)0.0220 (17)0.0204 (17)0.0069 (15)0.0025 (14)0.0018 (14)
C160.0308 (19)0.0275 (19)0.0162 (17)0.0098 (16)0.0041 (14)0.0034 (14)
C170.0292 (19)0.0273 (19)0.0206 (18)0.0087 (15)0.0029 (15)0.0012 (14)
C180.037 (2)0.0269 (19)0.0268 (19)0.0052 (17)0.0076 (16)0.0051 (16)
C190.048 (3)0.034 (2)0.0216 (19)0.0111 (19)0.0101 (17)0.0105 (16)
C200.051 (3)0.039 (2)0.0174 (18)0.008 (2)0.0013 (17)0.0017 (16)
C210.039 (2)0.028 (2)0.0230 (19)0.0044 (17)0.0024 (16)0.0002 (15)
C220.0214 (17)0.0188 (17)0.0236 (18)0.0016 (14)0.0023 (14)0.0001 (14)
C230.0251 (18)0.0180 (17)0.0293 (19)0.0007 (14)0.0006 (15)0.0056 (14)
C240.0239 (18)0.0234 (18)0.0272 (18)0.0045 (15)0.0021 (15)0.0016 (15)
C250.034 (2)0.0271 (19)0.030 (2)0.0048 (16)0.0002 (16)0.0096 (16)
C260.036 (2)0.027 (2)0.041 (2)0.0009 (17)0.0035 (18)0.0173 (18)
C270.040 (2)0.023 (2)0.048 (3)0.0074 (18)0.009 (2)0.0071 (18)
C280.039 (2)0.0261 (19)0.0263 (19)0.0001 (17)0.0062 (17)0.0055 (16)
C290.0265 (19)0.0259 (19)0.0265 (19)0.0033 (15)0.0034 (15)0.0052 (15)
C300.050 (3)0.046 (3)0.033 (2)0.027 (2)0.016 (2)0.0150 (19)
C310.062 (3)0.054 (3)0.046 (3)0.036 (3)0.025 (2)0.024 (2)
C320.070 (4)0.076 (4)0.071 (4)0.051 (3)0.045 (3)0.045 (3)
C330.106 (5)0.055 (3)0.033 (3)0.045 (3)0.002 (3)0.006 (2)
C340.032 (2)0.0258 (19)0.0226 (18)0.0020 (16)0.0029 (15)0.0021 (15)
C350.032 (2)0.027 (2)0.051 (3)0.0097 (17)0.0041 (19)0.0052 (18)
C360.050 (3)0.043 (3)0.073 (4)0.022 (2)0.010 (3)0.019 (3)
C370.041 (3)0.033 (2)0.075 (4)0.009 (2)0.005 (2)0.012 (2)
C380.037 (2)0.039 (2)0.063 (3)0.016 (2)0.003 (2)0.004 (2)
C390.032 (2)0.0227 (18)0.028 (2)0.0026 (16)0.0017 (16)0.0037 (15)
C400.045 (3)0.048 (3)0.034 (2)0.023 (2)0.0065 (19)0.0156 (19)
C410.046 (3)0.051 (3)0.050 (3)0.026 (2)0.006 (2)0.015 (2)
C420.061 (3)0.112 (5)0.039 (3)0.049 (4)0.010 (2)0.001 (3)
C430.072 (4)0.071 (4)0.084 (4)0.044 (3)0.029 (3)0.047 (3)
C440.031 (2)0.032 (2)0.0231 (18)0.0049 (17)0.0065 (15)0.0053 (16)
C450.028 (2)0.035 (2)0.042 (2)0.0083 (17)0.0079 (18)0.0016 (18)
C460.038 (2)0.043 (3)0.062 (3)0.017 (2)0.007 (2)0.004 (2)
C470.038 (3)0.040 (2)0.058 (3)0.010 (2)0.009 (2)0.005 (2)
C480.040 (3)0.064 (3)0.060 (3)0.016 (2)0.020 (2)0.008 (3)
O260.0374 (18)0.068 (2)0.051 (2)0.0147 (17)0.0045 (15)0.0159 (17)
C520.032 (2)0.068 (3)0.054 (3)0.019 (2)0.001 (2)0.021 (3)
N60.038 (2)0.065 (3)0.056 (3)0.022 (2)0.0059 (19)0.025 (2)
C530.082 (4)0.074 (4)0.063 (4)0.038 (4)0.021 (3)0.021 (3)
C540.040 (3)0.086 (4)0.094 (5)0.013 (3)0.005 (3)0.049 (4)
O270.104 (5)0.158 (7)0.057 (4)0.082 (5)0.000 (3)0.004 (4)
C550.067 (4)0.142 (6)0.053 (4)0.057 (4)0.002 (3)0.010 (4)
N70.072 (4)0.138 (6)0.063 (4)0.049 (4)0.008 (3)0.002 (4)
C560.091 (7)0.172 (9)0.088 (7)0.045 (7)0.037 (6)0.031 (7)
C570.069 (5)0.168 (9)0.083 (6)0.035 (6)0.009 (5)0.033 (6)
O27B0.155 (18)0.20 (2)0.144 (18)0.016 (18)0.013 (16)0.023 (17)
C55B0.094 (9)0.164 (11)0.085 (9)0.031 (10)0.005 (9)0.014 (9)
N7B0.079 (6)0.148 (7)0.073 (6)0.042 (6)0.000 (6)0.010 (6)
C56B0.097 (11)0.166 (11)0.096 (10)0.030 (11)0.016 (10)0.011 (10)
C57B0.062 (9)0.147 (11)0.088 (10)0.051 (9)0.004 (9)0.003 (10)
O280.067 (3)0.032 (2)0.057 (3)0.014 (2)0.005 (2)0.002 (2)
C580.071 (4)0.038 (3)0.063 (3)0.019 (3)0.007 (3)0.006 (3)
N80.070 (3)0.039 (3)0.065 (3)0.025 (2)0.002 (3)0.018 (2)
C590.121 (7)0.078 (5)0.066 (5)0.016 (5)0.011 (5)0.023 (4)
C600.084 (5)0.048 (4)0.102 (6)0.016 (4)0.002 (5)0.022 (4)
O28B0.088 (9)0.047 (8)0.072 (9)0.024 (7)0.005 (9)0.008 (8)
C58B0.075 (6)0.044 (5)0.066 (6)0.025 (5)0.004 (5)0.010 (5)
N8B0.078 (6)0.047 (6)0.071 (5)0.020 (5)0.001 (5)0.011 (5)
C59B0.104 (14)0.073 (13)0.088 (13)0.018 (12)0.013 (13)0.002 (12)
C60B0.089 (11)0.060 (11)0.097 (12)0.025 (10)0.004 (12)0.015 (11)
O24B0.121 (11)0.086 (10)0.077 (9)0.044 (9)0.003 (9)0.014 (9)
C73B0.097 (8)0.096 (7)0.081 (8)0.041 (7)0.019 (7)0.017 (7)
N13B0.099 (7)0.107 (7)0.090 (7)0.033 (6)0.001 (6)0.018 (6)
C74B0.113 (18)0.152 (19)0.138 (19)0.003 (17)0.020 (17)0.001 (18)
C75B0.093 (11)0.119 (11)0.088 (11)0.036 (10)0.020 (10)0.033 (10)
O290.122 (5)0.080 (4)0.072 (4)0.020 (4)0.003 (4)0.002 (3)
C610.066 (4)0.052 (3)0.073 (4)0.014 (3)0.016 (3)0.016 (3)
N90.065 (3)0.050 (3)0.068 (4)0.027 (2)0.000 (3)0.013 (3)
C620.101 (6)0.078 (6)0.078 (6)0.024 (5)0.024 (5)0.010 (5)
C630.081 (5)0.067 (5)0.126 (7)0.037 (4)0.026 (5)0.013 (5)
O29B0.116 (13)0.098 (13)0.123 (14)0.035 (12)0.002 (12)0.012 (12)
C61B0.079 (7)0.062 (7)0.083 (7)0.028 (7)0.008 (7)0.011 (7)
N9B0.077 (6)0.060 (6)0.086 (6)0.024 (5)0.009 (6)0.015 (6)
C62B0.084 (10)0.067 (10)0.102 (10)0.018 (9)0.007 (10)0.011 (10)
C63B0.092 (13)0.076 (13)0.120 (14)0.032 (12)0.013 (13)0.019 (13)
O300.066 (3)0.068 (3)0.068 (3)0.003 (3)0.003 (3)0.021 (3)
C640.057 (4)0.038 (3)0.055 (4)0.016 (3)0.020 (3)0.000 (3)
N100.049 (3)0.040 (3)0.048 (3)0.025 (2)0.011 (2)0.001 (2)
C650.061 (4)0.056 (5)0.057 (5)0.036 (3)0.009 (3)0.010 (4)
C660.068 (5)0.063 (5)0.060 (4)0.035 (4)0.001 (4)0.007 (4)
O30B0.116 (16)0.104 (16)0.139 (18)0.010 (14)0.035 (15)0.011 (15)
C64B0.079 (9)0.078 (9)0.078 (9)0.023 (8)0.008 (9)0.001 (9)
N10B0.068 (7)0.064 (7)0.064 (7)0.031 (6)0.002 (6)0.001 (6)
C65B0.068 (11)0.056 (11)0.065 (12)0.026 (10)0.003 (10)0.015 (10)
C66B0.072 (11)0.068 (12)0.065 (10)0.030 (10)0.006 (10)0.013 (11)
O320.180 (10)0.154 (9)0.113 (7)0.032 (8)0.060 (7)0.006 (7)
C700.114 (7)0.106 (7)0.109 (7)0.050 (6)0.043 (6)0.014 (6)
N120.087 (5)0.100 (6)0.115 (6)0.053 (5)0.015 (5)0.026 (5)
C710.107 (8)0.116 (8)0.130 (9)0.049 (7)0.002 (7)0.042 (7)
C720.094 (7)0.098 (7)0.129 (9)0.055 (6)0.002 (7)0.018 (7)
O32B0.123 (10)0.127 (10)0.126 (10)0.045 (10)0.020 (10)0.025 (10)
C70B0.094 (8)0.104 (9)0.119 (9)0.055 (8)0.019 (8)0.027 (8)
N12B0.097 (7)0.103 (8)0.118 (8)0.054 (7)0.024 (7)0.026 (7)
C71B0.101 (11)0.103 (11)0.117 (12)0.053 (11)0.020 (11)0.025 (11)
C72B0.103 (11)0.110 (11)0.128 (12)0.048 (11)0.011 (11)0.029 (11)
N10.0207 (14)0.0223 (14)0.0152 (13)0.0033 (12)0.0052 (11)0.0015 (11)
N20.0187 (14)0.0221 (14)0.0166 (14)0.0011 (12)0.0032 (11)0.0049 (11)
N30.0258 (15)0.0182 (14)0.0143 (13)0.0022 (12)0.0036 (11)0.0034 (11)
N40.0233 (15)0.0165 (14)0.0184 (14)0.0014 (11)0.0005 (11)0.0054 (11)
O10.0227 (12)0.0190 (11)0.0187 (11)0.0004 (10)0.0047 (9)0.0000 (9)
O20.0271 (13)0.0220 (12)0.0192 (12)0.0005 (10)0.0028 (10)0.0048 (10)
O30.0286 (14)0.0257 (13)0.0247 (13)0.0023 (11)0.0066 (11)0.0033 (10)
O40.0200 (12)0.0258 (12)0.0155 (11)0.0008 (10)0.0007 (9)0.0041 (9)
O50.0258 (13)0.0237 (12)0.0183 (12)0.0015 (10)0.0030 (10)0.0011 (10)
O60.0281 (14)0.0337 (14)0.0199 (12)0.0012 (11)0.0007 (10)0.0023 (11)
O70.0229 (12)0.0192 (11)0.0160 (11)0.0004 (10)0.0012 (9)0.0031 (9)
O80.0286 (13)0.0238 (13)0.0175 (12)0.0004 (11)0.0002 (10)0.0022 (10)
O90.0361 (15)0.0253 (13)0.0231 (13)0.0032 (11)0.0007 (11)0.0028 (10)
O100.0256 (12)0.0157 (11)0.0169 (11)0.0005 (9)0.0000 (9)0.0033 (9)
O110.0317 (14)0.0206 (12)0.0196 (12)0.0016 (10)0.0043 (10)0.0002 (10)
O120.0357 (15)0.0243 (13)0.0225 (13)0.0022 (11)0.0049 (11)0.0056 (10)
O130.0248 (13)0.0289 (13)0.0217 (13)0.0053 (11)0.0026 (10)0.0052 (10)
O140.0317 (14)0.0274 (13)0.0239 (13)0.0101 (11)0.0043 (11)0.0052 (11)
O150.0290 (14)0.0254 (13)0.0247 (13)0.0045 (11)0.0003 (11)0.0023 (10)
O160.0322 (15)0.0269 (13)0.0327 (14)0.0108 (11)0.0058 (11)0.0036 (11)
O170.0367 (15)0.0253 (13)0.0258 (13)0.0081 (11)0.0005 (11)0.0047 (11)
O180.0293 (14)0.0326 (14)0.0270 (13)0.0101 (11)0.0041 (11)0.0093 (11)
O190.0278 (14)0.0272 (13)0.0255 (13)0.0034 (11)0.0066 (11)0.0030 (10)
O200.0293 (14)0.0296 (14)0.0297 (14)0.0068 (11)0.0073 (11)0.0044 (11)
O210.0360 (16)0.0293 (14)0.0341 (15)0.0104 (13)0.0069 (12)0.0006 (12)
O220.0302 (15)0.0360 (16)0.0348 (16)0.0112 (13)0.0029 (12)0.0051 (12)
O230.0369 (16)0.0433 (17)0.0347 (16)0.0144 (14)0.0015 (13)0.0018 (13)
O24C0.0448 (17)0.0280 (14)0.0382 (16)0.0118 (13)0.0002 (13)0.0009 (12)
O240.0448 (17)0.0280 (14)0.0382 (16)0.0118 (13)0.0002 (13)0.0009 (12)
C730.057 (6)0.050 (6)0.053 (6)0.026 (5)0.004 (5)0.009 (5)
N130.084 (7)0.083 (6)0.079 (6)0.036 (6)0.007 (6)0.023 (6)
C740.089 (11)0.098 (10)0.072 (10)0.040 (10)0.000 (9)0.018 (9)
C750.097 (11)0.116 (11)0.092 (11)0.030 (10)0.008 (10)0.032 (10)
O330.100 (8)0.099 (7)0.085 (7)0.042 (7)0.017 (6)0.018 (6)
O340.073 (7)0.091 (7)0.070 (7)0.056 (5)0.011 (5)0.026 (5)
O250.053 (2)0.0454 (18)0.056 (2)0.0126 (16)0.0182 (17)0.0072 (16)
C490.058 (3)0.045 (3)0.064 (3)0.019 (2)0.019 (3)0.004 (2)
N50.053 (2)0.057 (3)0.067 (3)0.024 (2)0.023 (2)0.014 (2)
C500.047 (3)0.114 (6)0.078 (4)0.006 (4)0.005 (3)0.031 (4)
C510.092 (5)0.077 (4)0.077 (4)0.041 (4)0.040 (4)0.017 (3)
O310.128 (6)0.150 (6)0.128 (6)0.099 (5)0.031 (5)0.039 (5)
C670.108 (5)0.105 (5)0.071 (5)0.079 (4)0.019 (4)0.014 (4)
N110.096 (5)0.097 (4)0.060 (4)0.073 (4)0.006 (3)0.004 (3)
C680.119 (7)0.103 (6)0.072 (5)0.082 (6)0.018 (6)0.020 (5)
C690.084 (6)0.085 (6)0.109 (8)0.034 (5)0.010 (6)0.021 (6)
O31B0.132 (11)0.143 (11)0.108 (11)0.070 (10)0.009 (10)0.009 (10)
C67B0.108 (7)0.114 (6)0.076 (7)0.069 (6)0.003 (6)0.015 (6)
N11B0.111 (7)0.108 (6)0.075 (6)0.074 (6)0.011 (6)0.010 (6)
C68B0.105 (12)0.109 (11)0.084 (12)0.040 (11)0.009 (12)0.008 (11)
C69B0.123 (13)0.110 (11)0.071 (11)0.061 (11)0.011 (12)0.000 (11)
Na10.0306 (8)0.0275 (7)0.0303 (8)0.0058 (6)0.0019 (6)0.0044 (6)
Mn10.0231 (3)0.0161 (3)0.0155 (3)0.0002 (2)0.0028 (2)0.0023 (2)
Mn20.0202 (3)0.0180 (3)0.0155 (3)0.0006 (2)0.0024 (2)0.0015 (2)
Mn30.0203 (3)0.0211 (3)0.0140 (3)0.0012 (2)0.0003 (2)0.0006 (2)
Mn40.0272 (3)0.0174 (3)0.0152 (3)0.0012 (2)0.0008 (2)0.0001 (2)
Y10.02044 (16)0.01900 (16)0.01589 (15)0.00179 (11)0.00074 (11)0.00104 (11)
Geometric parameters (Å, º) top
C1—O21.287 (4)C74B—H74D0.9800
C1—N11.313 (4)C74B—H74E0.9800
C1—C21.481 (5)C74B—H74F0.9800
C2—C71.404 (5)C75B—H75D0.9800
C2—C31.414 (5)C75B—H75E0.9800
C3—O31.329 (4)C75B—H75F0.9800
C3—C41.402 (5)O29—C611.222 (9)
C4—C51.379 (5)C61—N91.311 (8)
C4—H40.9500C61—H610.9500
C5—C61.386 (6)N9—C631.441 (9)
C5—H50.9500N9—C621.460 (9)
C6—C71.385 (6)C62—H62A0.9800
C6—H60.9500C62—H62B0.9800
C7—H70.9500C62—H62C0.9800
C8—O51.288 (4)C63—H63A0.9800
C8—N21.320 (5)C63—H63B0.9800
C8—C91.475 (5)C63—H63C0.9800
C9—C141.408 (5)O29B—C61B1.245 (16)
C9—C101.417 (5)C61B—N9B1.310 (15)
C10—O61.332 (4)C61B—H61B0.9500
C10—C111.395 (5)N9B—C63B1.441 (15)
C11—C121.371 (6)N9B—C62B1.455 (15)
C11—H110.9500C62B—H62D0.9800
C12—C131.397 (6)C62B—H62E0.9800
C12—H120.9500C62B—H62F0.9800
C13—C141.381 (6)C63B—H63D0.9800
C13—H130.9500C63B—H63E0.9800
C14—H140.9500C63B—H63F0.9800
C15—O81.289 (4)O30—C641.225 (7)
C15—N31.317 (5)C64—N101.342 (7)
C15—C161.475 (5)C64—H640.9500
C16—C211.409 (5)N10—C651.450 (8)
C16—C171.414 (5)N10—C661.453 (8)
C17—O91.329 (4)C65—H65A0.9800
C17—C181.408 (5)C65—H65B0.9800
C18—C191.376 (6)C65—H65C0.9800
C18—H180.9500C66—H66A0.9800
C19—C201.396 (6)C66—H66B0.9800
C19—H190.9500C66—H66C0.9800
C20—C211.383 (5)O30B—C64B1.247 (15)
C20—H200.9500C64B—N10B1.303 (14)
C21—H210.9500C64B—H64B0.9500
C22—O111.293 (4)N10B—C66B1.443 (14)
C22—N41.315 (4)N10B—C65B1.462 (15)
C22—C231.474 (5)C65B—H65D0.9800
C23—C281.406 (5)C65B—H65E0.9800
C23—C241.414 (5)C65B—H65F0.9800
C24—O121.332 (4)C66B—H66D0.9800
C24—C251.401 (5)C66B—H66E0.9800
C25—C261.369 (6)C66B—H66F0.9800
C25—H250.9500O32—C701.258 (11)
C26—C271.393 (6)C70—N121.319 (12)
C26—H260.9500C70—H700.9500
C27—C281.378 (6)N12—C711.467 (11)
C27—H270.9500N12—C721.469 (11)
C28—H280.9500C71—H71A0.9800
C29—O141.251 (5)C71—H71B0.9800
C29—O131.261 (4)C71—H71C0.9800
C29—C301.537 (6)C72—H72A0.9800
C30—C321.521 (6)C72—H72B0.9800
C30—C311.522 (6)C72—H72C0.9800
C30—C331.538 (8)O32B—C70B1.250 (16)
C31—H31A0.9800C70B—N12B1.323 (15)
C31—H31B0.9800C70B—H70B0.9500
C31—H31C0.9800N12B—C72B1.440 (16)
C32—H32A0.9800N12B—C71B1.468 (16)
C32—H32B0.9800C71B—H71D0.9800
C32—H32C0.9800C71B—H71E0.9800
C33—H33A0.9800C71B—H71F0.9800
C33—H33B0.9800C72B—H72D0.9800
C33—H33C0.9800C72B—H72E0.9800
C34—O161.251 (5)C72B—H72F0.9800
C34—O151.259 (5)N1—O11.415 (4)
C34—C351.534 (6)N1—Mn21.964 (3)
C35—C361.518 (7)N2—O41.408 (4)
C35—C381.527 (6)N2—Mn31.956 (3)
C35—C371.553 (7)N3—O71.411 (4)
C36—H36A0.9800N3—Mn41.962 (3)
C36—H36B0.9800N4—O101.406 (4)
C36—H36C0.9800N4—Mn11.963 (3)
C37—H37A0.9800O1—Mn11.925 (2)
C37—H37B0.9800O1—Y12.439 (2)
C37—H37C0.9800O1—Na12.717 (3)
C38—H38A0.9800O2—Mn11.956 (2)
C38—H38B0.9800O3—Mn21.850 (3)
C38—H38C0.9800O4—Mn21.925 (2)
C39—O181.250 (5)O4—Y12.419 (2)
C39—O171.274 (5)O4—Na12.752 (3)
C39—C401.529 (6)O5—Mn21.956 (2)
C40—C431.516 (7)O6—Mn31.850 (3)
C40—C411.523 (6)O7—Mn31.919 (2)
C40—C421.547 (8)O7—Y12.429 (2)
C41—H41A0.9800O7—Na12.676 (3)
C41—H41B0.9800O8—Mn31.943 (2)
C41—H41C0.9800O9—Mn41.846 (3)
C42—H42A0.9800O10—Mn41.927 (2)
C42—H42B0.9800O10—Y12.427 (2)
C42—H42C0.9800O10—Na12.667 (3)
C43—H43A0.9800O11—Mn41.954 (2)
C43—H43B0.9800O12—Mn11.854 (3)
C43—H43C0.9800O13—Y12.261 (2)
C44—O201.248 (5)O14—Mn12.140 (3)
C44—O191.271 (5)O15—Y12.270 (2)
C44—C451.540 (6)O16—Mn22.143 (3)
C45—C461.522 (6)O17—Y12.281 (3)
C45—C481.526 (6)O18—Mn32.132 (3)
C45—C471.542 (6)O19—Y12.261 (2)
C46—H46A0.9800O20—Mn42.152 (3)
C46—H46B0.9800O21—Na12.460 (3)
C46—H46C0.9800O21—Mn12.466 (3)
C47—H47A0.9800O21—H21A0.82 (2)
C47—H47B0.9800O21—H21B0.83 (2)
C47—H47C0.9800O22—Mn22.423 (3)
C48—H48A0.9800O22—Na12.463 (3)
C48—H48B0.9800O22—H22A0.84 (2)
C48—H48C0.9800O22—H22B0.83 (2)
O26—C521.252 (6)O23—Na12.449 (3)
C52—N61.312 (6)O23—H23A0.84 (2)
C52—H520.9500O23—H23B0.86 (2)
N6—C531.440 (8)O24C—Na12.424 (3)
N6—C541.455 (7)O24C—Mn42.469 (3)
C53—H53A0.9800O24C—H24A0.863 (19)
C53—H53B0.9800O24C—H24B0.859 (19)
C53—H53C0.9800O24—C731.251 (12)
C54—H54A0.9800O24—Na12.424 (3)
C54—H54B0.9800O24—Mn42.469 (3)
C54—H54C0.9800C73—N131.313 (14)
O27—C551.271 (9)C73—H730.9500
C55—N71.298 (9)N13—C751.447 (15)
C55—H550.9500N13—C741.483 (15)
N7—C571.444 (10)C74—H74A0.9800
N7—C561.477 (10)C74—H74B0.9800
C56—H56A0.9800C74—H74C0.9800
C56—H56B0.9800C75—H75A0.9800
C56—H56C0.9800C75—H75B0.9800
C57—H57A0.9800C75—H75C0.9800
C57—H57B0.9800O33—H33E0.8447
C57—H57C0.9800O33—H33F0.8356
O27B—C55B1.232 (6)O34—H34A0.8494
C55B—N7B1.311 (6)O34—H34B0.8475
C55B—H55B0.9500O25—C491.232 (5)
N7B—C56B1.453 (7)C49—N51.311 (6)
N7B—C57B1.460 (6)C49—H490.9500
C56B—H56D0.9800N5—C501.452 (7)
C56B—H56E0.9800N5—C511.459 (6)
C56B—H56F0.9800C50—H50A0.9800
C57B—H57D0.9800C50—H50B0.9800
C57B—H57E0.9800C50—H50C0.9800
C57B—H57F0.9800C51—H51A0.9800
O28—C581.218 (8)C51—H51B0.9800
C58—N81.306 (9)C51—H51C0.9800
C58—H580.9500O31—C671.284 (10)
N8—C601.439 (10)C67—N111.304 (8)
N8—C591.476 (11)C67—H670.9500
C59—H59A0.9800N11—C681.445 (9)
C59—H59B0.9800N11—C691.461 (10)
C59—H59C0.9800C68—H68A0.9800
C60—H60A0.9800C68—H68B0.9800
C60—H60B0.9800C68—H68C0.9800
C60—H60C0.9800C69—H69A0.9800
O28B—C58B1.233 (15)C69—H69B0.9800
C58B—N8B1.304 (14)C69—H69C0.9800
C58B—H58B0.9500O31B—C67B1.232 (6)
N8B—C60B1.444 (15)C67B—N11B1.311 (6)
N8B—C59B1.455 (15)C67B—H67B0.9500
C59B—H59D0.9800N11B—C68B1.452 (7)
C59B—H59E0.9800N11B—C69B1.459 (6)
C59B—H59F0.9800C68B—H68D0.9800
C60B—H60D0.9800C68B—H68E0.9800
C60B—H60E0.9800C68B—H68F0.9800
C60B—H60F0.9800C69B—H69D0.9800
O24B—C73B1.215 (15)C69B—H69E0.9800
C73B—N13B1.290 (14)C69B—H69F0.9800
C73B—H73B0.9500Na1—Y13.5343 (15)
N13B—C75B1.448 (15)Na1—Mn43.6079 (16)
N13B—C74B1.454 (15)Na1—Mn33.6382 (15)
O2—C1—N1121.6 (3)O32—C70—N12122.8 (13)
O2—C1—C2119.4 (3)O32—C70—H70118.6
N1—C1—C2119.0 (3)N12—C70—H70118.6
C7—C2—C3119.6 (3)C70—N12—C71129.9 (11)
C7—C2—C1117.7 (3)C70—N12—C72119.3 (10)
C3—C2—C1122.8 (3)C71—N12—C72110.5 (11)
O3—C3—C4117.6 (3)N12—C71—H71A109.5
O3—C3—C2124.1 (3)N12—C71—H71B109.5
C4—C3—C2118.2 (3)H71A—C71—H71B109.5
C5—C4—C3121.1 (4)N12—C71—H71C109.5
C5—C4—H4119.5H71A—C71—H71C109.5
C3—C4—H4119.5H71B—C71—H71C109.5
C4—C5—C6120.9 (3)N12—C72—H72A109.5
C4—C5—H5119.5N12—C72—H72B109.5
C6—C5—H5119.5H72A—C72—H72B109.5
C7—C6—C5119.2 (4)N12—C72—H72C109.5
C7—C6—H6120.4H72A—C72—H72C109.5
C5—C6—H6120.4H72B—C72—H72C109.5
C6—C7—C2121.0 (4)O32B—C70B—N12B120 (3)
C6—C7—H7119.5O32B—C70B—H70B120.2
C2—C7—H7119.5N12B—C70B—H70B120.2
O5—C8—N2121.2 (3)C70B—N12B—C72B122 (3)
O5—C8—C9119.8 (3)C70B—N12B—C71B117 (2)
N2—C8—C9119.0 (3)C72B—N12B—C71B118 (2)
C14—C9—C10118.9 (3)N12B—C71B—H71D109.5
C14—C9—C8117.9 (3)N12B—C71B—H71E109.5
C10—C9—C8123.2 (3)H71D—C71B—H71E109.5
O6—C10—C11117.7 (3)N12B—C71B—H71F109.5
O6—C10—C9123.7 (3)H71D—C71B—H71F109.5
C11—C10—C9118.6 (3)H71E—C71B—H71F109.5
C12—C11—C10121.5 (4)N12B—C72B—H72D109.5
C12—C11—H11119.3N12B—C72B—H72E109.5
C10—C11—H11119.3H72D—C72B—H72E109.5
C11—C12—C13120.7 (4)N12B—C72B—H72F109.5
C11—C12—H12119.7H72D—C72B—H72F109.5
C13—C12—H12119.7H72E—C72B—H72F109.5
C14—C13—C12118.9 (4)C1—N1—O1112.7 (3)
C14—C13—H13120.6C1—N1—Mn2130.4 (2)
C12—C13—H13120.6O1—N1—Mn2114.56 (19)
C13—C14—C9121.4 (4)C8—N2—O4112.6 (3)
C13—C14—H14119.3C8—N2—Mn3130.1 (2)
C9—C14—H14119.3O4—N2—Mn3115.3 (2)
O8—C15—N3121.0 (3)C15—N3—O7112.3 (3)
O8—C15—C16119.3 (3)C15—N3—Mn4130.6 (2)
N3—C15—C16119.7 (3)O7—N3—Mn4115.36 (19)
C21—C16—C17119.6 (3)C22—N4—O10112.9 (3)
C21—C16—C15117.9 (3)C22—N4—Mn1129.9 (2)
C17—C16—C15122.5 (3)O10—N4—Mn1115.28 (19)
O9—C17—C18117.5 (3)N1—O1—Mn1112.17 (18)
O9—C17—C16124.5 (3)N1—O1—Y1121.55 (18)
C18—C17—C16118.0 (3)Mn1—O1—Y1120.20 (11)
C19—C18—C17121.3 (4)N1—O1—Na1106.95 (17)
C19—C18—H18119.4Mn1—O1—Na1102.09 (10)
C17—C18—H18119.4Y1—O1—Na186.36 (8)
C18—C19—C20121.0 (4)C1—O2—Mn1111.7 (2)
C18—C19—H19119.5C3—O3—Mn2130.0 (2)
C20—C19—H19119.5N2—O4—Mn2112.58 (18)
C21—C20—C19118.9 (4)N2—O4—Y1121.43 (18)
C21—C20—H20120.6Mn2—O4—Y1120.63 (11)
C19—C20—H20120.6N2—O4—Na1104.91 (17)
C20—C21—C16121.3 (4)Mn2—O4—Na1102.99 (10)
C20—C21—H21119.4Y1—O4—Na185.99 (8)
C16—C21—H21119.4C8—O5—Mn2111.9 (2)
O11—C22—N4121.0 (3)C10—O6—Mn3129.7 (2)
O11—C22—C23119.4 (3)N3—O7—Mn3112.68 (18)
N4—C22—C23119.6 (3)N3—O7—Y1121.91 (18)
C28—C23—C24119.2 (3)Mn3—O7—Y1119.81 (11)
C28—C23—C22117.9 (3)N3—O7—Na1103.38 (17)
C24—C23—C22122.9 (3)Mn3—O7—Na1103.48 (10)
O12—C24—C25117.7 (3)Y1—O7—Na187.50 (8)
O12—C24—C23124.1 (3)C15—O8—Mn3112.2 (2)
C25—C24—C23118.2 (3)C17—O9—Mn4130.9 (2)
C26—C25—C24121.3 (4)N4—O10—Mn4112.48 (18)
C26—C25—H25119.3N4—O10—Y1121.36 (18)
C24—C25—H25119.3Mn4—O10—Y1119.71 (11)
C25—C26—C27121.0 (4)N4—O10—Na1106.01 (17)
C25—C26—H26119.5Mn4—O10—Na1102.31 (10)
C27—C26—H26119.5Y1—O10—Na187.74 (8)
C28—C27—C26118.8 (4)C22—O11—Mn4111.9 (2)
C28—C27—H27120.6C24—O12—Mn1129.6 (2)
C26—C27—H27120.6C29—O13—Y1139.9 (2)
C27—C28—C23121.4 (4)C29—O14—Mn1123.2 (2)
C27—C28—H28119.3C34—O15—Y1139.9 (2)
C23—C28—H28119.3C34—O16—Mn2123.8 (2)
O14—C29—O13124.8 (4)C39—O17—Y1140.9 (2)
O14—C29—C30116.8 (3)C39—O18—Mn3124.7 (2)
O13—C29—C30118.4 (3)C44—O19—Y1139.1 (2)
C32—C30—C31110.1 (4)C44—O20—Mn4123.9 (2)
C32—C30—C29109.5 (4)Na1—O21—Mn195.42 (10)
C31—C30—C29111.4 (4)Na1—O21—H21A116 (4)
C32—C30—C33110.1 (4)Mn1—O21—H21A111 (4)
C31—C30—C33109.4 (4)Na1—O21—H21B121 (4)
C29—C30—C33106.2 (4)Mn1—O21—H21B114 (4)
C30—C31—H31A109.5H21A—O21—H21B100 (5)
C30—C31—H31B109.5Mn2—O22—Na198.28 (11)
H31A—C31—H31B109.5Mn2—O22—H22A118 (4)
C30—C31—H31C109.5Na1—O22—H22A117 (4)
H31A—C31—H31C109.5Mn2—O22—H22B122 (4)
H31B—C31—H31C109.5Na1—O22—H22B116 (4)
C30—C32—H32A109.5H22A—O22—H22B88 (5)
C30—C32—H32B109.5Na1—O23—H23A133 (4)
H32A—C32—H32B109.5Na1—O23—H23B115 (4)
C30—C32—H32C109.5H23A—O23—H23B90 (5)
H32A—C32—H32C109.5Na1—O24C—Mn495.00 (10)
H32B—C32—H32C109.5Na1—O24C—H24A115 (2)
C30—C33—H33A109.5Mn4—O24C—H24A119 (4)
C30—C33—H33B109.5Na1—O24C—H24B112.6 (19)
H33A—C33—H33B109.5Mn4—O24C—H24B113 (4)
C30—C33—H33C109.5H24A—O24C—H24B103 (3)
H33A—C33—H33C109.5C73—O24—Na1157.0 (10)
H33B—C33—H33C109.5C73—O24—Mn4108.0 (10)
O16—C34—O15124.4 (4)Na1—O24—Mn495.00 (10)
O16—C34—C35116.8 (3)O24—C73—N13131.1 (17)
O15—C34—C35118.8 (4)O24—C73—H73114.5
C36—C35—C38110.3 (4)N13—C73—H73114.5
C36—C35—C34109.2 (4)C73—N13—C75120.8 (19)
C38—C35—C34111.7 (3)C73—N13—C74115.0 (18)
C36—C35—C37110.5 (4)C75—N13—C74112.9 (19)
C38—C35—C37109.0 (4)N13—C74—H74A109.5
C34—C35—C37106.0 (3)N13—C74—H74B109.5
C35—C36—H36A109.5H74A—C74—H74B109.5
C35—C36—H36B109.5N13—C74—H74C109.5
H36A—C36—H36B109.5H74A—C74—H74C109.5
C35—C36—H36C109.5H74B—C74—H74C109.5
H36A—C36—H36C109.5N13—C75—H75A109.5
H36B—C36—H36C109.5N13—C75—H75B109.5
C35—C37—H37A109.5H75A—C75—H75B109.5
C35—C37—H37B109.5N13—C75—H75C109.5
H37A—C37—H37B109.5H75A—C75—H75C109.5
C35—C37—H37C109.5H75B—C75—H75C109.5
H37A—C37—H37C109.5H33E—O33—H33F107.6
H37B—C37—H37C109.5H34A—O34—H34B106.1
C35—C38—H38A109.5O25—C49—N5125.1 (5)
C35—C38—H38B109.5O25—C49—H49117.5
H38A—C38—H38B109.5N5—C49—H49117.5
C35—C38—H38C109.5C49—N5—C50119.1 (5)
H38A—C38—H38C109.5C49—N5—C51121.8 (5)
H38B—C38—H38C109.5C50—N5—C51119.0 (5)
O18—C39—O17123.6 (4)N5—C50—H50A109.5
O18—C39—C40117.6 (3)N5—C50—H50B109.5
O17—C39—C40118.7 (3)H50A—C50—H50B109.5
C43—C40—C41110.0 (4)N5—C50—H50C109.5
C43—C40—C39109.3 (4)H50A—C50—H50C109.5
C41—C40—C39112.9 (4)H50B—C50—H50C109.5
C43—C40—C42109.9 (5)N5—C51—H51A109.5
C41—C40—C42108.7 (4)N5—C51—H51B109.5
C39—C40—C42105.8 (4)H51A—C51—H51B109.5
C40—C41—H41A109.5N5—C51—H51C109.5
C40—C41—H41B109.5H51A—C51—H51C109.5
H41A—C41—H41B109.5H51B—C51—H51C109.5
C40—C41—H41C109.5O31—C67—N11125.0 (9)
H41A—C41—H41C109.5O31—C67—H67117.5
H41B—C41—H41C109.5N11—C67—H67117.5
C40—C42—H42A109.5C67—N11—C68125.4 (8)
C40—C42—H42B109.5C67—N11—C69118.5 (8)
H42A—C42—H42B109.5C68—N11—C69116.1 (7)
C40—C42—H42C109.5N11—C68—H68A109.5
H42A—C42—H42C109.5N11—C68—H68B109.5
H42B—C42—H42C109.5H68A—C68—H68B109.5
C40—C43—H43A109.5N11—C68—H68C109.5
C40—C43—H43B109.5H68A—C68—H68C109.5
H43A—C43—H43B109.5H68B—C68—H68C109.5
C40—C43—H43C109.5N11—C69—H69A109.5
H43A—C43—H43C109.5N11—C69—H69B109.5
H43B—C43—H43C109.5H69A—C69—H69B109.5
O20—C44—O19124.0 (4)N11—C69—H69C109.5
O20—C44—C45117.9 (3)H69A—C69—H69C109.5
O19—C44—C45118.2 (4)H69B—C69—H69C109.5
C46—C45—C48110.2 (4)O31B—C67B—N11B125.1 (6)
C46—C45—C44111.7 (3)O31B—C67B—H67B117.5
C48—C45—C44109.6 (4)N11B—C67B—H67B117.5
C46—C45—C47109.0 (4)C67B—N11B—C68B119.1 (5)
C48—C45—C47110.1 (4)C67B—N11B—C69B121.9 (5)
C44—C45—C47106.1 (3)C68B—N11B—C69B119.0 (5)
C45—C46—H46A109.5N11B—C68B—H68D109.5
C45—C46—H46B109.5N11B—C68B—H68E109.5
H46A—C46—H46B109.5H68D—C68B—H68E109.5
C45—C46—H46C109.5N11B—C68B—H68F109.5
H46A—C46—H46C109.5H68D—C68B—H68F109.5
H46B—C46—H46C109.5H68E—C68B—H68F109.5
C45—C47—H47A109.5N11B—C69B—H69D109.5
C45—C47—H47B109.5N11B—C69B—H69E109.5
H47A—C47—H47B109.5H69D—C69B—H69E109.5
C45—C47—H47C109.5N11B—C69B—H69F109.5
H47A—C47—H47C109.5H69D—C69B—H69F109.5
H47B—C47—H47C109.5H69E—C69B—H69F109.5
C45—C48—H48A109.5O24—Na1—O2387.79 (11)
C45—C48—H48B109.5O24C—Na1—O2387.79 (11)
H48A—C48—H48B109.5O24—Na1—O2185.54 (11)
C45—C48—H48C109.5O24C—Na1—O2185.54 (11)
H48A—C48—H48C109.5O23—Na1—O21146.26 (12)
H48B—C48—H48C109.5O24—Na1—O22149.78 (12)
O26—C52—N6123.2 (5)O24C—Na1—O22149.78 (12)
O26—C52—H52118.4O23—Na1—O2284.02 (11)
N6—C52—H52118.4O21—Na1—O2285.33 (11)
C52—N6—C53120.0 (5)O24—Na1—O1068.52 (9)
C52—N6—C54121.3 (5)O24C—Na1—O1068.52 (9)
C53—N6—C54118.6 (5)O23—Na1—O10124.35 (11)
N6—C53—H53A109.5O21—Na1—O1083.38 (9)
N6—C53—H53B109.5O22—Na1—O10138.49 (10)
H53A—C53—H53B109.5O24—Na1—O784.56 (10)
N6—C53—H53C109.5O24C—Na1—O784.56 (10)
H53A—C53—H53C109.5O23—Na1—O769.82 (10)
H53B—C53—H53C109.5O21—Na1—O7141.90 (11)
N6—C54—H54A109.5O22—Na1—O7119.17 (10)
N6—C54—H54B109.5O10—Na1—O758.78 (8)
H54A—C54—H54B109.5O24—Na1—O1121.82 (10)
N6—C54—H54C109.5O24C—Na1—O1121.82 (10)
H54A—C54—H54C109.5O23—Na1—O1140.89 (11)
H54B—C54—H54C109.5O21—Na1—O167.70 (9)
O27—C55—N7128.1 (9)O22—Na1—O180.57 (9)
O27—C55—H55116.0O10—Na1—O158.19 (8)
N7—C55—H55116.0O7—Na1—O186.88 (8)
C55—N7—C57123.4 (8)O24—Na1—O4142.11 (11)
C55—N7—C56122.2 (9)O24C—Na1—O4142.11 (11)
C57—N7—C56114.4 (8)O23—Na1—O483.54 (10)
N7—C56—H56A109.5O21—Na1—O4120.40 (10)
N7—C56—H56B109.5O22—Na1—O465.63 (9)
H56A—C56—H56B109.5O10—Na1—O486.37 (8)
N7—C56—H56C109.5O7—Na1—O457.82 (7)
H56A—C56—H56C109.5O1—Na1—O457.35 (7)
H56B—C56—H56C109.5O24—Na1—Y1106.73 (9)
N7—C57—H57A109.5O24C—Na1—Y1106.73 (9)
N7—C57—H57B109.5O23—Na1—Y1107.52 (9)
H57A—C57—H57B109.5O21—Na1—Y1106.08 (8)
N7—C57—H57C109.5O22—Na1—Y1103.48 (8)
H57A—C57—H57C109.5O10—Na1—Y143.32 (5)
H57B—C57—H57C109.5O7—Na1—Y143.36 (5)
O27B—C55B—N7B125.0 (6)O1—Na1—Y143.53 (5)
O27B—C55B—H55B117.5O4—Na1—Y143.05 (5)
N7B—C55B—H55B117.5O24—Na1—Mn442.98 (8)
C55B—N7B—C56B118.9 (5)O24C—Na1—Mn442.98 (8)
C55B—N7B—C57B121.7 (5)O23—Na1—Mn499.01 (9)
C56B—N7B—C57B118.8 (5)O21—Na1—Mn498.38 (8)
N7B—C56B—H56D109.5O22—Na1—Mn4167.24 (9)
N7B—C56B—H56E109.5O10—Na1—Mn431.45 (5)
H56D—C56B—H56E109.5O7—Na1—Mn451.71 (6)
N7B—C56B—H56F109.5O1—Na1—Mn489.51 (6)
H56D—C56B—H56F109.5O4—Na1—Mn4102.24 (7)
H56E—C56B—H56F109.5Y1—Na1—Mn463.77 (3)
N7B—C57B—H57D109.5O24—Na1—Mn399.33 (8)
N7B—C57B—H57E109.5O24C—Na1—Mn399.33 (8)
H57D—C57B—H57E109.5O23—Na1—Mn344.12 (8)
N7B—C57B—H57F109.5O21—Na1—Mn3169.26 (9)
H57D—C57B—H57F109.5O22—Na1—Mn394.84 (8)
H57E—C57B—H57F109.5O10—Na1—Mn389.48 (6)
O28—C58—N8127.6 (7)O7—Na1—Mn330.86 (5)
O28—C58—H58116.2O1—Na1—Mn3101.70 (7)
N8—C58—H58116.2O4—Na1—Mn350.83 (5)
C58—N8—C60126.4 (8)Y1—Na1—Mn363.41 (3)
C58—N8—C59117.5 (7)Mn4—Na1—Mn379.24 (3)
C60—N8—C59116.1 (7)O12—Mn1—O1172.51 (12)
N8—C59—H59A109.5O12—Mn1—O296.78 (11)
N8—C59—H59B109.5O1—Mn1—O281.85 (10)
H59A—C59—H59B109.5O12—Mn1—N490.93 (11)
N8—C59—H59C109.5O1—Mn1—N489.15 (11)
H59A—C59—H59C109.5O2—Mn1—N4166.95 (11)
H59B—C59—H59C109.5O12—Mn1—O1494.63 (11)
N8—C60—H60A109.5O1—Mn1—O1492.76 (10)
N8—C60—H60B109.5O2—Mn1—O1490.79 (11)
H60A—C60—H60B109.5N4—Mn1—O1499.10 (11)
N8—C60—H60C109.5O12—Mn1—O2191.16 (11)
H60A—C60—H60C109.5O1—Mn1—O2181.40 (10)
H60B—C60—H60C109.5O2—Mn1—O2185.59 (10)
O28B—C58B—N8B126 (2)N4—Mn1—O2183.73 (11)
O28B—C58B—H58B117.0O14—Mn1—O21173.51 (10)
N8B—C58B—H58B117.0O12—Mn1—Na1126.89 (9)
C58B—N8B—C60B120.2 (19)O1—Mn1—Na146.81 (8)
C58B—N8B—C59B124.0 (19)O2—Mn1—Na1101.65 (8)
C60B—N8B—C59B115.9 (18)N4—Mn1—Na165.33 (9)
N8B—C59B—H59D109.5O14—Mn1—Na1133.92 (7)
N8B—C59B—H59E109.5O21—Mn1—Na142.23 (7)
H59D—C59B—H59E109.5O3—Mn2—O4172.75 (12)
N8B—C59B—H59F109.5O3—Mn2—O596.84 (11)
H59D—C59B—H59F109.5O4—Mn2—O581.62 (10)
H59E—C59B—H59F109.5O3—Mn2—N190.58 (11)
N8B—C60B—H60D109.5O4—Mn2—N189.78 (11)
N8B—C60B—H60E109.5O5—Mn2—N1167.69 (11)
H60D—C60B—H60E109.5O3—Mn2—O1694.43 (11)
N8B—C60B—H60F109.5O4—Mn2—O1692.66 (11)
H60D—C60B—H60F109.5O5—Mn2—O1690.25 (11)
H60E—C60B—H60F109.5N1—Mn2—O1698.98 (11)
O24B—C73B—N13B136 (3)O3—Mn2—O2292.31 (11)
O24B—C73B—H73B111.9O4—Mn2—O2280.55 (10)
N13B—C73B—H73B111.9O5—Mn2—O2286.75 (10)
C73B—N13B—C75B115.0 (18)N1—Mn2—O2283.14 (11)
C73B—N13B—C74B126.8 (19)O16—Mn2—O22172.91 (10)
C75B—N13B—C74B118.1 (18)O3—Mn2—Na1127.54 (9)
N13B—C74B—H74D109.5O4—Mn2—Na146.51 (8)
N13B—C74B—H74E109.5O5—Mn2—Na1101.65 (8)
H74D—C74B—H74E109.5N1—Mn2—Na166.07 (8)
N13B—C74B—H74F109.5O16—Mn2—Na1133.63 (8)
H74D—C74B—H74F109.5O22—Mn2—Na141.26 (7)
H74E—C74B—H74F109.5O6—Mn3—O7170.54 (12)
N13B—C75B—H75D109.5O6—Mn3—O895.86 (11)
N13B—C75B—H75E109.5O7—Mn3—O881.69 (10)
H75D—C75B—H75E109.5O6—Mn3—N291.04 (11)
N13B—C75B—H75F109.5O7—Mn3—N289.58 (11)
H75D—C75B—H75F109.5O8—Mn3—N2166.28 (12)
H75E—C75B—H75F109.5O6—Mn3—O1895.75 (11)
O29—C61—N9123.3 (7)O7—Mn3—O1893.46 (10)
O29—C61—H61118.4O8—Mn3—O1891.75 (11)
N9—C61—H61118.4N2—Mn3—O1899.36 (11)
C61—N9—C63118.8 (7)O6—Mn3—Na1126.47 (9)
C61—N9—C62122.6 (7)O7—Mn3—Na145.66 (8)
C63—N9—C62118.6 (8)O8—Mn3—Na199.23 (8)
N9—C62—H62A109.5N2—Mn3—Na167.21 (9)
N9—C62—H62B109.5O18—Mn3—Na1134.40 (7)
H62A—C62—H62B109.5O9—Mn4—O10172.02 (12)
N9—C62—H62C109.5O9—Mn4—O1197.27 (11)
H62A—C62—H62C109.5O10—Mn4—O1181.63 (10)
H62B—C62—H62C109.5O9—Mn4—N390.42 (11)
N9—C63—H63A109.5O10—Mn4—N389.20 (11)
N9—C63—H63B109.5O11—Mn4—N3166.41 (12)
H63A—C63—H63B109.5O9—Mn4—O2094.64 (12)
N9—C63—H63C109.5O10—Mn4—O2093.27 (10)
H63A—C63—H63C109.5O11—Mn4—O2090.16 (11)
H63B—C63—H63C109.5N3—Mn4—O20100.40 (12)
O29B—C61B—N9B125 (3)O9—Mn4—O2491.44 (12)
O29B—C61B—H61B117.4O10—Mn4—O2480.60 (10)
N9B—C61B—H61B117.4O11—Mn4—O2485.58 (11)
C61B—N9B—C63B120 (2)N3—Mn4—O2483.03 (11)
C61B—N9B—C62B124 (2)O20—Mn4—O24172.98 (10)
C63B—N9B—C62B114.4 (19)O9—Mn4—O24C91.44 (12)
N9B—C62B—H62D109.5O10—Mn4—O24C80.60 (10)
N9B—C62B—H62E109.5O11—Mn4—O24C85.58 (11)
H62D—C62B—H62E109.5N3—Mn4—O24C83.03 (11)
N9B—C62B—H62F109.5O20—Mn4—O24C172.98 (10)
H62D—C62B—H62F109.5O9—Mn4—Na1126.87 (9)
H62E—C62B—H62F109.5O10—Mn4—Na146.24 (8)
N9B—C63B—H63D109.5O11—Mn4—Na1101.43 (8)
N9B—C63B—H63E109.5N3—Mn4—Na165.06 (9)
H63D—C63B—H63E109.5O20—Mn4—Na1134.11 (7)
N9B—C63B—H63F109.5O24—Mn4—Na142.02 (7)
H63D—C63B—H63F109.5O24C—Mn4—Na142.02 (7)
H63E—C63B—H63F109.5O19—Y1—O1377.98 (9)
O30—C64—N10126.2 (6)O19—Y1—O15123.27 (10)
O30—C64—H64116.9O13—Y1—O1577.25 (9)
N10—C64—H64116.9O19—Y1—O1776.42 (9)
C64—N10—C65121.1 (6)O13—Y1—O17124.40 (10)
C64—N10—C66122.1 (5)O15—Y1—O1777.15 (9)
C65—N10—C66116.6 (6)O19—Y1—O4145.05 (9)
N10—C65—H65A109.5O13—Y1—O4136.80 (8)
N10—C65—H65B109.5O15—Y1—O477.39 (9)
H65A—C65—H65B109.5O17—Y1—O482.48 (9)
N10—C65—H65C109.5O19—Y1—O1078.54 (9)
H65A—C65—H65C109.5O13—Y1—O1082.23 (9)
H65B—C65—H65C109.5O15—Y1—O10145.10 (9)
N10—C66—H66A109.5O17—Y1—O10137.52 (9)
N10—C66—H66B109.5O4—Y1—O1099.89 (8)
H66A—C66—H66B109.5O19—Y1—O782.80 (9)
N10—C66—H66C109.5O13—Y1—O7145.03 (8)
H66A—C66—H66C109.5O15—Y1—O7137.39 (8)
H66B—C66—H66C109.5O17—Y1—O777.84 (9)
O30B—C64B—N10B124 (2)O4—Y1—O765.56 (8)
O30B—C64B—H64B118.0O10—Y1—O765.37 (8)
N10B—C64B—H64B118.0O19—Y1—O1138.13 (8)
C64B—N10B—C66B121.2 (18)O13—Y1—O177.21 (9)
C64B—N10B—C65B122.4 (19)O15—Y1—O182.85 (9)
C66B—N10B—C65B116.4 (19)O17—Y1—O1145.20 (9)
N10B—C65B—H65D109.5O4—Y1—O165.40 (8)
N10B—C65B—H65E109.5O10—Y1—O165.11 (8)
H65D—C65B—H65E109.5O7—Y1—O199.25 (8)
N10B—C65B—H65F109.5O19—Y1—Na1117.64 (7)
H65D—C65B—H65F109.5O13—Y1—Na1117.35 (7)
H65E—C65B—H65F109.5O15—Y1—Na1119.08 (7)
N10B—C66B—H66D109.5O17—Y1—Na1118.24 (7)
N10B—C66B—H66E109.5O4—Y1—Na150.95 (6)
H66D—C66B—H66E109.5O10—Y1—Na148.94 (6)
N10B—C66B—H66F109.5O7—Y1—Na149.15 (6)
H66D—C66B—H66F109.5O1—Y1—Na150.11 (6)
H66E—C66B—H66F109.5
O2—C1—C2—C710.7 (5)O32—C70—N12—C72176.0 (13)
N1—C1—C2—C7167.2 (3)O32B—C70B—N12B—C72B134 (7)
O2—C1—C2—C3170.0 (3)O32B—C70B—N12B—C71B25 (9)
N1—C1—C2—C312.1 (5)O2—C1—N1—O11.9 (5)
C7—C2—C3—O3175.8 (3)C2—C1—N1—O1179.7 (3)
C1—C2—C3—O34.9 (6)O2—C1—N1—Mn2163.5 (2)
C7—C2—C3—C42.3 (5)C2—C1—N1—Mn218.6 (5)
C1—C2—C3—C4177.0 (3)O5—C8—N2—O41.1 (5)
O3—C3—C4—C5177.0 (4)C9—C8—N2—O4179.3 (3)
C2—C3—C4—C51.3 (6)O5—C8—N2—Mn3164.1 (2)
C3—C4—C5—C60.6 (6)C9—C8—N2—Mn317.7 (5)
C4—C5—C6—C71.5 (6)O8—C15—N3—O72.7 (5)
C5—C6—C7—C20.4 (6)C16—C15—N3—O7178.6 (3)
C3—C2—C7—C61.5 (6)O8—C15—N3—Mn4166.5 (3)
C1—C2—C7—C6177.8 (4)C16—C15—N3—Mn414.8 (5)
O5—C8—C9—C1412.0 (5)O11—C22—N4—O101.3 (5)
N2—C8—C9—C14166.3 (4)C23—C22—N4—O10179.1 (3)
O5—C8—C9—C10167.7 (3)O11—C22—N4—Mn1164.5 (3)
N2—C8—C9—C1014.1 (5)C23—C22—N4—Mn117.8 (5)
C14—C9—C10—O6177.2 (4)C1—N1—O1—Mn10.6 (3)
C8—C9—C10—O62.4 (6)Mn2—N1—O1—Mn1165.36 (13)
C14—C9—C10—C111.5 (6)C1—N1—O1—Y1153.2 (2)
C8—C9—C10—C11178.9 (3)Mn2—N1—O1—Y142.1 (3)
O6—C10—C11—C12178.4 (4)C1—N1—O1—Na1110.5 (3)
C9—C10—C11—C120.3 (6)Mn2—N1—O1—Na154.2 (2)
C10—C11—C12—C130.9 (7)N1—C1—O2—Mn12.1 (4)
C11—C12—C13—C141.0 (7)C2—C1—O2—Mn1179.9 (2)
C12—C13—C14—C90.2 (7)C4—C3—O3—Mn2165.7 (3)
C10—C9—C14—C131.4 (6)C2—C3—O3—Mn216.2 (5)
C8—C9—C14—C13178.9 (4)C8—N2—O4—Mn21.5 (3)
O8—C15—C16—C217.5 (5)Mn3—N2—O4—Mn2164.14 (13)
N3—C15—C16—C21171.1 (3)C8—N2—O4—Y1152.7 (2)
O8—C15—C16—C17172.9 (3)Mn3—N2—O4—Y141.6 (3)
N3—C15—C16—C178.4 (5)C8—N2—O4—Na1112.8 (3)
C21—C16—C17—O9177.8 (4)Mn3—N2—O4—Na152.9 (2)
C15—C16—C17—O92.7 (6)N2—C8—O5—Mn23.2 (4)
C21—C16—C17—C181.7 (6)C9—C8—O5—Mn2178.6 (3)
C15—C16—C17—C18177.8 (3)C11—C10—O6—Mn3165.1 (3)
O9—C17—C18—C19179.2 (4)C9—C10—O6—Mn316.3 (5)
C16—C17—C18—C190.3 (6)C15—N3—O7—Mn30.7 (3)
C17—C18—C19—C200.9 (7)Mn4—N3—O7—Mn3167.18 (13)
C18—C19—C20—C210.6 (7)C15—N3—O7—Y1154.2 (2)
C19—C20—C21—C160.8 (7)Mn4—N3—O7—Y139.3 (3)
C17—C16—C21—C202.0 (6)C15—N3—O7—Na1110.3 (3)
C15—C16—C21—C20177.5 (4)Mn4—N3—O7—Na156.1 (2)
O11—C22—C23—C2811.8 (5)N3—C15—O8—Mn33.3 (4)
N4—C22—C23—C28166.0 (4)C16—C15—O8—Mn3178.0 (3)
O11—C22—C23—C24169.0 (3)C18—C17—O9—Mn4172.5 (3)
N4—C22—C23—C2413.2 (6)C16—C17—O9—Mn47.9 (6)
C28—C23—C24—O12177.2 (4)C22—N4—O10—Mn40.6 (3)
C22—C23—C24—O123.6 (6)Mn1—N4—O10—Mn4165.20 (13)
C28—C23—C24—C251.1 (6)C22—N4—O10—Y1151.1 (2)
C22—C23—C24—C25178.1 (4)Mn1—N4—O10—Y143.1 (3)
O12—C24—C25—C26177.5 (4)C22—N4—O10—Na1111.6 (3)
C23—C24—C25—C260.8 (6)Mn1—N4—O10—Na154.2 (2)
C24—C25—C26—C270.1 (7)N4—C22—O11—Mn42.5 (4)
C25—C26—C27—C280.8 (7)C23—C22—O11—Mn4179.8 (3)
C26—C27—C28—C230.5 (7)C25—C24—O12—Mn1165.3 (3)
C24—C23—C28—C270.4 (6)C23—C24—O12—Mn116.5 (5)
C22—C23—C28—C27178.8 (4)O14—C29—O13—Y160.1 (6)
O14—C29—C30—C3247.8 (6)C30—C29—O13—Y1117.9 (4)
O13—C29—C30—C32134.0 (4)O13—C29—O14—Mn116.7 (5)
O14—C29—C30—C31169.9 (4)C30—C29—O14—Mn1161.3 (3)
O13—C29—C30—C3111.9 (6)O16—C34—O15—Y159.2 (6)
O14—C29—C30—C3371.0 (5)C35—C34—O15—Y1118.9 (4)
O13—C29—C30—C33107.1 (4)O15—C34—O16—Mn218.4 (5)
O16—C34—C35—C3645.5 (5)C35—C34—O16—Mn2159.8 (3)
O15—C34—C35—C36136.2 (4)O18—C39—O17—Y154.7 (6)
O16—C34—C35—C38167.8 (4)C40—C39—O17—Y1126.3 (4)
O15—C34—C35—C3813.9 (5)O17—C39—O18—Mn312.7 (5)
O16—C34—C35—C3773.6 (5)C40—C39—O18—Mn3168.3 (3)
O15—C34—C35—C37104.7 (4)O20—C44—O19—Y160.2 (6)
O18—C39—C40—C4347.7 (6)C45—C44—O19—Y1119.3 (4)
O17—C39—C40—C43131.4 (4)O19—C44—O20—Mn417.2 (5)
O18—C39—C40—C41170.5 (4)C45—C44—O20—Mn4162.3 (3)
O17—C39—C40—C418.5 (6)Na1—O24—C73—N1363 (4)
O18—C39—C40—C4270.7 (5)Mn4—O24—C73—N13116 (3)
O17—C39—C40—C42110.3 (4)O24—C73—N13—C75155 (3)
O20—C44—C45—C46169.2 (4)O24—C73—N13—C7414 (4)
O19—C44—C45—C4611.2 (5)O25—C49—N5—C502.1 (8)
O20—C44—C45—C4846.8 (5)O25—C49—N5—C51178.0 (5)
O19—C44—C45—C48133.6 (4)O31—C67—N11—C6811.3 (16)
O20—C44—C45—C4772.0 (4)O31—C67—N11—C69169.6 (10)
O19—C44—C45—C47107.5 (4)O31B—C67B—N11B—C68B0.1 (4)
O26—C52—N6—C532.1 (7)O31B—C67B—N11B—C69B180.0 (4)
O26—C52—N6—C54179.3 (5)C24—O12—Mn1—O2179.9 (3)
O27—C55—N7—C57176.1 (11)C24—O12—Mn1—N410.7 (3)
O27—C55—N7—C566.7 (18)C24—O12—Mn1—O1488.5 (3)
O27B—C55B—N7B—C56B10 (4)C24—O12—Mn1—O2194.4 (3)
O27B—C55B—N7B—C57B179 (3)C24—O12—Mn1—Na170.0 (3)
O28—C58—N8—C60175.8 (8)C3—O3—Mn2—O5179.4 (3)
O28—C58—N8—C591.4 (12)C3—O3—Mn2—N19.2 (3)
O28B—C58B—N8B—C60B180.0 (4)C3—O3—Mn2—O1689.8 (3)
O28B—C58B—N8B—C59B0.0 (4)C3—O3—Mn2—O2292.4 (3)
O24B—C73B—N13B—C75B179.9 (4)C3—O3—Mn2—Na169.0 (3)
O24B—C73B—N13B—C74B0.1 (5)C10—O6—Mn3—O8179.4 (3)
O29—C61—N9—C63176.1 (8)C10—O6—Mn3—N211.3 (3)
O29—C61—N9—C622.7 (13)C10—O6—Mn3—O1888.2 (3)
O29B—C61B—N9B—C63B131 (5)C10—O6—Mn3—Na173.4 (3)
O29B—C61B—N9B—C62B64 (7)C17—O9—Mn4—O11171.4 (3)
O30—C64—N10—C655.1 (11)C17—O9—Mn4—N32.7 (3)
O30—C64—N10—C66179.9 (7)C17—O9—Mn4—O2097.8 (3)
O30B—C64B—N10B—C66B171 (4)C17—O9—Mn4—O2485.7 (3)
O30B—C64B—N10B—C65B13 (6)C17—O9—Mn4—O24C85.7 (3)
O32—C70—N12—C713 (2)C17—O9—Mn4—Na161.2 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C18—H18···O20i0.952.603.359 (5)137
C25—H25···O14ii0.952.593.374 (5)141
C49—H49···O290.952.583.180 (8)121
C51—H51B···O29iii0.982.563.376 (9)141
C53—H53B···O31iv0.982.483.377 (9)152
C55—H55···O80.952.363.098 (8)135
C56—H56A···O32iv0.982.563.499 (17)162
C59—H59B···O290.982.563.262 (11)129
C61—H61···O120.952.523.457 (8)169
C63B—H63F···O32Biii0.982.533.34 (6)140
C64B—H64B···O30.952.503.40 (3)157
C71B—H71D···O210.982.603.41 (5)141
C72B—H72E···O34iv0.982.363.31 (7)163
C74—H74B···O270.982.272.87 (3)119
C75—H75C···O310.982.152.99 (3)143
O21—H21A···O250.82 (2)2.00 (3)2.767 (4)155 (5)
O21—H21B···O280.83 (2)2.05 (3)2.792 (5)148 (5)
O21—H21B···O28B0.83 (2)1.87 (3)2.70 (2)172 (5)
O22—H22A···O250.84 (2)1.96 (3)2.727 (4)151 (5)
O22—H22B···O260.83 (2)1.93 (3)2.688 (4)151 (5)
O23—H23A···O270.84 (2)2.06 (3)2.871 (7)164 (5)
O23—H23A···O24B0.84 (2)2.06 (5)2.696 (19)132 (5)
O23—H23B···O260.86 (2)1.98 (3)2.789 (5)155 (5)
O24C—H24A···O330.86 (2)1.91 (4)2.78 (3)179 (5)
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+2, y+1, z; (iii) x+1, y+1, z; (iv) x+1, y+1, z+1.
Structural feature comparison (Å) of YIIINa(OTMA)4[12-MCMn(III)N(shi)-4](H2O)3.76(DMF)0.24·8.04DMF·0.62H2O (1) and YIIINa(OAc)4[12-MCMn(III)N(shi)-4](H2O)4·6DMF (2) top
CompoundYIII crystal radiusMC cavity radiusAvg. adjacent MnIII···MnIII distanceAvg. cross-cavity MnIII···MnIII distanceAvg. cross-cavity Oox···Oox distanceYIII—OcarMPYIII—OoxMPYIII—MnMPNa+—OsolventMPNa+—OoxMP
(1)1.050.554.626.533.711.071.571.910.671.97
(2A)1.050.554.616.523.701.041.571.920.791.92
(2B)1.050.554.616.523.701.031.581.930.791.91
 

Acknowledgements

CMZ and JRT thank the Undergraduate Research Grant Program and the CFEST Faculty Training and Continued Education program at Shippensburg University for financial support. MZ thanks the NSF (grant DMR 1337296) for funding for the X-ray diffractometer.

References

First citationAlDamen, M. A., Cardona-Serra, S., Clemente-Juan, J. M., Coronado, E., Gaita-Ariño, A., Martí-Gastaldo, C., Luis, F. & Montero, O. (2009). Inorg. Chem. 48, 3467–3479.  Web of Science CrossRef PubMed CAS Google Scholar
First citationAlDamen, M. A., Clemente-Juan, J. M., Coronado, E., Martí-Gastaldo, C. & Gaita-Ariño, A. (2008). J. Am. Chem. Soc. 130, 8874–8875.  Web of Science CrossRef PubMed CAS Google Scholar
First citationAzar, M. R., Boron, T. T., Lutter, J. C., Daly, C. I., Zegalia, K. A., Nimthong, R., Ferrence, G. M., Zeller, M., Kampf, J. W., Pecoraro, V. L. & Zaleski, C. M. (2014). Inorg. Chem. 53, 1729–1742.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationBruker (2014). APEX2, SADABS, and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCook, T. R. & Stang, P. J. (2015). Chem. Rev. 115, 7001–7045.  Web of Science CrossRef CAS PubMed Google Scholar
First citationHübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281–1284.  Web of Science CrossRef IUCr Journals Google Scholar
First citationLiu, W. & Thorp, H. H. (1993). Inorg. Chem. 32, 4102–4105.  CrossRef CAS Web of Science Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMezei, G., Zaleski, C. M. & Pecoraro, V. L. (2007). Chem. Rev. 107, 4933–5003.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSaalfrank, R. W., Maid, H. & Scheurer, A. (2008). Angew. Chem. Int. Ed. 47, 8794–8824.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds