organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

The crystal structure of 1-(2-hy­droxy-5-meth­­oxy­phen­yl)ethanone 4,4-di­methyl­thio­semicarbazone

aDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA
*Correspondence e-mail: jjasinski@keene.edu

Edited by V. V. Chernyshev, Moscow State University, Russia (Received 13 September 2015; accepted 29 September 2015; online 3 October 2015)

The asymmetric unit of the title compound, C12H17N3O2S, contains two independent mol­ecules, A and B. Both mol­ecules are nearly planar with the dihedral angle between the mean planes of the thio­amide group and benzene ring being 7.5 (1)° in A and 4.3 (2)° in B. In each mol­ecule, the hy­droxy group participates in intra­molecular O—H⋯N hydrogen bonding, while the amino H atom is not involved in hydrogen bonding because of the steric hinderence caused by two neighboring methyl groups. In the crystal, the individual molecules are linked by weak C—H⋯O hydrogen bonds, forming AA and BB inversion dimers. The dimers are linked via C—H⋯π inter­actions which help stabilize the packing.

1. Related literature

For thio­semicarbazone ligands and metal complexes, see: Lobana et al. (2009[Lobana, T. S., Sharma, R., Bawa, G. & Khanna, S. (2009). Coord. Chem. Rev. 253, 977-1055.], 2012[Lobana, T. S., Kumari, P., Bawa, G., Hundal, G., Butcher, R. J., Fernandez, F. J., Jasinski, J. P. & Golen, J. A. (2012). Z. Anorg. Allg. Chem. 638, 804-810.]). For biological and anti­tumor and anti­fungal activity of palladium complexes with thio­semicarbazone ligands, see: Chellan et al. (2010[Chellan, P., Shunmoogam-Gounden, N., Hendricks, D. T., Gut, J., Rosenthal, P. J., Lategan, C., Smith, P. J., Chibale, K. & Smith, G. S. (2010). Eur. J. Inorg. Chem. pp. 3520-3528.]). For biological activity of a thio­semicarbazone ligand with a terminal dimethyl substitution, see: Kowol et al. (2009[Kowol, C. R., Trondl, R., Heffeter, P., Arion, V. B., Jakupec, M. A., Roller, A., Galanski, M., Berger, W. & Keppler, B. K. (2009). J. Med. Chem. 52, 5032-5043.]). For related structures, see: Anderson et al. (2012[Anderson, B. J., Kennedy, C. J. & Jasinski, J. P. (2012). Acta Cryst. E68, o2982.], 2013[Anderson, B. J., Keeler, A. M., O'Rourke, K. A., Krauss, S. T. & Jasinski, J. P. (2013). Acta Cryst. E69, o11.]); Kovala-Demertzi et al. (2000[Kovala-Demertzi, D., Kourkoumelis, N., Demertzis, M. A., Miller, J. R., Frampton, C. S., Swearingen, J. K. & West, D. X. (2000). Eur. J. Inorg. Chem. pp. 727-734.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C12H17N3O2S

  • Mr = 267.34

  • Monoclinic P 21 /a

  • a = 15.7097 (12) Å

  • b = 7.8300 (5) Å

  • c = 21.2351 (19) Å

  • β = 92.635 (8)°

  • V = 2609.3 (3) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.25 mm−1

  • T = 173 K

  • 0.54 × 0.35 × 0.05 mm

2.2. Data collection

  • Agilent, Eos, Gemini diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2014[Agilent (2014). CrysAlis PRO and CrysAlis RED. Agilent Technologies Ltd, Yarnton, England.]) Tmin = 0.803, Tmax = 1.000

  • 33509 measured reflections

  • 8982 independent reflections

  • 6065 reflections with I > 2σ(I)

  • Rint = 0.081

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.078

  • wR(F2) = 0.224

  • S = 1.06

  • 8982 reflections

  • 334 parameters

  • H-atom parameters constrained

  • Δρmax = 1.08 e Å−3

  • Δρmin = −0.48 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C3⋯C8 and C3A⋯C8A rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N3 0.84 1.84 2.563 (2) 143
O1A—H1A⋯N3A 0.84 1.86 2.565 (3) 141
C11—H11A⋯O1i 0.98 2.51 3.315 (3) 139
C11A—H11E⋯O1Aii 0.98 2.68 3.305 (4) 122
C11A—H11ECg2iii 0.98 2.73 3.590 (3) 147
C12—H12BCg1i 0.98 2.82 3.530 (3) 130
Symmetry codes: (i) -x+1, -y, -z+2; (ii) -x+1, -y, -z+1; (iii) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+1].

Data collection: CrysAlis PRO (Agilent, 2014[Agilent (2014). CrysAlis PRO and CrysAlis RED. Agilent Technologies Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS2014 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]); molecular graphics: OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]); software used to prepare material for publication: OLEX2.

Supporting information


Comment top

The asymmetric unit of the title compound, C12H17N3O2S, contains two independent molecules A and B, respectively (Fig. 1). Both molecules are nearly planar with the dihedral angle between the mean planes of the thioamide group and benzene ring being 7.5 (1)° in A and 4.3 (2)° in B. In each molecule, the hydroxy group participates in intramolecular O—H···N hydrogen bonding, while the amino H atom is not involved in hydrogen bonding because of the steric hinderence caused by two neighboring methyl groups. In the crystal, weak intermolecular C—H···O and C—H···π (Table 1) interactions are observed which help stabilize the packing (Fig. 2). No ππ stacking interactions are present.

Related literature top

For thiosemicarbazone ligands and metal complexes, see: Lobana et al. (2009, 2012). For biological and antitumor and antifungal activity of palladium complexes with thiosemicarbazone ligands, see: Chellan et al. (2010). For biological activity of a thiosemicarbazone ligand with a terminal dimethyl substitution, see: Kowol et al. (2009). For related structures, see: Anderson et al. (2012, 2013); Kovala-Demertzi et al. (2000).

Experimental top

A 25 mL round bottom flask charged with 2.5 mL of H2O, 2.5 mL ethanol and 0.1499 g (1.26 mmol) of 4,4-dimethyl-3-thiosemicarbazide was dissolved in a water/ethanol mixture and heated. Once the mixture was completely dissolved, 0.2225 g (1.34 mmol) of 2'-hydroxy-5'-methoxyacetophenone was added, and the solution was refluxed for 18 hours resulting in the formation of a yellow solid. After reflux, the slurry was allowed to cool to room temperature, transferred to a separatory funnel and water (15 mL) and dichloromethane (15 mL) was added. The organic layer was separated and the aqueous layer was extracted with an additional 15 mL of DCM. The organic layers were then combined and washed with brine (20 mL), and then dried with magnesium sulfate. The solvent was removed by rotary evaporation. The resulting solid was crystallized from acetonitrile to give 67 mg (18% yield) of yellow crystals. The crystals were observed to decompose above 460 K.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 1. All H atoms were located in difference maps. The C–H and N–H atoms were treated as riding atoms in geometrically idealized positions with C—H, N—H distances of 0.95 Å, 0.88 Å and refined with Uiso(H) = 1.2Ueq(C, N). The CH3 and O–H atoms were also treated as riding atoms in geometrically idealized positions with the CH3, O—H distances of 0.98 Å, 0.84 Å and refined with Uiso(H) = 1.5Ueq(C, O).

Structure description top

The asymmetric unit of the title compound, C12H17N3O2S, contains two independent molecules A and B, respectively (Fig. 1). Both molecules are nearly planar with the dihedral angle between the mean planes of the thioamide group and benzene ring being 7.5 (1)° in A and 4.3 (2)° in B. In each molecule, the hydroxy group participates in intramolecular O—H···N hydrogen bonding, while the amino H atom is not involved in hydrogen bonding because of the steric hinderence caused by two neighboring methyl groups. In the crystal, weak intermolecular C—H···O and C—H···π (Table 1) interactions are observed which help stabilize the packing (Fig. 2). No ππ stacking interactions are present.

For thiosemicarbazone ligands and metal complexes, see: Lobana et al. (2009, 2012). For biological and antitumor and antifungal activity of palladium complexes with thiosemicarbazone ligands, see: Chellan et al. (2010). For biological activity of a thiosemicarbazone ligand with a terminal dimethyl substitution, see: Kowol et al. (2009). For related structures, see: Anderson et al. (2012, 2013); Kovala-Demertzi et al. (2000).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2014); cell refinement: CrysAlis PRO (Agilent, 2014); data reduction: CrysAlis PRO (Agilent, 2014); program(s) used to solve structure: SHELXS2014 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Figures top
[Figure 1] Fig. 1. Two independent molecules of the title compound showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. A portion of the crystal packing viewed approximately along the a axis.
1-(2-Hydroxy-5-methoxyphenyl)ethanone 4,4-dimethylthiosemicarbazone top
Crystal data top
C12H17N3O2SF(000) = 1136
Mr = 267.34Dx = 1.361 Mg m3
Monoclinic, P21/aMo Kα radiation, λ = 0.71073 Å
a = 15.7097 (12) ÅCell parameters from 7195 reflections
b = 7.8300 (5) Åθ = 3.0–32.8°
c = 21.2351 (19) ŵ = 0.25 mm1
β = 92.635 (8)°T = 173 K
V = 2609.3 (3) Å3Prism, colourless
Z = 80.54 × 0.35 × 0.05 mm
Data collection top
Agilent, Eos, Gemini
diffractometer
8982 independent reflections
Radiation source: Enhance (Mo) X-ray Source6065 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.081
Detector resolution: 16.0416 pixels mm-1θmax = 32.9°, θmin = 3.0°
ω scansh = 2323
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2014)
k = 1111
Tmin = 0.803, Tmax = 1.000l = 3028
33509 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.078H-atom parameters constrained
wR(F2) = 0.224 w = 1/[σ2(Fo2) + (0.1106P)2 + 0.7177P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.001
8982 reflectionsΔρmax = 1.08 e Å3
334 parametersΔρmin = 0.48 e Å3
0 restraints
Crystal data top
C12H17N3O2SV = 2609.3 (3) Å3
Mr = 267.34Z = 8
Monoclinic, P21/aMo Kα radiation
a = 15.7097 (12) ŵ = 0.25 mm1
b = 7.8300 (5) ÅT = 173 K
c = 21.2351 (19) Å0.54 × 0.35 × 0.05 mm
β = 92.635 (8)°
Data collection top
Agilent, Eos, Gemini
diffractometer
8982 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2014)
6065 reflections with I > 2σ(I)
Tmin = 0.803, Tmax = 1.000Rint = 0.081
33509 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0780 restraints
wR(F2) = 0.224H-atom parameters constrained
S = 1.06Δρmax = 1.08 e Å3
8982 reflectionsΔρmin = 0.48 e Å3
334 parameters
Special details top

Experimental. Absorption correction: CrysAlisPro (Agilent, 2014). Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.44809 (3)0.09151 (7)1.11976 (3)0.03013 (15)
O10.32782 (10)0.2857 (2)0.99601 (7)0.0293 (3)
H10.37420.24691.01120.044*
O20.35386 (11)0.6134 (2)0.76763 (7)0.0336 (4)
N10.61624 (11)0.0389 (2)1.11969 (8)0.0248 (3)
N20.55831 (11)0.1799 (2)1.03407 (8)0.0246 (3)
H20.60990.18811.01990.030*
N30.48981 (11)0.2446 (2)1.00018 (8)0.0233 (3)
C10.54532 (13)0.1017 (2)1.09064 (9)0.0215 (4)
C20.50099 (12)0.3329 (2)0.94986 (9)0.0220 (4)
C30.42248 (12)0.3932 (2)0.91666 (9)0.0211 (4)
C40.34139 (13)0.3677 (3)0.94099 (9)0.0236 (4)
C50.26923 (14)0.4287 (3)0.90750 (11)0.0295 (4)
H50.21480.41450.92460.035*
C60.27513 (14)0.5088 (3)0.85053 (11)0.0299 (4)
H60.22510.54820.82820.036*
C70.35447 (13)0.5322 (3)0.82530 (10)0.0258 (4)
C80.42704 (13)0.4770 (3)0.85839 (9)0.0247 (4)
H80.48110.49600.84140.030*
C90.43341 (17)0.6297 (4)0.73913 (11)0.0405 (6)
H9A0.42480.68430.69780.061*
H9B0.45850.51620.73390.061*
H9C0.47190.69970.76600.061*
C100.58601 (13)0.3769 (3)0.92477 (10)0.0267 (4)
H10A0.63060.36030.95800.040*
H10B0.58580.49630.91100.040*
H10C0.59710.30260.88890.040*
C110.70021 (13)0.0579 (3)1.09373 (10)0.0292 (4)
H11A0.70030.00291.05230.044*
H11B0.74320.00411.12210.044*
H11C0.71340.17951.08940.044*
C120.61403 (15)0.0437 (3)1.18084 (10)0.0302 (4)
H12A0.62940.03921.21400.045*
H12B0.65470.13861.18280.045*
H12C0.55650.08731.18690.045*
S1A0.56414 (5)0.19363 (10)0.59613 (3)0.0475 (2)
O1A0.66714 (13)0.3267 (2)0.44906 (9)0.0443 (5)
H1A0.63920.25520.46920.066*
O2A0.82584 (12)0.0500 (2)0.24624 (8)0.0411 (4)
N1A0.53156 (14)0.1371 (3)0.61861 (10)0.0413 (5)
N2A0.59826 (13)0.0826 (3)0.52876 (9)0.0357 (4)
H2A0.59700.19350.52200.043*
N3A0.63480 (12)0.0228 (3)0.48627 (9)0.0319 (4)
C1A0.56361 (15)0.0174 (4)0.58155 (11)0.0355 (5)
C2A0.67559 (14)0.0493 (3)0.44166 (10)0.0287 (4)
C3A0.71116 (14)0.0682 (3)0.39541 (10)0.0280 (4)
C4A0.70414 (16)0.2470 (3)0.40023 (11)0.0349 (5)
C5A0.73558 (19)0.3507 (3)0.35358 (12)0.0421 (6)
H5A0.72990.47110.35680.050*
C6A0.77470 (18)0.2826 (3)0.30294 (12)0.0406 (6)
H6A0.79570.35550.27140.049*
C7A0.78354 (16)0.1063 (3)0.29783 (11)0.0334 (5)
C8A0.75226 (15)0.0007 (3)0.34303 (11)0.0311 (4)
H8A0.75840.11950.33900.037*
C9A0.83626 (17)0.1293 (4)0.24074 (12)0.0396 (5)
H9AA0.87010.17200.27730.059*
H9AB0.78020.18450.23890.059*
H9AC0.86560.15500.20210.059*
C10A0.68571 (17)0.2386 (3)0.43561 (12)0.0357 (5)
H10D0.68730.29080.47760.054*
H10E0.63750.28510.41010.054*
H10F0.73890.26370.41510.054*
C11A0.5344 (2)0.3188 (4)0.60277 (14)0.0511 (7)
H11D0.50780.38520.63570.077*
H11E0.50350.33820.56230.077*
H11F0.59390.35470.59980.077*
C12A0.4973 (2)0.0922 (5)0.67918 (14)0.0571 (8)
H12D0.53620.13250.71340.086*
H12E0.49120.03210.68200.086*
H12F0.44140.14620.68280.086*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0221 (3)0.0347 (3)0.0344 (3)0.0020 (2)0.01022 (19)0.00048 (19)
O10.0209 (7)0.0346 (9)0.0330 (8)0.0050 (6)0.0082 (6)0.0030 (6)
O20.0299 (8)0.0352 (9)0.0358 (8)0.0002 (7)0.0011 (6)0.0072 (6)
N10.0191 (8)0.0243 (8)0.0313 (9)0.0007 (6)0.0058 (6)0.0012 (6)
N20.0204 (8)0.0245 (8)0.0295 (8)0.0024 (6)0.0079 (6)0.0015 (6)
N30.0206 (8)0.0212 (8)0.0284 (8)0.0020 (6)0.0043 (6)0.0025 (6)
C10.0209 (9)0.0178 (8)0.0263 (9)0.0008 (6)0.0050 (7)0.0035 (6)
C20.0208 (9)0.0179 (8)0.0277 (9)0.0001 (7)0.0067 (7)0.0049 (6)
C30.0178 (8)0.0168 (8)0.0290 (9)0.0024 (6)0.0047 (7)0.0040 (6)
C40.0214 (9)0.0196 (8)0.0303 (10)0.0028 (7)0.0053 (7)0.0035 (7)
C50.0184 (9)0.0295 (10)0.0410 (12)0.0021 (8)0.0067 (8)0.0009 (8)
C60.0220 (10)0.0278 (10)0.0396 (12)0.0004 (8)0.0011 (8)0.0004 (8)
C70.0261 (10)0.0195 (9)0.0317 (10)0.0008 (7)0.0020 (7)0.0004 (7)
C80.0219 (9)0.0212 (9)0.0314 (10)0.0013 (7)0.0049 (7)0.0028 (7)
C90.0376 (13)0.0515 (16)0.0330 (12)0.0026 (11)0.0066 (9)0.0089 (10)
C100.0200 (9)0.0272 (10)0.0333 (10)0.0021 (7)0.0050 (7)0.0037 (7)
C110.0197 (9)0.0314 (11)0.0370 (11)0.0006 (8)0.0051 (8)0.0012 (8)
C120.0307 (11)0.0297 (11)0.0300 (10)0.0010 (9)0.0009 (8)0.0034 (8)
S1A0.0435 (4)0.0464 (4)0.0531 (4)0.0001 (3)0.0089 (3)0.0232 (3)
O1A0.0528 (12)0.0284 (9)0.0515 (11)0.0099 (8)0.0010 (8)0.0119 (7)
O2A0.0469 (11)0.0383 (10)0.0388 (9)0.0026 (8)0.0079 (7)0.0008 (7)
N1A0.0350 (12)0.0492 (13)0.0402 (11)0.0032 (10)0.0064 (9)0.0068 (9)
N2A0.0370 (11)0.0329 (10)0.0375 (11)0.0036 (8)0.0050 (8)0.0086 (7)
N3A0.0310 (10)0.0310 (10)0.0336 (10)0.0049 (8)0.0004 (7)0.0070 (7)
C1A0.0237 (11)0.0454 (14)0.0373 (12)0.0057 (9)0.0001 (8)0.0117 (9)
C2A0.0254 (10)0.0248 (10)0.0352 (11)0.0042 (8)0.0036 (8)0.0084 (8)
C3A0.0257 (10)0.0233 (9)0.0343 (11)0.0039 (8)0.0053 (8)0.0055 (7)
C4A0.0356 (12)0.0273 (11)0.0408 (12)0.0071 (9)0.0075 (9)0.0079 (9)
C5A0.0529 (16)0.0243 (11)0.0480 (14)0.0046 (10)0.0079 (11)0.0022 (9)
C6A0.0466 (15)0.0311 (12)0.0432 (13)0.0005 (10)0.0060 (11)0.0047 (9)
C7A0.0342 (12)0.0317 (12)0.0338 (11)0.0026 (9)0.0048 (9)0.0020 (8)
C8A0.0297 (11)0.0268 (10)0.0364 (11)0.0018 (8)0.0026 (8)0.0046 (8)
C9A0.0350 (13)0.0426 (14)0.0416 (13)0.0040 (11)0.0070 (10)0.0037 (10)
C10A0.0385 (13)0.0264 (11)0.0428 (13)0.0029 (9)0.0083 (10)0.0061 (9)
C11A0.0501 (18)0.0504 (18)0.0536 (17)0.0002 (13)0.0090 (13)0.0007 (12)
C12A0.0508 (18)0.079 (2)0.0424 (16)0.0007 (16)0.0133 (13)0.0123 (14)
Geometric parameters (Å, º) top
S1—C11.676 (2)S1A—C1A1.681 (3)
O1—H10.8400O1A—H1A0.8400
O1—C41.359 (2)O1A—C4A1.363 (3)
O2—C71.380 (3)O2A—C7A1.379 (3)
O2—C91.419 (3)O2A—C9A1.419 (3)
N1—C11.342 (3)N1A—C1A1.337 (4)
N1—C111.461 (3)N1A—C11A1.463 (4)
N1—C121.452 (3)N1A—C12A1.460 (3)
N2—H20.8800N2A—H2A0.8800
N2—N31.364 (2)N2A—N3A1.368 (3)
N2—C11.372 (2)N2A—C1A1.367 (3)
N3—C21.292 (3)N3A—C2A1.297 (3)
C2—C31.470 (3)C2A—C3A1.474 (3)
C2—C101.500 (3)C2A—C10A1.496 (3)
C3—C41.411 (3)C3A—C4A1.408 (3)
C3—C81.405 (3)C3A—C8A1.414 (3)
C4—C51.395 (3)C4A—C5A1.389 (4)
C5—H50.9500C5A—H5A0.9500
C5—C61.369 (3)C5A—C6A1.371 (4)
C6—H60.9500C6A—H6A0.9500
C6—C71.391 (3)C6A—C7A1.392 (3)
C7—C81.381 (3)C7A—C8A1.375 (3)
C8—H80.9500C8A—H8A0.9500
C9—H9A0.9800C9A—H9AA0.9800
C9—H9B0.9800C9A—H9AB0.9800
C9—H9C0.9800C9A—H9AC0.9800
C10—H10A0.9800C10A—H10D0.9800
C10—H10B0.9800C10A—H10E0.9800
C10—H10C0.9800C10A—H10F0.9800
C11—H11A0.9800C11A—H11D0.9800
C11—H11B0.9800C11A—H11E0.9800
C11—H11C0.9800C11A—H11F0.9800
C12—H12A0.9800C12A—H12D0.9800
C12—H12B0.9800C12A—H12E0.9800
C12—H12C0.9800C12A—H12F0.9800
C4—O1—H1109.5C4A—O1A—H1A109.5
C7—O2—C9116.72 (17)C7A—O2A—C9A116.31 (19)
C1—N1—C11122.29 (17)C1A—N1A—C11A122.0 (2)
C1—N1—C12121.38 (17)C1A—N1A—C12A121.0 (3)
C12—N1—C11116.23 (17)C12A—N1A—C11A116.9 (3)
N3—N2—H2120.6N3A—N2A—H2A119.6
N3—N2—C1118.84 (17)C1A—N2A—H2A119.6
C1—N2—H2120.6C1A—N2A—N3A120.7 (2)
C2—N3—N2120.09 (17)C2A—N3A—N2A117.1 (2)
N1—C1—S1124.37 (15)N1A—C1A—S1A125.40 (19)
N1—C1—N2114.36 (17)N1A—C1A—N2A113.3 (2)
N2—C1—S1121.27 (15)N2A—C1A—S1A121.3 (2)
N3—C2—C3115.20 (17)N3A—C2A—C3A115.5 (2)
N3—C2—C10125.01 (18)N3A—C2A—C10A123.5 (2)
C3—C2—C10119.79 (17)C3A—C2A—C10A121.05 (19)
C4—C3—C2122.05 (18)C4A—C3A—C2A122.6 (2)
C8—C3—C2119.78 (17)C4A—C3A—C8A118.0 (2)
C8—C3—C4118.16 (18)C8A—C3A—C2A119.43 (19)
O1—C4—C3124.19 (18)O1A—C4A—C3A123.2 (2)
O1—C4—C5116.38 (18)O1A—C4A—C5A116.9 (2)
C5—C4—C3119.43 (19)C5A—C4A—C3A119.8 (2)
C4—C5—H5119.3C4A—C5A—H5A119.4
C6—C5—C4121.38 (19)C6A—C5A—C4A121.3 (2)
C6—C5—H5119.3C6A—C5A—H5A119.4
C5—C6—H6120.0C5A—C6A—H6A120.1
C5—C6—C7119.9 (2)C5A—C6A—C7A119.8 (2)
C7—C6—H6120.0C7A—C6A—H6A120.1
O2—C7—C6115.65 (18)O2A—C7A—C6A115.6 (2)
O2—C7—C8124.61 (19)C8A—C7A—O2A124.3 (2)
C8—C7—C6119.74 (19)C8A—C7A—C6A120.1 (2)
C3—C8—H8119.3C3A—C8A—H8A119.5
C7—C8—C3121.33 (19)C7A—C8A—C3A121.0 (2)
C7—C8—H8119.3C7A—C8A—H8A119.5
O2—C9—H9A109.5O2A—C9A—H9AA109.5
O2—C9—H9B109.5O2A—C9A—H9AB109.5
O2—C9—H9C109.5O2A—C9A—H9AC109.5
H9A—C9—H9B109.5H9AA—C9A—H9AB109.5
H9A—C9—H9C109.5H9AA—C9A—H9AC109.5
H9B—C9—H9C109.5H9AB—C9A—H9AC109.5
C2—C10—H10A109.5C2A—C10A—H10D109.5
C2—C10—H10B109.5C2A—C10A—H10E109.5
C2—C10—H10C109.5C2A—C10A—H10F109.5
H10A—C10—H10B109.5H10D—C10A—H10E109.5
H10A—C10—H10C109.5H10D—C10A—H10F109.5
H10B—C10—H10C109.5H10E—C10A—H10F109.5
N1—C11—H11A109.5N1A—C11A—H11D109.5
N1—C11—H11B109.5N1A—C11A—H11E109.5
N1—C11—H11C109.5N1A—C11A—H11F109.5
H11A—C11—H11B109.5H11D—C11A—H11E109.5
H11A—C11—H11C109.5H11D—C11A—H11F109.5
H11B—C11—H11C109.5H11E—C11A—H11F109.5
N1—C12—H12A109.5N1A—C12A—H12D109.5
N1—C12—H12B109.5N1A—C12A—H12E109.5
N1—C12—H12C109.5N1A—C12A—H12F109.5
H12A—C12—H12B109.5H12D—C12A—H12E109.5
H12A—C12—H12C109.5H12D—C12A—H12F109.5
H12B—C12—H12C109.5H12E—C12A—H12F109.5
O1—C4—C5—C6178.0 (2)O1A—C4A—C5A—C6A179.3 (2)
O2—C7—C8—C3179.22 (18)O2A—C7A—C8A—C3A178.6 (2)
N2—N3—C2—C3178.91 (16)N2A—N3A—C2A—C3A177.70 (18)
N2—N3—C2—C101.7 (3)N2A—N3A—C2A—C10A1.3 (3)
N3—N2—C1—S12.4 (2)N3A—N2A—C1A—S1A0.3 (3)
N3—N2—C1—N1178.56 (17)N3A—N2A—C1A—N1A179.2 (2)
N3—C2—C3—C44.8 (3)N3A—C2A—C3A—C4A2.1 (3)
N3—C2—C3—C8174.23 (17)N3A—C2A—C3A—C8A176.3 (2)
C1—N2—N3—C2173.41 (17)C1A—N2A—N3A—C2A171.6 (2)
C2—C3—C4—O10.5 (3)C2A—C3A—C4A—O1A2.7 (3)
C2—C3—C4—C5179.65 (18)C2A—C3A—C4A—C5A177.1 (2)
C2—C3—C8—C7178.66 (18)C2A—C3A—C8A—C7A177.7 (2)
C3—C4—C5—C61.9 (3)C3A—C4A—C5A—C6A0.9 (4)
C4—C3—C8—C70.4 (3)C4A—C3A—C8A—C7A0.7 (3)
C4—C5—C6—C70.7 (3)C4A—C5A—C6A—C7A0.1 (4)
C5—C6—C7—O2179.7 (2)C5A—C6A—C7A—O2A178.3 (2)
C5—C6—C7—C81.0 (3)C5A—C6A—C7A—C8A0.8 (4)
C6—C7—C8—C31.6 (3)C6A—C7A—C8A—C3A0.3 (3)
C8—C3—C4—O1178.59 (18)C8A—C3A—C4A—O1A178.9 (2)
C8—C3—C4—C51.3 (3)C8A—C3A—C4A—C5A1.3 (3)
C9—O2—C7—C6176.3 (2)C9A—O2A—C7A—C6A179.3 (2)
C9—O2—C7—C84.5 (3)C9A—O2A—C7A—C8A0.3 (3)
C10—C2—C3—C4174.64 (18)C10A—C2A—C3A—C4A178.9 (2)
C10—C2—C3—C86.3 (3)C10A—C2A—C3A—C8A2.8 (3)
C11—N1—C1—S1177.10 (15)C11A—N1A—C1A—S1A179.4 (2)
C11—N1—C1—N21.9 (3)C11A—N1A—C1A—N2A0.0 (3)
C12—N1—C1—S10.7 (3)C12A—N1A—C1A—S1A3.7 (4)
C12—N1—C1—N2178.29 (18)C12A—N1A—C1A—N2A175.7 (2)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C3···C8 and C3A···C8A rings, respectively.
D—H···AD—HH···AD···AD—H···A
O1—H1···N30.841.842.563 (2)143
O1A—H1A···N3A0.841.862.565 (3)141
C11—H11A···O1i0.982.513.315 (3)139
C11A—H11E···O1Aii0.982.683.305 (4)122
C11A—H11E···Cg2iii0.982.733.590 (3)147
C12—H12B···Cg1i0.982.823.530 (3)130
Symmetry codes: (i) x+1, y, z+2; (ii) x+1, y, z+1; (iii) x+3/2, y+1/2, z+1.
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C3···C8 and C3A···C8A rings, respectively.
D—H···AD—HH···AD···AD—H···A
O1—H1···N30.841.842.563 (2)143
O1A—H1A···N3A0.841.862.565 (3)141
C11—H11A···O1i0.982.513.315 (3)139
C11A—H11E···O1Aii0.982.683.305 (4)122
C11A—H11E···Cg2iii0.982.733.590 (3)147
C12—H12B···Cg1i0.982.823.530 (3)130
Symmetry codes: (i) x+1, y, z+2; (ii) x+1, y, z+1; (iii) x+3/2, y+1/2, z+1.
 

Acknowledgements

JPJ acknowledges the NSF–MRI program (grant No. CHE-1039027) for funds to purchase the X-ray diffractometer.

References

First citationAgilent (2014). CrysAlis PRO and CrysAlis RED. Agilent Technologies Ltd, Yarnton, England.  Google Scholar
First citationAnderson, B. J., Keeler, A. M., O'Rourke, K. A., Krauss, S. T. & Jasinski, J. P. (2013). Acta Cryst. E69, o11.  CSD CrossRef IUCr Journals Google Scholar
First citationAnderson, B. J., Kennedy, C. J. & Jasinski, J. P. (2012). Acta Cryst. E68, o2982.  CSD CrossRef IUCr Journals Google Scholar
First citationChellan, P., Shunmoogam-Gounden, N., Hendricks, D. T., Gut, J., Rosenthal, P. J., Lategan, C., Smith, P. J., Chibale, K. & Smith, G. S. (2010). Eur. J. Inorg. Chem. pp. 3520–3528.  Web of Science CSD CrossRef Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationKovala-Demertzi, D., Kourkoumelis, N., Demertzis, M. A., Miller, J. R., Frampton, C. S., Swearingen, J. K. & West, D. X. (2000). Eur. J. Inorg. Chem. pp. 727–734.  Google Scholar
First citationKowol, C. R., Trondl, R., Heffeter, P., Arion, V. B., Jakupec, M. A., Roller, A., Galanski, M., Berger, W. & Keppler, B. K. (2009). J. Med. Chem. 52, 5032–5043.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationLobana, T. S., Kumari, P., Bawa, G., Hundal, G., Butcher, R. J., Fernandez, F. J., Jasinski, J. P. & Golen, J. A. (2012). Z. Anorg. Allg. Chem. 638, 804–810.  Web of Science CSD CrossRef CAS Google Scholar
First citationLobana, T. S., Sharma, R., Bawa, G. & Khanna, S. (2009). Coord. Chem. Rev. 253, 977–1055.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds