research communications
catena-poly[[silver(I)-μ-N-(pyridin-4-ylmethyl)pyridine-3-amine-κ2N:N′] tetrafluoridoborate methanol hemisolvate]
of a helical silver(I) coordination polymer based on an unsymmetrical dipyridyl ligand:aDepartment of Food and Nutrition, Kyungnam College of Information and, Technology, Busan 47011, South Korea, bDivision of Science Education, Kangwon National University, Chuncheon 24341, South Korea, and cResearch Institute of Natural Science, Gyeongsang National University, Jinju 52828, South Korea
*Correspondence e-mail: kangy@kangwon.ac.kr, kmpark@gnu.ac.kr
The L]·BF4·0.5CH3OH}n, L = N-(pyridin-4-ylmethyl)pyridine-3-amine, C11H11N3, contains one AgI ion, one ligand L, one tetrafluoridoborate anion disordered over two orientations in a 0.669 (13):0.331 (13) ratio and one half of a methanol solvent molecule situated on an inversion center. Each AgI ion is coordinated by two N atoms from two L ligands in a distorted linear geometry [N—Ag—N = 174.70 (19)°]. Each L ligand bridges two AgI ions, thus forming polymeric helical chains propagating in [010]. In the crystal, Ag⋯Ag [3.3369 (10) Å] and π–π interactions between the aromatic rings [centroid-to-centroid distance = 3.676 (4) Å] link these chains into layers parallel to (10-1). Ag⋯F and weak N(C)—H⋯F interactions further consolidate the crystal packing.
of the title compound, {[AgKeywords: crystal structure; silver(I) tetrafluoridoborate; unsymmetrical dipyridyl ligand; helical coordination polymer.
CCDC reference: 1428966
1. Chemical context
In supramolecular chemistry and material science, infinite helical coordination polymers have attracted particular interest for the past two decades because of their fascinating architecture, their similarities to biological systems and their potential applications in catalysis and optical materials (Leong & Vittal, 2011; Wang et al., 2012; Zhang et al., 2009). Despite numerous examples of helical coordination polymers, the rational strategy of construction of helical coordination polymers is still constrained by our poor understanding of the role of the metal ions and spacer ligands. Nevertheless, the combination of a silver ion with a linear coordination geometry and flexible unsymmetrical dipyridyl ligands composed of two terminal pyridines with different substituted-nitrogen positions is one of the most promising strategies for achieving helical coordination polymers. Our group and that of Gao have already reported helical coordination polymers obtained through the reactions of silver salts and some unsymmetrical dipyridyl ligands such as N-(pyridin-3-ylmethyl)pyridine-2-amine (Moon & Park, 2013), N-(pyridin-2-ylmethyl)pyridine-3-amine (Moon & Park, 2014) and N-(pyridin-4-ylmethyl)pyridine-3-amine (Moon et al., 2014; Lee et al., 2015; Zhang et al., 2013). Herein, we report the of the title compound prepared by the reaction of silver tetrafluoridoborate with the unsymmetrical dipyridyl ligand, N-(pyridin-4-ylmethyl)pyridine-3-amine (L), synthesized according to the procedure described by Lee et al. (2013). The structure of the title compound is related to those of the AgI coordination polymers with three different counter-anions such as nitrate, perchlorate and trifluoromethanesulfonate (Moon et al., 2014; Lee et al., 2015; Zhang et al., 2013).
2. Structural commentary
The molecular components of the title structure are shown in Fig. 1. The consists of one AgI ion, one L ligand, one tetrafluoridoborate anion and one half of a methanol molecule. Each AgI ion is coordinated by two pyridine N atoms from two symmetry-related ligands in a geometry which is slightly distorted from linear [N1—Ag1—N3 = 174.70 (19)°], forming an infinite helical coordination polymer. The helical chain propagates along [010] (Fig. 2) with a pitch length of 15.6485 (14) Å, shorter than that [16.7871 (8) Å] of the nitrate-containing AgI coordination polymer reported by Moon et al. (2014). The two pyridine rings coordinating the AgI ion are tilted by 13.8 (3)° with respect to each other. The two pyridine rings in the L ligand are almost perpendicular, the dihedral angle between their mean planes being 89.34 (15)°.
3. Supramolecular features
In the A = 2.84 (2), Ag1⋯F1B = 2.815 (15) and Ag1⋯F4B (−x + 1, −y, −z + 1) = 2.879 (10) Å] and π–π interactions between the pyridine rings of adjacent helical chains [centroid-to-centroid distance = 3.676 (4) Å], resulting in the formation of a two-dimensional supramolecular network parallel to the (10) plane (Fig. 2). Furthermore, several N—H⋯F and C—H⋯F hydrogen bonds (Table 1) between the helical chains and the anions contribute to stabilization of the crystal structure.
symmetry-related right- and left-handed helical chains are arranged alternately through Ag⋯Ag [3.3369 (10) Å] and Ag⋯F interactions [Ag1⋯F14. Database survey
The non-solvated structures of the silver(I) nitrate and perchlorate complexes of the same ligand have been reported by Zhang et al. (2013). Our group has reported the solvated form of the silver nitrate complex with an L ligand (Moon et al., 2014). These complexes adopt single-stranded helical structures. Our group has also reported the silver trifluoridomethanesulfonate complex with an L ligand, which displays a double-stranded helical structure (Lee et al., 2015).
5. Synthesis and crystallization
The N-(pyridin-4-ylmethyl)pyridine-3-amine ligand was synthesized according to a literature method (Lee et al., 2013). X-ray quality single crystals of the title compound were obtained by slow evaporation of a methanol solution of the ligand with AgBF4 in the molar ratio 1:1.
6. Refinement
Crystal data, data collection and structure . The methanol solvent molecule resides on an inversion centre. Therefore the C12/O12 atoms were refined at the same sites with site occupancy factors of 0.5 using EXYZ/EADP constraints. All H atoms were positioned geometrically and refined using a riding model, with d(C—H) = 0.95 Å for Csp2—H, 0.88 Å for amine N—H, 0.84 Å for hydroxyl O—H, 0.98 Å for methyl C—H and 0.99 Å for methylene C—H. For all H atoms Uiso(H) = 1.2–1.5Ueq of the parent atom.
details are summarized in Table 2Supporting information
CCDC reference: 1428966
https://doi.org/10.1107/S205698901501837X/cv5498sup1.cif
contains datablocks I, New_Global_Publ_Block. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S205698901501837X/cv5498Isup2.hkl
Data collection: SMART (Bruker, 2000); cell
SAINT-Plus (Bruker, 2000); data reduction: SAINT-Plus (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2005); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).[Ag(C11H11N3)](BF4)·0.5CH4O | F(000) = 780 |
Mr = 395.93 | Dx = 1.834 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2yn | Cell parameters from 2696 reflections |
a = 9.2597 (8) Å | θ = 2.4–24.7° |
b = 15.6485 (14) Å | µ = 1.45 mm−1 |
c = 10.3574 (10) Å | T = 173 K |
β = 107.185 (2)° | Block, colorless |
V = 1433.8 (2) Å3 | 0.50 × 0.40 × 0.40 mm |
Z = 4 |
Bruker SMART CCD area detector diffractometer | 2821 independent reflections |
Radiation source: fine-focus sealed tube | 1883 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.077 |
φ and ω scans | θmax = 26.0°, θmin = 2.4° |
Absorption correction: multi-scan (SADABS; Bruker, 2000) | h = −10→11 |
Tmin = 0.531, Tmax = 0.595 | k = −17→19 |
8014 measured reflections | l = −10→12 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.053 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.167 | H-atom parameters constrained |
S = 1.02 | w = 1/[σ2(Fo2) + (0.1027P)2] where P = (Fo2 + 2Fc2)/3 |
2821 reflections | (Δ/σ)max = 0.001 |
227 parameters | Δρmax = 1.18 e Å−3 |
31 restraints | Δρmin = −0.70 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Ag1 | 0.67175 (6) | −0.04405 (3) | 0.54637 (6) | 0.0593 (3) | |
B1 | 0.6447 (9) | 0.1230 (5) | 0.8147 (8) | 0.077 (3) | |
F1A | 0.733 (3) | 0.0831 (17) | 0.751 (3) | 0.217 (10) | 0.669 (13) |
F2A | 0.7295 (8) | 0.1786 (5) | 0.9050 (9) | 0.094 (3) | 0.669 (13) |
F3A | 0.6034 (13) | 0.0671 (7) | 0.9030 (10) | 0.127 (4) | 0.669 (13) |
F4A | 0.5186 (12) | 0.1597 (13) | 0.7407 (16) | 0.197 (8) | 0.669 (13) |
F1B | 0.735 (2) | 0.0733 (11) | 0.762 (2) | 0.072 (5) | 0.331 (13) |
F2B | 0.6706 (19) | 0.2035 (7) | 0.7697 (18) | 0.095 (6) | 0.331 (13) |
F3B | 0.680 (3) | 0.1190 (19) | 0.9487 (12) | 0.143 (9) | 0.331 (13) |
F4B | 0.533 (2) | 0.0941 (12) | 0.7100 (13) | 0.103 (8) | 0.331 (13) |
N1 | 0.7799 (6) | 0.0402 (3) | 0.4442 (6) | 0.0510 (13) | |
N2 | 1.1086 (8) | 0.1806 (4) | 0.5210 (8) | 0.0774 (19) | |
H2 | 1.1636 | 0.2066 | 0.4765 | 0.093* | |
N3 | 0.9214 (6) | 0.3630 (3) | 0.8522 (6) | 0.0556 (13) | |
C1 | 0.8958 (7) | 0.0881 (4) | 0.5113 (7) | 0.0515 (15) | |
H1 | 0.9210 | 0.0901 | 0.6071 | 0.062* | |
C2 | 0.9820 (7) | 0.1356 (4) | 0.4482 (7) | 0.0554 (16) | |
C3 | 0.9445 (10) | 0.1342 (5) | 0.3107 (8) | 0.070 (2) | |
H3 | 1.0018 | 0.1660 | 0.2650 | 0.083* | |
C4 | 0.8219 (11) | 0.0860 (5) | 0.2380 (8) | 0.077 (2) | |
H4 | 0.7934 | 0.0851 | 0.1420 | 0.092* | |
C5 | 0.7414 (9) | 0.0390 (4) | 0.3067 (8) | 0.0639 (19) | |
H5 | 0.6580 | 0.0053 | 0.2572 | 0.077* | |
C6 | 1.1541 (8) | 0.1869 (4) | 0.6647 (10) | 0.071 (2) | |
H6A | 1.2613 | 0.2049 | 0.6947 | 0.085* | |
H6B | 1.1491 | 0.1290 | 0.7015 | 0.085* | |
C7 | 1.0659 (7) | 0.2468 (4) | 0.7280 (8) | 0.0576 (17) | |
C8 | 0.9678 (8) | 0.3085 (4) | 0.6527 (8) | 0.0617 (18) | |
H8 | 0.9486 | 0.3119 | 0.5576 | 0.074* | |
C9 | 0.8995 (7) | 0.3642 (4) | 0.7187 (8) | 0.0585 (17) | |
H9 | 0.8329 | 0.4059 | 0.6666 | 0.070* | |
C10 | 1.0124 (8) | 0.3026 (4) | 0.9239 (8) | 0.0656 (19) | |
H10 | 1.0274 | 0.2992 | 1.0186 | 0.079* | |
C11 | 1.0858 (8) | 0.2446 (4) | 0.8627 (8) | 0.0621 (18) | |
H11 | 1.1509 | 0.2028 | 0.9165 | 0.074* | |
C12 | 1.022 (2) | 0.0409 (10) | 0.980 (3) | 0.256 (12) | 0.50 |
H12A | 1.0264 | 0.0829 | 1.0514 | 0.385* | 0.50 |
H12B | 0.9477 | 0.0594 | 0.8961 | 0.385* | 0.50 |
H12C | 1.1217 | 0.0362 | 0.9658 | 0.385* | 0.50 |
O12 | 1.022 (2) | 0.0409 (10) | 0.980 (3) | 0.256 (12) | 0.50 |
H12 | 1.1101 | 0.0377 | 0.9735 | 0.385* | 0.50 |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ag1 | 0.0566 (4) | 0.0409 (3) | 0.0845 (5) | 0.0059 (2) | 0.0271 (3) | 0.0069 (2) |
B1 | 0.081 (6) | 0.077 (6) | 0.064 (6) | −0.011 (5) | 0.010 (5) | −0.004 (5) |
F1A | 0.237 (13) | 0.226 (13) | 0.203 (13) | 0.004 (9) | 0.088 (9) | −0.034 (9) |
F2A | 0.090 (5) | 0.079 (5) | 0.120 (8) | −0.025 (4) | 0.043 (5) | −0.053 (5) |
F3A | 0.138 (9) | 0.147 (9) | 0.090 (7) | −0.053 (7) | 0.026 (6) | −0.008 (6) |
F4A | 0.102 (9) | 0.28 (2) | 0.173 (12) | 0.070 (12) | −0.014 (8) | 0.009 (14) |
F1B | 0.112 (9) | 0.053 (7) | 0.066 (7) | −0.005 (6) | 0.050 (6) | −0.034 (5) |
F2B | 0.108 (10) | 0.057 (7) | 0.113 (10) | −0.006 (6) | 0.022 (7) | −0.013 (6) |
F3B | 0.148 (12) | 0.155 (13) | 0.125 (11) | 0.010 (9) | 0.037 (9) | −0.024 (9) |
F4B | 0.154 (19) | 0.090 (12) | 0.057 (9) | −0.039 (12) | 0.015 (10) | −0.029 (8) |
N1 | 0.049 (3) | 0.035 (3) | 0.069 (4) | 0.007 (2) | 0.018 (3) | 0.001 (2) |
N2 | 0.074 (4) | 0.048 (3) | 0.127 (6) | 0.000 (3) | 0.054 (4) | −0.002 (4) |
N3 | 0.051 (3) | 0.038 (3) | 0.078 (4) | −0.004 (2) | 0.018 (3) | −0.004 (3) |
C1 | 0.057 (4) | 0.038 (3) | 0.062 (4) | 0.013 (3) | 0.022 (3) | −0.001 (3) |
C2 | 0.058 (4) | 0.035 (3) | 0.081 (5) | 0.011 (3) | 0.032 (4) | 0.003 (3) |
C3 | 0.092 (6) | 0.049 (4) | 0.079 (5) | 0.025 (4) | 0.042 (4) | 0.021 (4) |
C4 | 0.115 (7) | 0.061 (5) | 0.060 (5) | 0.025 (5) | 0.034 (5) | 0.013 (4) |
C5 | 0.073 (5) | 0.047 (4) | 0.067 (5) | 0.015 (3) | 0.014 (4) | −0.003 (3) |
C6 | 0.051 (4) | 0.045 (4) | 0.111 (7) | 0.006 (3) | 0.014 (4) | −0.019 (4) |
C7 | 0.046 (3) | 0.036 (3) | 0.085 (5) | −0.004 (3) | 0.011 (3) | −0.001 (3) |
C8 | 0.056 (4) | 0.048 (4) | 0.074 (5) | 0.013 (3) | 0.009 (3) | −0.008 (3) |
C9 | 0.047 (3) | 0.044 (3) | 0.078 (5) | 0.006 (3) | 0.011 (3) | 0.001 (3) |
C10 | 0.072 (4) | 0.042 (4) | 0.074 (5) | −0.008 (3) | 0.008 (4) | 0.010 (3) |
C11 | 0.054 (4) | 0.035 (3) | 0.092 (6) | 0.002 (3) | 0.013 (4) | 0.008 (3) |
C12 | 0.145 (14) | 0.29 (3) | 0.36 (3) | −0.016 (16) | 0.106 (15) | −0.01 (2) |
O12 | 0.145 (14) | 0.29 (3) | 0.36 (3) | −0.016 (16) | 0.106 (15) | −0.01 (2) |
Ag1—N1 | 2.118 (5) | C2—C3 | 1.362 (11) |
Ag1—N3i | 2.121 (5) | C3—C4 | 1.386 (12) |
Ag1—Ag1ii | 3.3369 (10) | C3—H3 | 0.9500 |
B1—F4A | 1.324 (8) | C4—C5 | 1.384 (11) |
B1—F3B | 1.330 (10) | C4—H4 | 0.9500 |
B1—F4B | 1.336 (9) | C5—H5 | 0.9500 |
B1—F2A | 1.348 (11) | C6—C7 | 1.514 (9) |
B1—F1A | 1.349 (10) | C6—H6A | 0.9900 |
B1—F1B | 1.367 (9) | C6—H6B | 0.9900 |
B1—F2B | 1.388 (9) | C7—C11 | 1.352 (10) |
B1—F3A | 1.398 (8) | C7—C8 | 1.396 (9) |
N1—C1 | 1.325 (9) | C8—C9 | 1.371 (10) |
N1—C5 | 1.363 (10) | C8—H8 | 0.9500 |
N2—C2 | 1.385 (9) | C9—H9 | 0.9500 |
N2—C6 | 1.425 (11) | C10—C11 | 1.394 (10) |
N2—H2 | 0.8800 | C10—H10 | 0.9500 |
N3—C10 | 1.336 (8) | C11—H11 | 0.9500 |
N3—C9 | 1.337 (9) | C12—C12iv | 1.44 (3) |
N3—Ag1iii | 2.121 (5) | C12—H12A | 0.9800 |
C1—C2 | 1.388 (9) | C12—H12B | 0.9800 |
C1—H1 | 0.9500 | C12—H12C | 0.9800 |
N1—Ag1—N3i | 174.70 (19) | N1—C1—H1 | 118.5 |
N1—Ag1—Ag1ii | 98.63 (14) | C2—C1—H1 | 118.5 |
N3i—Ag1—Ag1ii | 86.18 (14) | C3—C2—N2 | 119.4 (7) |
F4A—B1—F3B | 121.9 (14) | C3—C2—C1 | 118.6 (7) |
F4A—B1—F4B | 48.5 (9) | N2—C2—C1 | 121.9 (7) |
F3B—B1—F4B | 136.5 (18) | C2—C3—C4 | 119.5 (7) |
F4A—B1—F2A | 110.8 (11) | C2—C3—H3 | 120.3 |
F3B—B1—F2A | 52.5 (14) | C4—C3—H3 | 120.3 |
F4B—B1—F2A | 159.0 (12) | C5—C4—C3 | 119.3 (7) |
F4A—B1—F1A | 118.5 (16) | C5—C4—H4 | 120.4 |
F3B—B1—F1A | 119.4 (17) | C3—C4—H4 | 120.4 |
F4B—B1—F1A | 83.3 (16) | N1—C5—C4 | 121.0 (7) |
F2A—B1—F1A | 109.0 (14) | N1—C5—H5 | 119.5 |
F4A—B1—F1B | 123.6 (14) | C4—C5—H5 | 119.5 |
F3B—B1—F1B | 113.5 (15) | N2—C6—C7 | 117.7 (6) |
F4B—B1—F1B | 84.3 (15) | N2—C6—H6A | 107.9 |
F2A—B1—F1B | 110.2 (10) | C7—C6—H6A | 107.9 |
F1A—B1—F1B | 8 (2) | N2—C6—H6B | 107.9 |
F4A—B1—F2B | 67.8 (10) | C7—C6—H6B | 107.9 |
F3B—B1—F2B | 112.2 (17) | H6A—C6—H6B | 107.2 |
F4B—B1—F2B | 101.7 (11) | C11—C7—C8 | 117.5 (7) |
F2A—B1—F2B | 61.5 (9) | C11—C7—C6 | 120.3 (6) |
F1A—B1—F2B | 93.7 (15) | C8—C7—C6 | 122.1 (8) |
F1B—B1—F2B | 101.3 (12) | C9—C8—C7 | 118.7 (7) |
F4A—B1—F3A | 106.6 (11) | C9—C8—H8 | 120.6 |
F3B—B1—F3A | 47.1 (14) | C7—C8—H8 | 120.6 |
F4B—B1—F3A | 91.4 (10) | N3—C9—C8 | 123.8 (6) |
F2A—B1—F3A | 99.5 (7) | N3—C9—H9 | 118.1 |
F1A—B1—F3A | 110.8 (14) | C8—C9—H9 | 118.1 |
F1B—B1—F3A | 102.9 (12) | N3—C10—C11 | 121.3 (7) |
F2B—B1—F3A | 153.5 (11) | N3—C10—H10 | 119.3 |
C1—N1—C5 | 118.6 (6) | C11—C10—H10 | 119.3 |
C1—N1—Ag1 | 121.3 (5) | C7—C11—C10 | 121.1 (6) |
C5—N1—Ag1 | 119.8 (5) | C7—C11—H11 | 119.5 |
C2—N2—C6 | 123.0 (6) | C10—C11—H11 | 119.5 |
C2—N2—H2 | 118.5 | C12iv—C12—H12A | 109.5 |
C6—N2—H2 | 118.5 | C12iv—C12—H12B | 109.5 |
C10—N3—C9 | 117.5 (6) | H12A—C12—H12B | 109.5 |
C10—N3—Ag1iii | 119.4 (5) | C12iv—C12—H12C | 109.5 |
C9—N3—Ag1iii | 122.9 (4) | H12A—C12—H12C | 109.5 |
N1—C1—C2 | 123.0 (7) | H12B—C12—H12C | 109.5 |
N3i—Ag1—N1—C1 | −87 (2) | C3—C4—C5—N1 | 0.7 (10) |
Ag1ii—Ag1—N1—C1 | 117.9 (4) | C2—N2—C6—C7 | −75.9 (9) |
N3i—Ag1—N1—C5 | 86 (2) | N2—C6—C7—C11 | 168.5 (6) |
Ag1ii—Ag1—N1—C5 | −69.4 (5) | N2—C6—C7—C8 | −14.7 (10) |
C5—N1—C1—C2 | −1.5 (9) | C11—C7—C8—C9 | 1.2 (10) |
Ag1—N1—C1—C2 | 171.4 (4) | C6—C7—C8—C9 | −175.7 (6) |
C6—N2—C2—C3 | 178.6 (6) | C10—N3—C9—C8 | −1.6 (10) |
C6—N2—C2—C1 | −4.6 (10) | Ag1iii—N3—C9—C8 | 175.0 (5) |
N1—C1—C2—C3 | 1.2 (9) | C7—C8—C9—N3 | 0.0 (10) |
N1—C1—C2—N2 | −175.6 (6) | C9—N3—C10—C11 | 2.0 (9) |
N2—C2—C3—C4 | 177.0 (6) | Ag1iii—N3—C10—C11 | −174.7 (5) |
C1—C2—C3—C4 | 0.2 (10) | C8—C7—C11—C10 | −0.8 (10) |
C2—C3—C4—C5 | −1.0 (11) | C6—C7—C11—C10 | 176.1 (6) |
C1—N1—C5—C4 | 0.6 (9) | N3—C10—C11—C7 | −0.8 (10) |
Ag1—N1—C5—C4 | −172.4 (5) |
Symmetry codes: (i) −x+3/2, y−1/2, −z+3/2; (ii) −x+1, −y, −z+1; (iii) −x+3/2, y+1/2, −z+3/2; (iv) −x+2, −y, −z+2. |
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H2···F2Av | 0.88 | 2.10 | 2.887 (9) | 148 |
N2—H2···F2Bv | 0.88 | 2.58 | 3.357 (17) | 148 |
C6—H6A···F4Avi | 0.99 | 2.39 | 3.259 (12) | 146 |
C10—H10···F4Avii | 0.95 | 2.41 | 3.318 (19) | 159 |
C12—H12B···F1A | 0.98 | 2.14 | 3.08 (4) | 160 |
Symmetry codes: (v) x+1/2, −y+1/2, z−1/2; (vi) x+1, y, z; (vii) x+1/2, −y+1/2, z+1/2. |
Acknowledgements
This work was supported by NRF projects 2015R1D1A3A01020410 and 2011–0010518.
References
Brandenburg, K. (2005). DIAMOND. Crystal Impact GBR, Germany. Google Scholar
Bruker. (2000). SMART, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Lee, E., Ju, H., Moon, S.-H., Lee, S. S. & Park, K.-M. (2015). Bull. Korean Chem. Soc. 36, 1532–1535. Web of Science CrossRef CAS Google Scholar
Lee, E., Ryu, H., Moon, S.-H. & Park, K.-M. (2013). Bull. Korean Chem. Soc. 34, 3477–3480. Web of Science CSD CrossRef CAS Google Scholar
Leong, W. L. & Vittal, J. J. (2011). Chem. Rev. 111, 688–764. Web of Science CrossRef CAS PubMed Google Scholar
Moon, B., Jeon, Y., Moon, S.-H. & Park, K.-M. (2014). Acta Cryst. E70, 507–509. CSD CrossRef IUCr Journals Google Scholar
Moon, S.-H. & Park, K.-M. (2013). Acta Cryst. E69, m414–m415. CSD CrossRef CAS IUCr Journals Google Scholar
Moon, S.-H. & Park, K.-M. (2014). Acta Cryst. E70, m233. CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Wang, C., Zhang, T. & Lin, W. (2012). Chem. Rev. 112, 1084–1104. Web of Science CrossRef CAS PubMed Google Scholar
Zhang, Z.-Y., Deng, Z.-P., Huo, L.-H., Zhao, H. & Gao, S. (2013). Inorg. Chem. 52, 9514–5923. Google Scholar
Zhang, W., Ye, H. & Xiong, R. G. (2009). Coord. Chem. Rev. 253, 2980–2997. Web of Science CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.