research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structures of 4-meth­­oxy-N-(4-methyl­phenyl)benzene­sulfonamide and N-(4-fluoro­phenyl)-4-meth­­oxy­benzene­sulfonamide

aDepartment of PG Studies and Research in Chemistry, St Aloysius College, Mangalore, India, bInstitution of Excellence, University of Mysore, Mysuru-6, India, cDepartment of Physics, University of Mysore, Mysuru-6, India, and dDepartment of Chemistry, University College of Science, Tumkur University, Tumkur 572 103, India
*Correspondence e-mail: pasuchetan@yahoo.co.in

Edited by V. V. Chernyshev, Moscow State University, Russia (Received 22 September 2015; accepted 19 October 2015; online 28 October 2015)

Crystal structures of two N-(ar­yl)aryl­sulfonamides, namely, 4-meth­oxy-N-(4-methyl­phen­yl)benzene­sulfonamide, C14H15NO3S, (I), and N-(4-fluoro­phen­yl)-4-meth­oxy­benzene­sulfonamide, C13H12FNO3S, (II), were determined and analyzed. In (I), the benzene­sulfonamide ring is disordered over two orientations, in a 0.516 (7):0.484 (7) ratio, which are inclined to each other at 28.0 (1)°. In (I), the major component of the sulfonyl benzene ring and the aniline ring form a dihedral angle of 63.36 (19)°, while in (II), the planes of the two benzene rings form a dihedral angle of 44.26 (13)°. In the crystal structure of (I), N—H⋯O hydrogen bonds form infinite C(4) chains extended in [010], and inter­molecular C—H⋯πar­yl inter­actions link these chains into layers parallel to the ab plane. The crystal structure of (II) features N—H⋯O hydrogen bonds forming infinite one dimensional C(4) chains along [001]. Further, a pair of C—H⋯O inter­molecular inter­actions consolidate the crystal packing of (II) into a three-dimensional supra­molecular architecture.

1. Chemical context

Sulfonamide drugs were the first among the chemotherapeutic agents to be used for curing and preventing bacterial infection in human beings (Shiva Prasad et al., 2011[Shiva Prasad, K., Shiva Kumar, L., Vinay, K. B., ChandraShekar, S., Jayalakshmi, B. & Revanasiddappa, H. D. (2011). Int. J. Chem. Res. 2, 1-6.]). They play a vital role as a key constituent in a number of biologically active mol­ecules. Up to now, sulfonamides have been known to exhibit a wide variety of biological activities, such as anti­bacterial (Subhakara Reddy et al., 2012[Subhakara Reddy, N., Srinivas Rao, A., Adharvana Chari, M., Ravi Kumar, V., Jyothy, V. & Himabindu, V. (2012). J. Chem. Sci. 124, 723-730.]; Himel et al., 1971[Himel, C. M., Aboulsaa, W. G. & Uk, S. (1971). J. Agric. Food Chem. 19, 1175-1180.]), anti­fungal (Hanafy et al., 2007[Hanafy, A., Uno, J., Mitani, H., Kang, Y. & Mikami, Y. (2007). Jpn J. Med. Mycol. 48, 47-50.]), anti­inflamatory (Kuçukguzel et al., 2013[Kuçukguzel, S. G., Coskun, I., Aydın, S., Aktay, G., Gursoy, S., Cevik, O., Ozakpınar, O. B., Ozsavc, D., Sener, A., Kaushik-Basu, N., Basu, A. & Talele, T. T. (2013). Molecules, 18, 3595-3614.]), anti­tumor (Ghorab et al., 2011[Ghorab, M. M., Ragab, A. F., Heiba, I. H. & Agha, M. H. (2011). J. Basic Appl. Chem. 1, 8-14.]), anti­cancer (Mansour et al., 2011[Mansour, S., Al-Said Ghorab, M. M., Al-Dosari, M. S. & Hamed, M. M. (2011). Eur. J. Med. Chem. 46, 201-207.]), anti-HIV (Sahu et al., 2007[Sahu, K. K., Ravichandran, V., Mourya, V. K. & Agrawal, R. K. (2007). Med. Chem. Res. 15, 418-430.]) and anti­tubercular activities (Vora & Mehta, 2012[Vora, P. J. & Mehta, A. G. (2012). IOSR J. Appl. Chem. 1, 34-39.]). In recent years, extensive research studies have been carried out on the synthesis and evaluation of pharmacological activities of mol­ecules containing the sulfonamide moiety for different activities, and have been reported to be important pharmacophores (Mohan et al., 2013[Mohan, N. R., Sreenivasa, S., Manojkumar, K. E. & Chakrapani Rao, T. M. (2013). J. Appl. Chem. 2, 722-729.]).

With these considerations in mind and based on our structural study of N-(4-substituted-phen­yl)-4-meth­oxy­benzene­sulfonamides (Vinola et al., 2015[Vinola, Z. R., Sreenivasa, S., Naveen, S., Lokanath, N. K. & Suchetan, P. A. (2015). J. Appl. Chem. 4, 127-135.]), we report herein the crystal structures of 4-meth­oxy-N-(4-methyl­phen­yl)benzene­sulfonamide, (I)[link], and N-(4-fluoro­phen­yl)-4-meth­oxy­benzene­sulfonamide, (II)[link].

2. Structural commentary

In (I)[link] (Fig. 1[link]), the benzene­sulfonamide ring is disordered due to rotation across the Car—S(O2) bond over two orientations, with atoms C2, C3, C5 and C6 occupying two positions with a 0.516 (7):0.484 (7) ratio. The dihedral angle between the two parts of disordered benzene ring, i.e. C1/C2A/C3A/C4/C5A/C6A and C1/C2B/C3B/C4/C5B/C6B, is 28.0 (1)°. The dihedral angle between the sulfonyl benzene ring (considering the major component) and the aniline ring is 63.36 (19)°, and the N—C bond in the C—SO2—NH—C segment has a gauche torsion with respect to the S=O bonds. Further, the mol­ecule is twisted at the S—N bond, with a C1—S1—N1—C7 torsion angle of 66.33 (19)°. The meth­oxy group in the sulfonyl­benzene ring is in the same plane as that of the major component of the disordered sulfonyl­benzene ring, the torsion angle C5A—C4—O3—C14 being −176.2 (4)°, while it deviates slightly from planarity with respect to the minor component, the C5B—C4—O3—C14 torsion angle being 165.9 (4)°.

[Figure 1]
Figure 1
A view of (I)[link], showing the atom labelling. Displacement ellipsoids are drawn at the 50% probability level. Only the major component of the disordered benzene ring is shown.

In (II)[link] (Fig. 2[link]), the dihedral angle between the two benzene rings of 44.26 (13)° is less than that observed in (I)[link], and the N—C bond in the C—SO2—NH—C segment has a gauche torsion with respect to the S=O bonds. Further, the mol­ecule is twisted at the S—N bond, with a C1—S1—N1—C7 torsion angle of 68.4 (2)°. Similar to (I)[link], the meth­oxy group in the sulfonyl­benzene ring is in the same plane as that of the sulfonyl­benzene ring, the C5—C4—O3—C13 torsion angle being 177.0 (2)°.

[Scheme 1]
[Figure 2]
Figure 2
A view of (II)[link], showing the atom labelling. Displacement ellipsoids are drawn at the 50% probability level.

3. Supra­molecular features

In the crystal structure of (I)[link], N1—H1⋯O2 hydrogen bonds (Table 1[link]) link the mol­ecules into infinite one-dimensional C(4) chains along [010]. Neighbouring C(4) chains are inter­connected via C—H⋯πar­yl inter­actions (Table 1[link]) into layers (Fig. 3[link]) parallel to the ab plane.

Table 1
Hydrogen-bond geometry (Å, °) for (I)[link]

Cg is the centroid of the C7–C12 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O2i 0.89 (1) 2.13 (1) 3.010 (2) 170 (2)
C14—H14BCgii 0.96 2.70 3.541 (2) 146
C9—H9⋯Cgiii 0.93 2.87 3.560 (2) 132
Symmetry codes: (i) x, y+1, z; (ii) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].
[Figure 3]
Figure 3
A portion of the crystal packing of (I)[link], viewed approximately along [010] and showing inter­molecular hydrogen bonds as thin blue lines. Only the major component of the disordered benzene ring is shown. H atoms not involved in hydrogen bonding have been omitted for clarity.

The crystal structure of (II)[link] features N1—H1⋯O2 hydrogen bonds (Fig. 4[link] and Table 2[link]), forming infinite one-dimensional C(4) chains along [001]. Further, weak inter­molecular C—H⋯O inter­actions (Table 2[link]) consolidate the crystal packing of (II)[link], leading to a three-dimensional supra­molecular architecture (Fig. 5[link]).

Table 2
Hydrogen-bond geometry (Å, °) for (II)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O2i 0.90 (1) 2.06 (1) 2.951 (3) 171 (3)
C6—H6⋯O1ii 0.93 2.55 3.192 (3) 127
C13—H13B⋯O3iii 0.96 2.60 3.468 (3) 151
Symmetry codes: (i) x, y, z+1; (ii) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, z-{\script{1\over 2}}]; (iii) [-x+1, -y, z+{\script{1\over 2}}].
[Figure 4]
Figure 4
An N—H⋯O hydrogen-bonded (thin blue lines) chain of mol­ecules in the crystal structure of (II)[link].
[Figure 5]
Figure 5
A portion of the crystal packing of (II)[link]. Thin blue lines denote inter­molecular C—H⋯O hydrogen bonds. H atoms not involved in hydrogen bonding have been omitted for clarity.

4. Database survey

Three N-(4-substituted-phen­yl)-4-meth­oxy­benzene­sul­fon­am­ides (Vinola et al., 2015[Vinola, Z. R., Sreenivasa, S., Naveen, S., Lokanath, N. K. & Suchetan, P. A. (2015). J. Appl. Chem. 4, 127-135.]), namely, 4-meth­oxy-N-(phen­yl)benzene­sulfonamide, (III), 4-meth­oxy-N-(4-meth­oxy­phen­yl)benzene­sulfonamide, (IV), and N-(4-chloro­phen­yl)-4-meth­oxy­benzene­sulfonamide, (V), have been reported previously. Compounds (IV) and (V) crystallize in monoclinic syngony, while compound (III) crystallizes in ortho­rhom­bic syngony. The dihedral angles between the two benzene rings in (III), (IV) and (V) are 55.1 (1), 56.3 (1) and 42.6 (1)°, respectively. Comparison of the dihedral angles between the two benzene rings in (I)–(V) shows that, when an electron-donating substituent is introduced into the para position of the aniline ring of (I)[link] it results in a slight increase in the dihedral angle, whereas, when an electron-withdrawing substituent is introduced it decreases the dihedral angle. Further, the mol­ecules of (III), (IV) and (V) are twisted at the S—N bond, with C1—S1—N1—C7 torsion angles of −72.9 (1), 66.2 (1) and 72.5 (1)°, respectively. These values are similar to those observed in (I)[link] and (II)[link].

Comparison of the crystal structures (I)[link] and (V) shows that the effect of introducing an electron-donating substituent into the para position of the aniline ring of (I)[link] is quite different than that due to electron-withdrawing substituents. The crystal structure of (III) features N—H⋯O hydrogen bonds that form C(4) chains, and thus, the supra­molecular architecture is one-dimensional. In (IV), one N—H⋯O hydrogen bond and two alternating C—H⋯πar­yl (centroid of aniline ring) inter­actions direct a two-dimensional architecture. This is quite similar to the crystal structure of (I)[link]. Thus, the methyl and meth­oxy groups on the aniline ring have similar influence on the crystal structures of these compounds. However, the crystal structures of (II)[link] and (V) are very different. The crystal structure of (V) features N—H⋯O hydrogen bonds that form C(4) chains. Further, (V) does not feature any structuredirecting inter­molecular inter­actions, and thus, the structure is one-dimensional. In contrast to this, the crystal structure of (II)[link] features an N—H⋯O and two C—H⋯O inter­actions, leading to a three-dimensional architecture. Thus, the Cl and F atoms on the aniline ring have very different influences on the crystal structures of these compounds.

5. Synthesis and crystallization

Compounds (I)[link] and (II)[link] were prepared according to the literature method of Vinola et al. (2015[Vinola, Z. R., Sreenivasa, S., Naveen, S., Lokanath, N. K. & Suchetan, P. A. (2015). J. Appl. Chem. 4, 127-135.]). The purity of the compounds were checked by determining the melting points. Single crystals used for X-ray diffraction studies were obtained by slow evaporation of ethanol solutions of the compounds at room temperature.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. The amino H atoms were located in a difference map and were refined isotropically with the bond-length restraint N—H = 0.90 (1) Å. To improve considerably the values of R1, wR2, and S (goodness-of-fit), a partially obscured reflection (i.e. 100) was omitted from the final refinement of (I)[link]. The two parts (A and B) of the disordered benzene­sulfonyl ring in (I)[link] were restrained to be planar (FLAT instruction), and thus, the r.m.s. deviations (considering non-H atoms) observed for the planes defining the two rings are 0.047 (1) (major-component ring A) and 0.054 (1) Å (minor-component ring B). The disordered atoms (C2, C3, C5 and C6) in both components were isotropically refined, and the C—C bond lengths were restrained to 1.391 (1) Å.

Table 3
Experimental details

  (I) (II)
Crystal data
Chemical formula C14H15NO3S C13H12FNO3S
Mr 277.33 281.30
Crystal system, space group Monoclinic, P21/c Orthorhombic, Pna21
Temperature (K) 296 296
a, b, c (Å) 14.5604 (5), 5.2459 (2), 17.6094 (6) 20.2188 (13), 12.1199 (8), 5.1770 (3)
α, β, γ (°) 90, 95.205 (2), 90 90, 90, 90
V3) 1339.50 (8) 1268.62 (14)
Z 4 4
Radiation type Cu Kα Cu Kα
μ (mm−1) 2.19 2.44
Crystal size (mm) 0.33 × 0.27 × 0.21 0.32 × 0.27 × 0.22
 
Data collection
Diffractometer Bruker APEXII Bruker APEXII
Absorption correction Multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SADABS, SAINT-Plus and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]) Multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SADABS, SAINT-Plus and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.517, 0.632 0.481, 0.585
No. of measured, independent and observed [I > 2σ(I)] reflections 7071, 2139, 2047 5438, 1830, 1784
Rint 0.042 0.037
(sin θ/λ)max−1) 0.583 0.583
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.145, 1.12 0.034, 0.100, 1.09
No. of reflections 2139 1830
No. of parameters 175 177
No. of restraints 19 2
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.45, −0.43 0.30, −0.35
Absolute structure Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 973 Friedel pairs
Absolute structure parameter 0.08 (2)
Computer programs: APEX2, SAINT-Plus and XPREP (Bruker, 2009[Bruker (2009). APEX2, SADABS, SAINT-Plus and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 and SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]).

Supporting information


Computing details top

For both compounds, data collection: APEX2 (Bruker, 2009); cell refinement: APEX2 and SAINT-Plus (Bruker, 2009); data reduction: SAINT-Plus and XPREP (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

(I) 4-Methoxy-N-(4-methylphenyl)benzenesulfonamide top
Crystal data top
C14H15NO3SPrism
Mr = 277.33Dx = 1.375 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54178 Å
a = 14.5604 (5) ÅCell parameters from 178 reflections
b = 5.2459 (2) Åθ = 5.0–64.1°
c = 17.6094 (6) ŵ = 2.19 mm1
β = 95.205 (2)°T = 296 K
V = 1339.50 (8) Å3Prism, colourless
Z = 40.33 × 0.27 × 0.21 mm
F(000) = 584
Data collection top
Bruker APEXII
diffractometer
2047 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.042
Graphite monochromatorθmax = 64.1°, θmin = 5.0°
phi and φ scansh = 1616
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
k = 56
Tmin = 0.517, Tmax = 0.632l = 2020
7071 measured reflections1 standard reflections every 1 reflections
2139 independent reflections intensity decay: 0.1%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.145H atoms treated by a mixture of independent and constrained refinement
S = 1.12 w = 1/[σ2(Fo2) + (0.095P)2 + 0.6515P]
where P = (Fo2 + 2Fc2)/3
2139 reflections(Δ/σ)max = 0.001
175 parametersΔρmax = 0.45 e Å3
19 restraintsΔρmin = 0.43 e Å3
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
H10.7020 (19)0.376 (2)0.4174 (15)0.033 (7)*
C10.87525 (15)0.0577 (4)0.41335 (12)0.0223 (5)
C2A0.9220 (3)0.2925 (9)0.4259 (2)0.0227 (12)*0.516 (7)
H2A0.89600.42150.45320.027*0.516 (7)
C3A1.0070 (3)0.3298 (9)0.3973 (3)0.0243 (12)*0.516 (7)
H3A1.03920.48190.40570.029*0.516 (7)
C2B0.9452 (3)0.1901 (9)0.4561 (3)0.0230 (13)*0.484 (7)
H2B0.93550.25340.50400.028*0.484 (7)
C3B1.0299 (3)0.2268 (10)0.4262 (3)0.0231 (13)*0.484 (7)
H3B1.07680.31600.45400.028*0.484 (7)
C41.04337 (15)0.1285 (4)0.35455 (12)0.0226 (5)
C5A0.9913 (3)0.0795 (10)0.3344 (3)0.0190 (14)*0.516 (7)
H5A1.01250.19920.30110.023*0.516 (7)
C6A0.9068 (4)0.1143 (11)0.3631 (3)0.0199 (16)*0.516 (7)
H6A0.87100.25570.34830.024*0.516 (7)
C5B0.9778 (4)0.0372 (12)0.3192 (4)0.0215 (16)*0.484 (7)
H5B0.99030.12260.27500.026*0.484 (7)
C6B0.8942 (4)0.0756 (12)0.3492 (3)0.0191 (17)*0.484 (7)
H6B0.85140.19000.32640.023*0.484 (7)
S10.76759 (3)0.02277 (10)0.45066 (3)0.0195 (3)
O31.12308 (11)0.1523 (3)0.32071 (9)0.0257 (4)
O10.77618 (12)0.1184 (3)0.52696 (8)0.0288 (4)
O20.73662 (11)0.2332 (3)0.43553 (9)0.0239 (4)
N10.69436 (13)0.2136 (3)0.40319 (10)0.0209 (5)
C100.60286 (15)0.1132 (4)0.16969 (13)0.0233 (5)
C70.66683 (14)0.1726 (4)0.32369 (12)0.0190 (5)
C110.66087 (17)0.3146 (5)0.19337 (13)0.0269 (5)
H110.67850.43110.15760.032*
C90.57863 (15)0.0581 (5)0.22474 (14)0.0251 (5)
H90.54090.19570.20990.030*
C141.18279 (18)0.3601 (5)0.34384 (17)0.0401 (7)
H14A1.14960.51770.33670.060*
H14B1.23450.36100.31370.060*
H14C1.20430.34100.39670.060*
C80.60898 (15)0.0295 (4)0.30080 (13)0.0219 (5)
H80.59080.14490.33660.026*
C120.69271 (16)0.3439 (4)0.26919 (12)0.0236 (5)
H120.73170.47910.28390.028*
C130.56880 (18)0.0780 (6)0.08674 (14)0.0363 (6)
H13A0.61390.01470.06140.054*
H13B0.55890.24170.06310.054*
H13C0.51190.01550.08310.054*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0253 (12)0.0218 (12)0.0201 (11)0.0001 (10)0.0032 (9)0.0043 (9)
C40.0233 (11)0.0225 (12)0.0222 (11)0.0006 (9)0.0021 (9)0.0015 (9)
S10.0239 (4)0.0169 (4)0.0181 (4)0.0004 (2)0.0046 (2)0.00107 (18)
O30.0223 (8)0.0264 (9)0.0290 (8)0.0022 (7)0.0056 (7)0.0003 (7)
O10.0336 (9)0.0348 (10)0.0187 (8)0.0010 (8)0.0062 (7)0.0046 (7)
O20.0294 (9)0.0151 (8)0.0277 (8)0.0003 (7)0.0046 (7)0.0038 (6)
N10.0286 (10)0.0129 (10)0.0220 (10)0.0015 (8)0.0061 (8)0.0028 (7)
C100.0199 (11)0.0249 (13)0.0254 (12)0.0060 (9)0.0027 (9)0.0035 (9)
C70.0186 (11)0.0154 (11)0.0236 (11)0.0038 (8)0.0046 (9)0.0017 (8)
C110.0322 (13)0.0231 (12)0.0258 (12)0.0017 (10)0.0060 (10)0.0025 (9)
C90.0187 (11)0.0223 (12)0.0339 (13)0.0017 (10)0.0008 (9)0.0041 (10)
C140.0262 (13)0.0385 (15)0.0570 (18)0.0111 (12)0.0118 (12)0.0074 (13)
C80.0177 (11)0.0179 (11)0.0305 (13)0.0004 (9)0.0042 (9)0.0032 (9)
C120.0294 (12)0.0145 (11)0.0274 (12)0.0036 (9)0.0051 (9)0.0021 (9)
C130.0329 (14)0.0476 (17)0.0281 (13)0.0003 (13)0.0019 (11)0.0059 (12)
Geometric parameters (Å, º) top
C1—C6A1.371 (5)S1—O21.4340 (17)
C1—C6B1.378 (5)S1—N11.6360 (19)
C1—C2B1.395 (5)O3—C141.430 (3)
C1—C2A1.415 (5)N1—C71.437 (3)
C1—S11.763 (2)N1—H10.893 (10)
C2A—C3A1.391 (5)C10—C91.391 (3)
C2A—H2A0.9300C10—C111.393 (3)
C3A—C41.426 (5)C10—C131.511 (3)
C3A—H3A0.9300C7—C81.391 (3)
C2B—C3B1.397 (6)C7—C121.392 (3)
C2B—H2B0.9300C11—C121.382 (3)
C3B—C41.394 (5)C11—H110.9300
C3B—H3B0.9300C9—C81.380 (3)
C4—C5A1.358 (5)C9—H90.9300
C4—O31.358 (3)C14—H14A0.9600
C4—C5B1.395 (5)C14—H14B0.9600
C5A—C6A1.385 (6)C14—H14C0.9600
C5A—H5A0.9300C8—H80.9300
C6A—H6A0.9300C12—H120.9300
C5B—C6B1.385 (6)C13—H13A0.9600
C5B—H5B0.9300C13—H13B0.9600
C6B—H6B0.9300C13—H13C0.9600
S1—O11.4291 (16)
C6A—C1—C2B113.9 (3)O1—S1—O2120.18 (10)
C6B—C1—C2B120.3 (3)O1—S1—N1105.25 (10)
C6A—C1—C2A119.3 (3)O2—S1—N1107.39 (9)
C6B—C1—C2A116.1 (3)O1—S1—C1107.99 (10)
C6A—C1—S1122.2 (3)O2—S1—C1107.66 (10)
C6B—C1—S1120.2 (3)N1—S1—C1107.83 (10)
C2B—C1—S1118.7 (2)C4—O3—C14117.83 (18)
C2A—C1—S1117.6 (2)C7—N1—S1121.15 (14)
C3A—C2A—C1119.8 (4)C7—N1—H1115.7 (17)
C3A—C2A—H2A120.1S1—N1—H1112.5 (18)
C1—C2A—H2A120.1C9—C10—C11117.8 (2)
C2A—C3A—C4118.1 (4)C9—C10—C13120.9 (2)
C2A—C3A—H3A120.9C11—C10—C13121.3 (2)
C4—C3A—H3A120.9C8—C7—C12119.2 (2)
C1—C2B—C3B119.5 (4)C8—C7—N1120.31 (19)
C1—C2B—H2B120.3C12—C7—N1120.4 (2)
C3B—C2B—H2B120.3C12—C11—C10121.0 (2)
C4—C3B—C2B119.4 (4)C12—C11—H11119.5
C4—C3B—H3B120.3C10—C11—H11119.5
C2B—C3B—H3B120.3C8—C9—C10121.8 (2)
C5A—C4—O3116.0 (3)C8—C9—H9119.1
C5A—C4—C3B114.4 (3)C10—C9—H9119.1
O3—C4—C3B124.1 (3)O3—C14—H14A109.5
O3—C4—C5B116.0 (3)O3—C14—H14B109.5
C3B—C4—C5B119.2 (3)H14A—C14—H14B109.5
C5A—C4—C3A120.5 (3)O3—C14—H14C109.5
O3—C4—C3A122.4 (2)H14A—C14—H14C109.5
C5B—C4—C3A115.1 (3)H14B—C14—H14C109.5
C4—C5A—C6A120.3 (4)C9—C8—C7119.8 (2)
C4—C5A—H5A119.9C9—C8—H8120.1
C6A—C5A—H5A119.9C7—C8—H8120.1
C1—C6A—C5A120.6 (4)C11—C12—C7120.4 (2)
C1—C6A—H6A119.7C11—C12—H12119.8
C5A—C6A—H6A119.7C7—C12—H12119.8
C6B—C5B—C4120.7 (5)C10—C13—H13A109.5
C6B—C5B—H5B119.7C10—C13—H13B109.5
C4—C5B—H5B119.7H13A—C13—H13B109.5
C1—C6B—C5B119.2 (5)C10—C13—H13C109.5
C1—C6B—H6B120.4H13A—C13—H13C109.5
C5B—C6B—H6B120.4H13B—C13—H13C109.5
C6A—C1—C2A—C3A10.4 (6)S1—C1—C6B—C5B177.4 (5)
C6B—C1—C2A—C3A26.8 (6)C4—C5B—C6B—C11.9 (9)
C2B—C1—C2A—C3A79.3 (5)C6A—C1—S1—O1145.9 (4)
S1—C1—C2A—C3A179.7 (3)C6B—C1—S1—O1163.2 (4)
C1—C2A—C3A—C41.2 (6)C2B—C1—S1—O17.0 (3)
C6A—C1—C2B—C3B27.0 (6)C2A—C1—S1—O145.0 (3)
C6B—C1—C2B—C3B11.9 (6)C6A—C1—S1—O214.8 (4)
C2A—C1—C2B—C3B80.4 (5)C6B—C1—S1—O232.1 (4)
S1—C1—C2B—C3B177.9 (3)C2B—C1—S1—O2138.2 (3)
C1—C2B—C3B—C40.6 (6)C2A—C1—S1—O2176.2 (3)
C2B—C3B—C4—C5A27.1 (6)C6A—C1—S1—N1100.8 (4)
C2B—C3B—C4—O3179.6 (3)C6B—C1—S1—N183.5 (4)
C2B—C3B—C4—C5B9.8 (6)C2B—C1—S1—N1106.3 (3)
C2B—C3B—C4—C3A82.0 (6)C2A—C1—S1—N168.2 (3)
C2A—C3A—C4—C5A8.2 (6)C5A—C4—O3—C14176.2 (4)
C2A—C3A—C4—O3176.2 (3)C3B—C4—O3—C1424.1 (4)
C2A—C3A—C4—C3B80.1 (6)C5B—C4—O3—C14165.9 (4)
C2A—C3A—C4—C5B25.4 (6)C3A—C4—O3—C1415.3 (4)
O3—C4—C5A—C6A177.0 (4)O1—S1—N1—C7178.58 (16)
C3B—C4—C5A—C6A28.1 (7)O2—S1—N1—C749.43 (18)
C5B—C4—C5A—C6A82.9 (14)C1—S1—N1—C766.33 (19)
C3A—C4—C5A—C6A8.3 (7)S1—N1—C7—C871.9 (2)
C6B—C1—C6A—C5A92.3 (16)S1—N1—C7—C12112.4 (2)
C2B—C1—C6A—C5A26.5 (7)C9—C10—C11—C120.5 (3)
C2A—C1—C6A—C5A10.5 (7)C13—C10—C11—C12179.2 (2)
S1—C1—C6A—C5A179.3 (4)C11—C10—C9—C81.3 (3)
C4—C5A—C6A—C11.2 (8)C13—C10—C9—C8180.0 (2)
C5A—C4—C5B—C6B86.0 (14)C10—C9—C8—C71.2 (3)
O3—C4—C5B—C6B179.8 (5)C12—C7—C8—C90.4 (3)
C3B—C4—C5B—C6B9.2 (8)N1—C7—C8—C9176.2 (2)
C3A—C4—C5B—C6B27.4 (7)C10—C11—C12—C70.3 (3)
C6A—C1—C6B—C5B80.7 (16)C8—C7—C12—C110.4 (3)
C2B—C1—C6B—C5B12.5 (8)N1—C7—C12—C11175.4 (2)
C2A—C1—C6B—C5B25.2 (8)
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C7–C12 ring.
D—H···AD—HH···AD···AD—H···A
N1—H1···O2i0.89 (1)2.13 (1)3.010 (2)170 (2)
C14—H14B···Cgii0.962.703.541 (2)146
C9—H9···Cgiii0.932.873.560 (2)132
Symmetry codes: (i) x, y+1, z; (ii) x, y+1/2, z+1/2; (iii) x+1, y1/2, z+1/2.
(II) N-(4-Fluorophenyl)-4-methoxybenzenesulfonamide top
Crystal data top
C13H12FNO3SPrism
Mr = 281.30Dx = 1.473 Mg m3
Orthorhombic, Pna21Cu Kα radiation, λ = 1.54178 Å
Hall symbol: P 2c -2nCell parameters from 143 reflections
a = 20.2188 (13) Åθ = 4.3–64.1°
b = 12.1199 (8) ŵ = 2.44 mm1
c = 5.1770 (3) ÅT = 296 K
V = 1268.62 (14) Å3Prism, colourless
Z = 40.32 × 0.27 × 0.22 mm
F(000) = 584
Data collection top
Bruker APEXII
diffractometer
1784 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.037
Graphite monochromatorθmax = 64.1°, θmin = 4.3°
phi and φ scansh = 2223
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
k = 1314
Tmin = 0.481, Tmax = 0.585l = 55
5438 measured reflections1 standard reflections every 1 reflections
1830 independent reflections intensity decay: 0.1%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.034H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.100 w = 1/[σ2(Fo2) + (0.0719P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max = 0.001
1830 reflectionsΔρmax = 0.30 e Å3
177 parametersΔρmin = 0.35 e Å3
2 restraintsAbsolute structure: Flack (1983), 973 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.08 (2)
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.77164 (2)0.42206 (4)0.40154 (13)0.0172 (2)
F10.96703 (8)0.00461 (12)0.4446 (3)0.0328 (4)
O10.75213 (8)0.53031 (14)0.4790 (4)0.0229 (4)
O20.79392 (9)0.40209 (15)0.1426 (4)0.0234 (4)
O30.56267 (8)0.10112 (16)0.6458 (4)0.0289 (5)
N10.83314 (9)0.38833 (18)0.5945 (4)0.0179 (5)
C100.93385 (12)0.0915 (2)0.4822 (6)0.0245 (6)
C60.70105 (11)0.2317 (2)0.3318 (5)0.0224 (6)
H60.73030.21620.19790.027*
C80.85326 (11)0.1947 (2)0.7108 (5)0.0229 (6)
H80.82150.20030.84010.028*
C70.86643 (11)0.2844 (2)0.5534 (5)0.0181 (5)
C40.60893 (10)0.1812 (2)0.5970 (6)0.0216 (6)
C20.66316 (11)0.3540 (2)0.6686 (6)0.0221 (5)
H20.66720.41990.75910.027*
C50.65224 (10)0.15819 (19)0.3967 (6)0.0234 (5)
H50.64820.09240.30560.028*
C110.94793 (12)0.1792 (2)0.3219 (6)0.0277 (6)
H110.97940.17310.19170.033*
C120.91355 (11)0.2773 (2)0.3611 (5)0.0240 (6)
H120.92240.33820.25750.029*
C30.61372 (11)0.2795 (2)0.7337 (5)0.0234 (6)
H30.58430.29520.86670.028*
C10.70619 (12)0.3303 (2)0.4696 (5)0.0186 (5)
C130.51905 (13)0.1183 (2)0.8577 (6)0.0330 (7)
H13A0.54430.12681.01340.049*
H13B0.49010.05600.87450.049*
H13C0.49330.18370.82810.049*
C90.88759 (13)0.0962 (2)0.6755 (6)0.0261 (6)
H90.87940.03530.78010.031*
H10.8245 (14)0.399 (2)0.763 (2)0.023 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0222 (3)0.0161 (3)0.0134 (3)0.0004 (2)0.0004 (2)0.0003 (2)
F10.0403 (8)0.0248 (8)0.0333 (10)0.0127 (6)0.0008 (8)0.0014 (8)
O10.0286 (8)0.0160 (9)0.0241 (10)0.0003 (7)0.0029 (7)0.0009 (7)
O20.0280 (9)0.0249 (10)0.0172 (10)0.0017 (8)0.0010 (8)0.0009 (8)
O30.0258 (9)0.0260 (10)0.0349 (13)0.0065 (8)0.0066 (9)0.0040 (9)
N10.0228 (9)0.0193 (11)0.0117 (11)0.0006 (8)0.0019 (9)0.0019 (9)
C100.0262 (12)0.0222 (14)0.0251 (15)0.0056 (11)0.0031 (11)0.0029 (11)
C60.0239 (11)0.0208 (13)0.0225 (15)0.0030 (10)0.0038 (10)0.0064 (11)
C80.0221 (10)0.0265 (15)0.0202 (14)0.0010 (10)0.0050 (10)0.0016 (11)
C70.0202 (11)0.0186 (13)0.0155 (13)0.0019 (10)0.0016 (9)0.0015 (10)
C40.0201 (11)0.0181 (13)0.0265 (14)0.0009 (9)0.0039 (11)0.0023 (11)
C20.0268 (12)0.0202 (13)0.0193 (13)0.0003 (10)0.0019 (10)0.0052 (11)
C50.0258 (11)0.0183 (12)0.0261 (14)0.0003 (9)0.0027 (11)0.0081 (13)
C110.0279 (11)0.0306 (15)0.0246 (17)0.0054 (12)0.0065 (11)0.0005 (12)
C120.0275 (11)0.0227 (12)0.0218 (14)0.0003 (10)0.0065 (11)0.0023 (11)
C30.0234 (11)0.0268 (14)0.0201 (14)0.0002 (11)0.0034 (10)0.0032 (11)
C10.0212 (11)0.0182 (12)0.0162 (12)0.0018 (10)0.0026 (9)0.0010 (10)
C130.0272 (12)0.0401 (15)0.0316 (17)0.0092 (12)0.0027 (12)0.0013 (14)
C90.0316 (13)0.0208 (14)0.0260 (16)0.0008 (11)0.0004 (12)0.0050 (12)
Geometric parameters (Å, º) top
S1—O11.4275 (18)C8—H80.9300
S1—O21.435 (2)C7—C121.380 (3)
S1—N11.647 (2)C4—C51.385 (4)
S1—C11.764 (2)C4—C31.390 (4)
F1—C101.358 (3)C2—C11.378 (4)
O3—C41.371 (3)C2—C31.388 (4)
O3—C131.423 (3)C2—H20.9300
N1—C71.444 (3)C5—H50.9300
N1—H10.898 (10)C11—C121.392 (4)
C10—C91.371 (4)C11—H110.9300
C10—C111.378 (4)C12—H120.9300
C6—C51.372 (3)C3—H30.9300
C6—C11.395 (3)C13—H13A0.9600
C6—H60.9300C13—H13B0.9600
C8—C71.385 (4)C13—H13C0.9600
C8—C91.394 (4)C9—H90.9300
O1—S1—O2120.28 (11)C1—C2—H2120.0
O1—S1—N1105.44 (11)C3—C2—H2120.0
O2—S1—N1106.74 (11)C6—C5—C4120.5 (2)
O1—S1—C1108.44 (11)C6—C5—H5119.8
O2—S1—C1108.41 (11)C4—C5—H5119.8
N1—S1—C1106.77 (11)C10—C11—C12117.9 (2)
C4—O3—C13117.5 (2)C10—C11—H11121.1
C7—N1—S1118.62 (16)C12—C11—H11121.1
C7—N1—H1111.3 (19)C7—C12—C11120.2 (2)
S1—N1—H1113.8 (19)C7—C12—H12119.9
F1—C10—C9118.5 (2)C11—C12—H12119.9
F1—C10—C11118.3 (2)C2—C3—C4118.9 (2)
C9—C10—C11123.3 (2)C2—C3—H3120.5
C5—C6—C1119.0 (2)C4—C3—H3120.5
C5—C6—H6120.5C2—C1—C6120.9 (2)
C1—C6—H6120.5C2—C1—S1119.40 (19)
C7—C8—C9120.0 (2)C6—C1—S1119.56 (19)
C7—C8—H8120.0O3—C13—H13A109.5
C9—C8—H8120.0O3—C13—H13B109.5
C12—C7—C8120.5 (2)H13A—C13—H13B109.5
C12—C7—N1118.9 (2)O3—C13—H13C109.5
C8—C7—N1120.5 (2)H13A—C13—H13C109.5
O3—C4—C5115.2 (2)H13B—C13—H13C109.5
O3—C4—C3124.1 (2)C10—C9—C8118.1 (3)
C5—C4—C3120.7 (2)C10—C9—H9121.0
C1—C2—C3120.0 (2)C8—C9—H9121.0
O1—S1—N1—C7176.37 (18)C1—C2—C3—C40.5 (4)
O2—S1—N1—C747.4 (2)O3—C4—C3—C2179.3 (2)
C1—S1—N1—C768.4 (2)C5—C4—C3—C20.8 (4)
C9—C8—C7—C120.1 (4)C3—C2—C1—C60.2 (4)
C9—C8—C7—N1177.5 (2)C3—C2—C1—S1176.4 (2)
S1—N1—C7—C1280.1 (3)C5—C6—C1—C20.1 (4)
S1—N1—C7—C8102.5 (2)C5—C6—C1—S1176.26 (19)
C13—O3—C4—C5177.0 (2)O1—S1—C1—C227.8 (2)
C13—O3—C4—C33.0 (4)O2—S1—C1—C2159.9 (2)
C1—C6—C5—C40.3 (4)N1—S1—C1—C285.4 (2)
O3—C4—C5—C6179.4 (2)O1—S1—C1—C6156.0 (2)
C3—C4—C5—C60.7 (4)O2—S1—C1—C623.8 (2)
F1—C10—C11—C12179.8 (2)N1—S1—C1—C690.8 (2)
C9—C10—C11—C120.5 (4)F1—C10—C9—C8179.3 (2)
C8—C7—C12—C110.6 (4)C11—C10—C9—C80.0 (4)
N1—C7—C12—C11178.0 (2)C7—C8—C9—C100.2 (4)
C10—C11—C12—C70.8 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O2i0.90 (1)2.06 (1)2.951 (3)171 (3)
C6—H6···O1ii0.932.553.192 (3)127
C13—H13B···O3iii0.962.603.468 (3)151
Symmetry codes: (i) x, y, z+1; (ii) x+3/2, y1/2, z1/2; (iii) x+1, y, z+1/2.
 

Footnotes

These authors contributed equally

Acknowledgements

The authors are thankful to the Institution of Excellence, Vijnana Bhavana, University of Mysore, Mysuru, for providing the single-crystal X-ray diffraction facility. VZR is thankful to the University Grants Commission, Delhi, for the financial assistance under its MRP scheme.

References

First citationBruker (2009). APEX2, SADABS, SAINT-Plus and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGhorab, M. M., Ragab, A. F., Heiba, I. H. & Agha, M. H. (2011). J. Basic Appl. Chem. 1, 8–14.  Google Scholar
First citationHanafy, A., Uno, J., Mitani, H., Kang, Y. & Mikami, Y. (2007). Jpn J. Med. Mycol. 48, 47–50.  CrossRef CAS Google Scholar
First citationHimel, C. M., Aboulsaa, W. G. & Uk, S. (1971). J. Agric. Food Chem. 19, 1175–1180.  CrossRef Google Scholar
First citationKuçukguzel, S. G., Coskun, I., Aydın, S., Aktay, G., Gursoy, S., Cevik, O., Ozakpınar, O. B., Ozsavc, D., Sener, A., Kaushik-Basu, N., Basu, A. & Talele, T. T. (2013). Molecules, 18, 3595–3614.  PubMed Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMansour, S., Al-Said Ghorab, M. M., Al-Dosari, M. S. & Hamed, M. M. (2011). Eur. J. Med. Chem. 46, 201–207.  PubMed Google Scholar
First citationMohan, N. R., Sreenivasa, S., Manojkumar, K. E. & Chakrapani Rao, T. M. (2013). J. Appl. Chem. 2, 722–729.  Google Scholar
First citationSahu, K. K., Ravichandran, V., Mourya, V. K. & Agrawal, R. K. (2007). Med. Chem. Res. 15, 418–430.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShiva Prasad, K., Shiva Kumar, L., Vinay, K. B., ChandraShekar, S., Jayalakshmi, B. & Revanasiddappa, H. D. (2011). Int. J. Chem. Res. 2, 1–6.  Google Scholar
First citationSubhakara Reddy, N., Srinivas Rao, A., Adharvana Chari, M., Ravi Kumar, V., Jyothy, V. & Himabindu, V. (2012). J. Chem. Sci. 124, 723–730.  Google Scholar
First citationVinola, Z. R., Sreenivasa, S., Naveen, S., Lokanath, N. K. & Suchetan, P. A. (2015). J. Appl. Chem. 4, 127-135.  Google Scholar
First citationVora, P. J. & Mehta, A. G. (2012). IOSR J. Appl. Chem. 1, 34–39.  CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds