metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of bis­­[N,N-bis­­(2-hy­droxy­eth­yl)glycinato-κ3O1,N,O2]cobalt(II) monohydrate

aKey Laboratory of Functional Organometallic Materials, Department of Chemistry and Materials Science, Hengyang Normal University, Hengyang 421008, People's Republic of China, and bDepartment of Chemistry and Materials Science, Hengyang Normal University, Hengyang 421008, People's Republic of China
*Correspondence e-mail: 275810051@qq.com

Edited by O. Büyükgüngör, Ondokuz Mayıs University, Turkey (Received 3 September 2015; accepted 14 October 2015; online 17 October 2015)

The title compound, [Co(C6H12O4)2]·H2O, was prepared by mild heating of an aqueous solution. The CoII ion has a slightly distorted octahedral coordination environment which is defined by two N atoms occupying the apical position, while the equatorial plane is furnished by two hy­droxy O atoms and two carboxyl­ate O atoms. The four hy­droxy O atoms from two distinct N,N-bis­(2-hy­droxy­eth­yl)glycine (bicH2) ligands act as hydrogen-bond donors with two carboxyl­ate O atoms as acceptors to form O—H⋯O hydrogen-bonded layers extending parallel to (100). In addition, the guest water mol­ecule acts as both a hydrogen-bond donor and acceptor, so that each Co(bicH2)2 mol­ecule is connected simultaneously to six neighbouring Co(bicH2)2 and two guest water mol­ecules by hydrogen bonding.

1. Related literature

For N,N-bis­(2-hy­droxy­eth­yl)glycine complexes with transition metals, see: Graham et al. (2009[Graham, K., Darwish, A., Ferguson, A., Parsons, S. & Murrie, M. (2009). Polyhedron, 28, 1830-1833.]); Katsoulakou et al. (2011[Katsoulakou, E., Konidaris, K. F., Terzis, A., Raptopoulou, C. P., Perlepes, S. P., Manessi-Zoupa, E. & Kostakis, G. E. (2011). Polyhedron, 30, 397-404.]); Liu et al. (2013[Liu, Y., Kuang, D.-Z., Feng, Y.-L. & Fu, W.-W. (2013). Transition Met. Chem. 38, 849-853.]); Inomata et al. (2001[Inomata, Y., Takei, T. & Howell, F. S. (2001). Inorg. Chim. Acta, 318, 201-206.]); Messimeri et al. (2002[Messimeri, A., Raptopoulou, C. P., Nastopoulos, V., Terzis, A., Perlepes, S. P. & Papadimitriou, C. (2002). Inorg. Chim. Acta, 336, 8-18.]). Iminodi­acetic acid (Cui et al., 2008[Cui, H., Zhou, B., Long, L.-S., Okano, Y., Kobayashi, H. & Kobayashi, A. (2008). Angew. Chem. Int. Ed. 47, 3376-3380.]; Kong et al., 2008[Kong, X.-J., Ren, Y.-P., Long, L.-S., Zheng, Z., Nichol, G., Huang, R.-B. & Zheng, L.-S. (2008). Inorg. Chem. 47, 2728-2739.]), nitrilo­tri­acetic acid (Ma et al., 2009[Ma, J. X., Huang, X. F., Song, Y., Song, X. Q. & Liu, W. S. (2009). Inorg. Chem. 48, 6326-6328.]) and N-(2-carbamoyl­meth­yl)iminodi­acetic acid (Bugella-Altamirano et al., 2003[Bugella-Altamirano, E., González-Pérez, J. M., Choquesillo-Lazarte, D., Carballo, R., Castiñeiras, A. & Niclós-Gutiérrez, J. (2003). Inorg. Chem. Commun. 6, 71-73.]) are also known to be effective ligands for transition metal ions.

[Scheme 1]

2. Experimental

2.1. Crystal data

  • [Co(C6H12NO4)2]·H2O

  • Mr = 401.28

  • Monoclinic, P 21 /c

  • a = 19.274 (3) Å

  • b = 12.0033 (17) Å

  • c = 7.196 (1) Å

  • β = 100.081 (2)°

  • V = 1639.1 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.10 mm−1

  • T = 296 K

  • 0.20 × 0.20 × 0.20 mm

2.2. Data collection

  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2012[Bruker (2012). SMART, SAINT and SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.]) Tmin = 0.810, Tmax = 0.810

  • 9415 measured reflections

  • 3685 independent reflections

  • 2982 reflections with I > 2σ(I)

  • Rint = 0.031

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.108

  • S = 1.04

  • 3685 reflections

  • 229 parameters

  • 7 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 1.22 e Å−3

  • Δρmin = −0.51 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3AA⋯O6i 0.81 (2) 1.79 (2) 2.591 (2) 169 (3)
O4—H4AA⋯O2ii 0.76 (2) 1.98 (2) 2.733 (2) 171 (3)
O7—H7AA⋯O2iii 0.82 (2) 1.83 (2) 2.648 (2) 178 (3)
O8—H8AA⋯O9iv 0.82 (2) 1.89 (2) 2.687 (3) 162 (3)
O9—H9AA⋯O6v 0.82 (2) 1.99 (2) 2.796 (2) 171 (3)
O9—H9BB⋯O8iii 0.81 (2) 1.95 (2) 2.759 (3) 176 (3)
Symmetry codes: (i) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (ii) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iv) x, y, z+1; (v) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2012[Bruker (2012). SMART, SAINT and SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2012[Bruker (2012). SMART, SAINT and SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

The design and synthesis of transition metal coordination complexes based on those multi-dentate flexible carboxyl­ate ligands have attracted significant attention due to their structural diversity and utility in supra­molecular chemistry and crystal engineering. Iminodi­acetic acid (Cui et al., 2008; Kong et al., 2008), nitrilo­tri­acetic acid (Ma et al., 2009) and N-(2-carbamoyl­methyl)­iminodi­acetic acid (Bugella-Altamirano et al., 2003) have been known as effective ligands for transition metal ions. As an analogous ligand, N,N-bis­(2-hy­droxy­ethyl) glycine is a widely used buffer in many biochemical studies. However, transition metal complexes with N,N-bis­(2-hy­droxy­ethyl) glycine has been less extensively studied, and only a few reports describing N,N-bis­(2-hy­droxy­ethyl) glycine complexes have appeared (Graham et al., 2009; Katsoulakou et al., 2011; Liu et al., 2013; Inomata et al., 2001; Messimeri et al., 2002). In the present report, we describe the synthesis and structure of title compound.

Single-crystal X-ray diffraction analysis shows that the title compound crystallizes in the monoclinic space group P21/c and its asymmetric unit contains one Co (II) ion, two distinct deprotonated N,N-bis­(2-hy­droxy­ethyl) glycine (bicH2-) anions and one water molecule. As showed in Fig. 1, CoII ion has a six-coordinated o­cta­hedral geometry which is defined by two nitro­gen atoms occupying the apical position, while the equatorial plane are furnished by two hydroxyl oxygen atoms and two carboxyl­ate atoms. The Co—O (Co1—O1 = 2.0544 (14) Å; Co1—O3 = 2.1093 Å; Co1—O5 = 2.0853 (15) Å; Co1—O7 = 2.1006 (7) Å) and Co—N (Co1—N1 = 2.1641 Å; Co1—N2 = 2.1881 Å) bond lengths are fall in the usual range. The crystal structure of the title compound is stabilized by hydrogen bonds. A packing diagram of the complex showing hydrogen bonding inter­actions is shown in Fig. 2. The hydroxyl oxygen atoms (O3, O4, O7, O8) from the N,N-bis­(2-hy­droxy­ethyl)­glycine ligands act as donors, while the carboxyl­ate oxygen atoms (O2 and O6) are the acceptors. The hydrogen bonding inter­actions around one molecule are shown in Fig. 3. The hydrogen bonding parameters are tabulated in Table 1.

Experimental top

A mixture of CoCl2·6H2O (0.237g, 1mmol) and N,N-bis­(2-hy­droxy­ethyl) glycine; (0.16g, 1mmol) was dissolved in water (20mL) and then drop of ethlylene di­amine was added, and the mixture was stirred vigorously for 1h at 60 °C. Slow evaporation of the clear solution resulted in the separation of blue block crystals.

Refinement top

All H atoms were positioned geometrically and treated as riding on their parent atoms [C—H =0.97 Å and Uiso = 1.2Ueq (C) for CH2 H atoms].

Related literature top

For N,N-bis(2-hydroxyethyl)glycine complexes with transition metals, see: Graham et al. (2009); Katsoulakou et al. (2011); Liu et al. (2013); Inomata et al. (2001); Messimeri et al. (2002) . Minodiacetic acid (Cui et al., 2008; Kong et al., 2008), nitrilotriacetic acid (Ma et al., 2009) and N-(2-carbamoylmethyl)iminodiacetic acid (Bugella-Altamirano et al., 2003) are also known to be effective ligands for transition metal ions.

Structure description top

The design and synthesis of transition metal coordination complexes based on those multi-dentate flexible carboxyl­ate ligands have attracted significant attention due to their structural diversity and utility in supra­molecular chemistry and crystal engineering. Iminodi­acetic acid (Cui et al., 2008; Kong et al., 2008), nitrilo­tri­acetic acid (Ma et al., 2009) and N-(2-carbamoyl­methyl)­iminodi­acetic acid (Bugella-Altamirano et al., 2003) have been known as effective ligands for transition metal ions. As an analogous ligand, N,N-bis­(2-hy­droxy­ethyl) glycine is a widely used buffer in many biochemical studies. However, transition metal complexes with N,N-bis­(2-hy­droxy­ethyl) glycine has been less extensively studied, and only a few reports describing N,N-bis­(2-hy­droxy­ethyl) glycine complexes have appeared (Graham et al., 2009; Katsoulakou et al., 2011; Liu et al., 2013; Inomata et al., 2001; Messimeri et al., 2002). In the present report, we describe the synthesis and structure of title compound.

Single-crystal X-ray diffraction analysis shows that the title compound crystallizes in the monoclinic space group P21/c and its asymmetric unit contains one Co (II) ion, two distinct deprotonated N,N-bis­(2-hy­droxy­ethyl) glycine (bicH2-) anions and one water molecule. As showed in Fig. 1, CoII ion has a six-coordinated o­cta­hedral geometry which is defined by two nitro­gen atoms occupying the apical position, while the equatorial plane are furnished by two hydroxyl oxygen atoms and two carboxyl­ate atoms. The Co—O (Co1—O1 = 2.0544 (14) Å; Co1—O3 = 2.1093 Å; Co1—O5 = 2.0853 (15) Å; Co1—O7 = 2.1006 (7) Å) and Co—N (Co1—N1 = 2.1641 Å; Co1—N2 = 2.1881 Å) bond lengths are fall in the usual range. The crystal structure of the title compound is stabilized by hydrogen bonds. A packing diagram of the complex showing hydrogen bonding inter­actions is shown in Fig. 2. The hydroxyl oxygen atoms (O3, O4, O7, O8) from the N,N-bis­(2-hy­droxy­ethyl)­glycine ligands act as donors, while the carboxyl­ate oxygen atoms (O2 and O6) are the acceptors. The hydrogen bonding inter­actions around one molecule are shown in Fig. 3. The hydrogen bonding parameters are tabulated in Table 1.

A mixture of CoCl2·6H2O (0.237g, 1mmol) and N,N-bis­(2-hy­droxy­ethyl) glycine; (0.16g, 1mmol) was dissolved in water (20mL) and then drop of ethlylene di­amine was added, and the mixture was stirred vigorously for 1h at 60 °C. Slow evaporation of the clear solution resulted in the separation of blue block crystals.

For N,N-bis(2-hydroxyethyl)glycine complexes with transition metals, see: Graham et al. (2009); Katsoulakou et al. (2011); Liu et al. (2013); Inomata et al. (2001); Messimeri et al. (2002) . Minodiacetic acid (Cui et al., 2008; Kong et al., 2008), nitrilotriacetic acid (Ma et al., 2009) and N-(2-carbamoylmethyl)iminodiacetic acid (Bugella-Altamirano et al., 2003) are also known to be effective ligands for transition metal ions.

Refinement details top

All H atoms were positioned geometrically and treated as riding on their parent atoms [C—H =0.97 Å and Uiso = 1.2Ueq (C) for CH2 H atoms].

Computing details top

Data collection: SMART (Bruker, 2012); cell refinement: SAINT (Bruker, 2012); data reduction: SAINT (Bruker, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the title complex, showing 30% probability displacement ellipsoids and the atom-numbering scheme. H atoms have been omitted for clarity.
[Figure 2] Fig. 2. A partial view along the c axis of the crystal packing of the title compound.
[Figure 3] Fig. 3. View of the hydrogen-bonding interactions for the title compound.
Bis[N,N-bis(2-hydroxyethyl)glycinato-κ3O1,N,O2]cobalt(II) monohydrate top
Crystal data top
[Co(C6H12NO4)2]·H2OF(000) = 844
Mr = 401.28Dx = 1.626 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 19.274 (3) ÅCell parameters from 4351 reflections
b = 12.0033 (17) Åθ = 2.7–27.4°
c = 7.196 (1) ŵ = 1.10 mm1
β = 100.081 (2)°T = 296 K
V = 1639.1 (4) Å3Block, red
Z = 40.20 × 0.20 × 0.20 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
3685 independent reflections
Radiation source: fine-focus sealed tube2982 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
phi and ω scansθmax = 27.5°, θmin = 1.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2012)
h = 2524
Tmin = 0.810, Tmax = 0.810k = 1415
9415 measured reflectionsl = 79
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.108H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0683P)2 + 0.2267P]
where P = (Fo2 + 2Fc2)/3
3685 reflections(Δ/σ)max < 0.001
229 parametersΔρmax = 1.22 e Å3
7 restraintsΔρmin = 0.51 e Å3
Crystal data top
[Co(C6H12NO4)2]·H2OV = 1639.1 (4) Å3
Mr = 401.28Z = 4
Monoclinic, P21/cMo Kα radiation
a = 19.274 (3) ŵ = 1.10 mm1
b = 12.0033 (17) ÅT = 296 K
c = 7.196 (1) Å0.20 × 0.20 × 0.20 mm
β = 100.081 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3685 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2012)
2982 reflections with I > 2σ(I)
Tmin = 0.810, Tmax = 0.810Rint = 0.031
9415 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0377 restraints
wR(F2) = 0.108H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 1.22 e Å3
3685 reflectionsΔρmin = 0.51 e Å3
229 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.15613 (10)0.32888 (16)0.4861 (3)0.0250 (4)
C20.10124 (10)0.41726 (16)0.4166 (3)0.0257 (4)
H2A0.07280.39210.29950.031*
H2B0.07030.42550.50860.031*
C30.18533 (11)0.56936 (19)0.7134 (3)0.0317 (5)
H3A0.18770.62470.81250.038*
H3B0.17150.49890.76200.038*
C40.13146 (11)0.60422 (18)0.5450 (3)0.0292 (5)
H4A0.08500.60480.57940.035*
H4B0.14190.67920.50750.035*
C50.02221 (11)0.61413 (19)0.1906 (3)0.0323 (5)
H5A0.00730.55020.20420.039*
H5B0.01770.66760.28890.039*
C60.09822 (6)0.57870 (9)0.20355 (17)0.0258 (4)
H6A0.10080.52600.10290.031*
H6B0.12560.64360.18120.031*
C70.32255 (6)0.69375 (9)0.32133 (17)0.0248 (4)
C80.37980 (6)0.60795 (9)0.38576 (17)0.0260 (4)
H8A0.41930.62110.32170.031*
H8B0.39640.61580.52040.031*
C90.40241 (13)0.41472 (19)0.6612 (3)0.0364 (5)
H9A0.42200.48490.71260.044*
H9B0.35500.40770.68820.044*
C100.40096 (11)0.41103 (16)0.4523 (3)0.0264 (4)
H10A0.44830.42360.42810.032*
H10B0.38650.33710.40640.032*
C110.29542 (11)0.38393 (18)0.0716 (3)0.0304 (5)
H11A0.29170.37270.06330.036*
H11B0.30930.31410.13530.036*
C120.34855 (5)0.47358 (8)0.13899 (15)0.0273 (4)
H12A0.39440.45120.11440.033*
H12B0.33520.54180.06980.033*
N10.13172 (5)0.52733 (8)0.38473 (15)0.0212 (3)
N20.35292 (5)0.49430 (8)0.34461 (15)0.0211 (4)
O10.21990 (7)0.34960 (12)0.4875 (2)0.0277 (3)
O20.13358 (8)0.23761 (12)0.5359 (2)0.0371 (4)
O30.25265 (7)0.55828 (13)0.6590 (2)0.0301 (3)
O40.00231 (8)0.66298 (18)0.0101 (2)0.0420 (5)
O50.25988 (7)0.66233 (12)0.2898 (2)0.0300 (3)
O60.34269 (8)0.79245 (11)0.3073 (2)0.0345 (4)
O70.22955 (8)0.42119 (12)0.1150 (2)0.0287 (3)
O80.44467 (10)0.32506 (15)0.7424 (3)0.0462 (5)
O90.51436 (10)0.34647 (15)0.0981 (3)0.0430 (4)
Co10.242384 (13)0.500933 (18)0.37854 (4)0.01991 (11)
H3AA0.2766 (14)0.6113 (19)0.700 (4)0.051 (9)*
H4AA0.0348 (10)0.685 (2)0.010 (4)0.047 (8)*
H7AA0.1993 (14)0.373 (2)0.091 (5)0.067 (10)*
H8AA0.4681 (15)0.345 (3)0.843 (3)0.056 (9)*
H9AA0.5568 (9)0.336 (2)0.118 (4)0.049 (8)*
H9BB0.4938 (13)0.298 (2)0.145 (4)0.064 (11)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0250 (10)0.0219 (10)0.0260 (10)0.0018 (8)0.0013 (8)0.0019 (8)
C20.0209 (9)0.0212 (10)0.0333 (11)0.0024 (7)0.0001 (8)0.0042 (8)
C30.0303 (11)0.0378 (12)0.0264 (11)0.0023 (9)0.0031 (8)0.0051 (9)
C40.0304 (11)0.0256 (10)0.0310 (11)0.0031 (8)0.0035 (9)0.0044 (9)
C50.0271 (11)0.0337 (12)0.0352 (12)0.0057 (9)0.0023 (9)0.0055 (9)
C60.0234 (10)0.0268 (10)0.0262 (10)0.0030 (8)0.0016 (8)0.0048 (8)
C70.0250 (10)0.0187 (9)0.0299 (10)0.0005 (7)0.0027 (8)0.0034 (8)
C80.0215 (9)0.0172 (9)0.0380 (12)0.0020 (7)0.0020 (8)0.0013 (8)
C90.0405 (13)0.0335 (12)0.0339 (12)0.0120 (10)0.0029 (10)0.0063 (9)
C100.0261 (10)0.0194 (9)0.0328 (11)0.0056 (8)0.0024 (8)0.0013 (8)
C110.0316 (11)0.0303 (11)0.0291 (11)0.0000 (9)0.0049 (9)0.0059 (9)
C120.0259 (10)0.0297 (10)0.0270 (10)0.0009 (8)0.0069 (8)0.0025 (8)
N10.0209 (8)0.0174 (7)0.0246 (8)0.0018 (6)0.0019 (6)0.0010 (6)
N20.0216 (9)0.0155 (8)0.0254 (9)0.0008 (6)0.0025 (7)0.0007 (6)
O10.0212 (7)0.0206 (7)0.0403 (8)0.0010 (5)0.0021 (6)0.0058 (6)
O20.0274 (8)0.0254 (8)0.0553 (10)0.0057 (6)0.0015 (7)0.0155 (7)
O30.0254 (8)0.0305 (9)0.0324 (8)0.0043 (6)0.0006 (6)0.0082 (6)
O40.0300 (9)0.0542 (12)0.0399 (10)0.0163 (8)0.0011 (8)0.0155 (7)
O50.0218 (7)0.0213 (7)0.0459 (9)0.0004 (5)0.0030 (6)0.0069 (6)
O60.0283 (8)0.0177 (7)0.0546 (10)0.0021 (6)0.0012 (7)0.0092 (6)
O70.0258 (8)0.0288 (8)0.0310 (8)0.0031 (6)0.0035 (6)0.0057 (6)
O80.0596 (12)0.0354 (9)0.0381 (10)0.0159 (8)0.0070 (8)0.0072 (8)
O90.0337 (10)0.0388 (10)0.0527 (11)0.0051 (8)0.0032 (8)0.0065 (9)
Co10.01819 (17)0.01581 (17)0.02525 (18)0.00122 (8)0.00248 (11)0.00056 (9)
Geometric parameters (Å, º) top
C1—O11.252 (2)C9—O81.413 (3)
C1—O21.254 (2)C9—C101.499 (3)
C1—C21.520 (3)C9—H9A0.9700
C2—N11.480 (2)C9—H9B0.9700
C2—H2A0.9700C10—N21.485 (2)
C2—H2B0.9700C10—H10A0.9700
C3—O31.426 (3)C10—H10B0.9700
C3—C41.510 (3)C11—O71.431 (3)
C3—H3A0.9700C11—C121.506 (2)
C3—H3B0.9700C11—H11A0.9700
C4—N11.478 (2)C11—H11B0.9700
C4—H4A0.9700C12—N21.4882
C4—H4B0.9700C12—H12A0.9700
C5—O41.416 (3)C12—H12B0.9700
C5—C61.513 (2)N1—Co12.1644
C5—H5A0.9700N2—Co12.1878
C5—H5B0.9700O1—Co12.0544 (14)
C6—N11.4840 (15)O3—Co12.1083 (15)
C6—H6A0.9700O3—H3AA0.811 (17)
C6—H6B0.9700O4—H4AA0.761 (17)
C7—O51.2476 (17)O5—Co12.0858 (14)
C7—O61.2562 (17)O7—Co12.1000 (15)
C7—C81.5212O7—H7AA0.820 (18)
C8—N21.4709 (15)O8—H8AA0.822 (17)
C8—H8A0.9700O9—H9AA0.815 (16)
C8—H8B0.9700O9—H9BB0.810 (16)
O1—C1—O2124.06 (18)C9—C10—H10B108.8
O1—C1—C2119.33 (17)H10A—C10—H10B107.7
O2—C1—C2116.60 (17)O7—C11—C12106.59 (15)
N1—C2—C1113.69 (15)O7—C11—H11A110.4
N1—C2—H2A108.8C12—C11—H11A110.4
C1—C2—H2A108.8O7—C11—H11B110.4
N1—C2—H2B108.8C12—C11—H11B110.4
C1—C2—H2B108.8H11A—C11—H11B108.6
H2A—C2—H2B107.7N2—C12—C11110.89 (9)
O3—C3—C4109.65 (17)N2—C12—H12A109.5
O3—C3—H3A109.7C11—C12—H12A109.5
C4—C3—H3A109.7N2—C12—H12B109.5
O3—C3—H3B109.7C11—C12—H12B109.5
C4—C3—H3B109.7H12A—C12—H12B108.0
H3A—C3—H3B108.2C4—N1—C2112.38 (14)
N1—C4—C3110.93 (16)C4—N1—C6111.45 (11)
N1—C4—H4A109.5C2—N1—C6112.57 (11)
C3—C4—H4A109.5C4—N1—Co1104.21 (10)
N1—C4—H4B109.5C2—N1—Co1106.97 (9)
C3—C4—H4B109.5C6—N1—Co1108.76 (7)
H4A—C4—H4B108.0C8—N2—C10110.71 (11)
O4—C5—C6106.08 (16)C8—N2—C12108.16 (6)
O4—C5—H5A110.5C10—N2—C12109.15 (9)
C6—C5—H5A110.5C8—N2—Co1105.03 (7)
O4—C5—H5B110.5C10—N2—Co1119.78 (10)
C6—C5—H5B110.5C12—N2—Co1103.31 (3)
H5A—C5—H5B108.7C1—O1—Co1116.41 (12)
N1—C6—C5116.02 (12)C3—O3—Co1110.85 (11)
N1—C6—H6A108.3C3—O3—H3AA108 (2)
C5—C6—H6A108.3Co1—O3—H3AA124 (2)
N1—C6—H6B108.3C5—O4—H4AA104 (2)
C5—C6—H6B108.3C7—O5—Co1115.36 (10)
H6A—C6—H6B107.4C11—O7—Co1111.77 (12)
O5—C7—O6124.99 (13)C11—O7—H7AA111 (2)
O5—C7—C8118.57 (8)Co1—O7—H7AA119 (2)
O6—C7—C8116.43 (8)C9—O8—H8AA109 (2)
N2—C8—C7110.82 (6)H9AA—O9—H9BB111 (2)
N2—C8—H8A109.5O1—Co1—O5173.89 (6)
C7—C8—H8A109.5O1—Co1—O786.68 (6)
N2—C8—H8B109.5O5—Co1—O798.43 (6)
C7—C8—H8B109.5O1—Co1—O385.08 (6)
H8A—C8—H8B108.1O5—Co1—O389.81 (6)
O8—C9—C10107.49 (18)O7—Co1—O3171.76 (6)
O8—C9—H9A110.2O1—Co1—N181.21 (5)
C10—C9—H9A110.2O5—Co1—N194.77 (5)
O8—C9—H9B110.2O7—Co1—N197.16 (5)
C10—C9—H9B110.2O3—Co1—N181.97 (5)
H9A—C9—H9B108.5O1—Co1—N2106.55 (5)
N2—C10—C9113.81 (16)O5—Co1—N277.69 (5)
N2—C10—H10A108.8O7—Co1—N281.12 (5)
C9—C10—H10A108.8O3—Co1—N2100.87 (5)
N2—C10—H10B108.8N1—Co1—N2171.86 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3AA···O6i0.81 (2)1.79 (2)2.591 (2)169 (3)
O4—H4AA···O2ii0.76 (2)1.98 (2)2.733 (2)171 (3)
O7—H7AA···O2iii0.82 (2)1.83 (2)2.648 (2)178 (3)
O8—H8AA···O9iv0.82 (2)1.89 (2)2.687 (3)162 (3)
O9—H9AA···O6v0.82 (2)1.99 (2)2.796 (2)171 (3)
O9—H9BB···O8iii0.81 (2)1.95 (2)2.759 (3)176 (3)
Symmetry codes: (i) x, y+3/2, z+1/2; (ii) x, y+1/2, z+1/2; (iii) x, y+1/2, z1/2; (iv) x, y, z+1; (v) x+1, y1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3AA···O6i0.811 (17)1.791 (18)2.591 (2)169 (3)
O4—H4AA···O2ii0.761 (17)1.979 (18)2.733 (2)171 (3)
O7—H7AA···O2iii0.820 (18)1.828 (18)2.648 (2)178 (3)
O8—H8AA···O9iv0.822 (17)1.89 (2)2.687 (3)162 (3)
O9—H9AA···O6v0.815 (16)1.988 (18)2.796 (2)171 (3)
O9—H9BB···O8iii0.810 (16)1.950 (17)2.759 (3)176 (3)
Symmetry codes: (i) x, y+3/2, z+1/2; (ii) x, y+1/2, z+1/2; (iii) x, y+1/2, z1/2; (iv) x, y, z+1; (v) x+1, y1/2, z+1/2.
 

Acknowledgements

This work was supported by the Open Research Fund of the Key Laboratory in Hunan Province (grant No. 13 K105) and the Science and Technology Project of Hengyang (grant No. 2012 K J29). We also thank the Aid programs for Science and Technology Innovative Research Team in Higher Educational Institutions of Hunan Province and the Key Discipline of Hunan Province.

References

First citationBruker (2012). SMART, SAINT and SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.  Google Scholar
First citationBugella-Altamirano, E., González-Pérez, J. M., Choquesillo-Lazarte, D., Carballo, R., Castiñeiras, A. & Niclós-Gutiérrez, J. (2003). Inorg. Chem. Commun. 6, 71–73.  CAS Google Scholar
First citationCui, H., Zhou, B., Long, L.-S., Okano, Y., Kobayashi, H. & Kobayashi, A. (2008). Angew. Chem. Int. Ed. 47, 3376–3380.  Web of Science CSD CrossRef CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGraham, K., Darwish, A., Ferguson, A., Parsons, S. & Murrie, M. (2009). Polyhedron, 28, 1830–1833.  Web of Science CSD CrossRef CAS Google Scholar
First citationInomata, Y., Takei, T. & Howell, F. S. (2001). Inorg. Chim. Acta, 318, 201–206.  Web of Science CSD CrossRef CAS Google Scholar
First citationKatsoulakou, E., Konidaris, K. F., Terzis, A., Raptopoulou, C. P., Perlepes, S. P., Manessi-Zoupa, E. & Kostakis, G. E. (2011). Polyhedron, 30, 397–404.  Web of Science CSD CrossRef CAS Google Scholar
First citationKong, X.-J., Ren, Y.-P., Long, L.-S., Zheng, Z., Nichol, G., Huang, R.-B. & Zheng, L.-S. (2008). Inorg. Chem. 47, 2728–2739.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationLiu, Y., Kuang, D.-Z., Feng, Y.-L. & Fu, W.-W. (2013). Transition Met. Chem. 38, 849–853.  Web of Science CSD CrossRef CAS Google Scholar
First citationMa, J. X., Huang, X. F., Song, Y., Song, X. Q. & Liu, W. S. (2009). Inorg. Chem. 48, 6326–6328.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationMessimeri, A., Raptopoulou, C. P., Nastopoulos, V., Terzis, A., Perlepes, S. P. & Papadimitriou, C. (2002). Inorg. Chim. Acta, 336, 8–18.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds