organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 2-{(R)-[1-(4-bromo­phen­yl)eth­yl]imino­meth­yl}-4-(phenyl­diazen­yl)phenol, a chiral photochromic Schiff base

aDepartment of Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
*Correspondence e-mail: akitsu@rs.kagu.tus.ac.jp

Edited by V. V. Chernyshev, Moscow State University, Russia (Received 5 October 2015; accepted 21 October 2015; online 28 October 2015)

The title chiral photochromic Schiff base compound, C21H18BrN3O, was synthesized from (R)-(+)-1-(4-bromo­phen­yl)ethyl­amine and the salicyl­aldehyde of an azo­benzene derivative. The mol­ecule corresponds to the phenol–imine tautomer, the C=N and N—C bond distances being 1.285 (3) and 1.470 (3) Å, respectively. The diazenyl group adopts a trans form, with an N=N distance of 1.256 (3) Å. The hy­droxy group is involved in intra­molecular O—H⋯N hydrogen bonding. In the crystal, C—H⋯π inter­actions consolidate the crystal packing of one-dimensional chains, which exhibits short inter­molecular Br⋯C contacts of 3.400 (3) Å.

1. Related literature

For applications of (chiral) photochromic Schiff base compounds, see: Akitsu & Einaga (2006b[Akitsu, T. & Einaga, Y. (2006b). Acta Cryst. E62, o4315-o4317.]); Akitsu et al. (2004[Akitsu, T., Takeuchi, Y. & Einaga, Y. (2004). Acta Cryst. C60, o801-o802.]); Aritake et al. (2010[Aritake, Y., Watanabe, Y. & Akitsu, T. (2010). Acta Cryst. E66, o749.]); Miura et al. (2009[Miura, Y., Aritake, Y. & Akitsu, T. (2009). Acta Cryst. E65, o2381.]). For the crystal structures of related compounds, see: Akitsu & Einaga (2005a[Akitsu, T. & Einaga, Y. (2005a). Polyhedron, 24, 1869-1877.],b[Akitsu, T. & Einaga, Y. (2005b). Polyhedron, 24, 2933-2943.], 2006a[Akitsu, T. & Einaga, Y. (2006a). Polyhedron, 25, 1089-1095]); Akitsu (2007[Akitsu, T. (2007). Polyhedron, 26, 2527-2535.]); Akitsu & Itoh (2010[Akitsu, T. & Itoh, T. (2010). Polyhedron, 29, 477-487.]); Aslantas et al. (2007[Aslantaş, M., Kurtoğlu, N., Şahin, E. & Kurtoğlu, M. (2007). Acta Cryst. E63, o3637.]); Hadjoudis & Mavridis (2004[Hadjoudis, E. & Mavridis, I. M. (2004). Chem. Soc. Rev. 33, 579-588.]); Khandar & Rezvani (1999[Khandar, A. A. & Rezvani, Z. (1999). Polyhedron, 18, 129-133.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C21H18BrN3O

  • Mr = 408.29

  • Orthorhombic P 21 21 2

  • a = 7.271 (3) Å

  • b = 41.901 (15) Å

  • c = 5.952 (2) Å

  • V = 1813.3 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.28 mm−1

  • T = 113 K

  • 0.37 × 0.23 × 0.08 mm

2.2. Data collection

  • Bruker APEXII CCD diffractometer

  • Absorption correction: empirical (using intensity measurements) (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.486, Tmax = 0.833

  • 10349 measured reflections

  • 4176 independent reflections

  • 3723 reflections with I > 2σ(I)

  • Rint = 0.027

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.026

  • wR(F2) = 0.047

  • S = 1.01

  • 4176 reflections

  • 237 parameters

  • H-atom parameters constrained

  • Δρmax = 0.57 e Å−3

  • Δρmin = −0.40 e Å−3

  • Absolute structure: Flack x determined using 1360 quotients [(I+) − (I)]/[(I+) + (I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])

  • Absolute structure parameter: 0.005 (4)

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are centroids of C1–C6 and C7–C11/C13 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯N3 0.84 1.84 2.585 (3) 148
C12—H12⋯Cg1i 0.95 2.80 3.399 (3) 122
C10—H10⋯Cg1ii 0.95 2.74 3.415 (3) 128
C6—H6⋯Cg2iii 0.95 2.75 3.423 (3) 128
Symmetry codes: (i) -x+1, -y+1, z; (ii) -x, -y+1, z+1; (iii) x, y, z+1.

Data collection: APEX2 (Bruker, 1998[Bruker (1998). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1998[Bruker (1998). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In recent years, there is a growing interest in the organic/inorganic metal complexes and photochromic compounds. For example, cis-trans photoisomerization of azobenzene could switch conformation of chiral ligands (Akitsu & Einaga, 2005a, 2005b), chiral conformation change in a solution induced by a photochromic solute (Akitsu & Einaga, 2006a; Akitsu, 2007) and optical anisotropy in polymeric films (Akitsu & Itoh, 2010). Also free Schiff base ligands may act as photochromic, thermochromics, and fluorescence materials (Akitsu et al., 2004; Hadjoudis & Mavridis, 2004; Akitsu & Einaga, 2006b). Recently, we have synthesized the title compound (I). Herewith we present its crystal structure.

The molecule of (I) (Fig. I) adopts an E configuration with respect to the imine CN double bond with C13—C12—N3—C14 torsion angle of 178.6 (2) °. Thus, the π-conjugated system around the imine group is essentially planar. All bond lengths and angles in (I) correspond well to those observed in similar Schiff base ligands (Akitsu & Einaga, 2006b; Miura et al., 2009; Aritake et al., 2010) and azobenzene derivatives (Aslantas et al., 2007; Khandar & Rezvani, 1999). The C11—O1 bond distance of 1.350 (3) Å suggests that it is the phenol-imine tautomer. The contraction of the C12N3 bond [1.285 (3) Å] is also in agreement with the phenol-imine tautomer. As for the azobenzene moiety, the azo NN double bond adopts an E configuration with the NN distance of 1.256 (3) Å. Hydroxyl group is involved in intramolecular O—H···N hydrogen bond (Table 1).

In the crystal, C—H···π interactions (Table 1) consolidate the crystal packing, which exhibits short intermolecular Br1···C20(1/2+x, 1/2-y, 2-z) contact of 3.400 (3) Å.

Related literature top

For applications of chiral photochromic Schiff base compounds, see: Akitsu & Einaga (2005a,b; 2006a,b); Akitsu (2007); Akitsu & Itoh (2010). For the crystal structures of related compounds, see: Akitsu et al. (2004); Aslantas et al. (2007); Aritake et al. (2010); Hadjoudis & Mavridis (2004); Khandar & Rezvani (1999); Miura et al. (2009).

Experimental top

Treatment of aniline (0.951 g, 10.0 mmol) in 15 ml of 6M HCl and NaNO2 (0.690 g, 10 mmol) in 15 ml of H2O for 30 min at 278 K gave rise to the yellow precursor. Treatment of the precursor and salicylaldehyde (1.22 g 10 mmol) in 30 ml of 10% NaOH aqueous solution for 1 h at 278 K, and the resulting brown precipitates were filtrated and washed with water and ethanol, and dried in a desiccator for several days. Treatment of the brown precipitates (0.226 g, 1.00 mmol) and (R)-(+)-1-(4-Bromophenyl)ethylamine (0.200 g, 1.00 mmol) for 2 h at 298 K under a nitrogen atmosphere gave rise to orange compound after evaporation(yield 0.0598 g, 29.3%). This crude orange compound was filtered and recrystallized slow evaporation from aceton to give orange prismatic single crystals. Anal. Calc. for C21H18BrN3O: C, 61.78; H, 4.44; N, 10.29. Found: C, 61.66; H, 4.67; N, 10.17%. IR (KBr,(cm-1)): 1585 (N=N), 1632(C=N). 1H NMR (300 MHz, DMSO) δ(p.p.m.): 1.60 (d,3H), 2.50 (m,2H), 4.80 (dd,1H), 7.03 (d,2H), 7.41 (tt,2H), 7.56 (m,5H), 7.84 (tt,2H), 7.95 (dd,1H), 8.12 (d,1H), 8.88(s,1H).

Refinement top

All hydrogen atoms were geometrically positioned and refined as riding.

Structure description top

In recent years, there is a growing interest in the organic/inorganic metal complexes and photochromic compounds. For example, cis-trans photoisomerization of azobenzene could switch conformation of chiral ligands (Akitsu & Einaga, 2005a, 2005b), chiral conformation change in a solution induced by a photochromic solute (Akitsu & Einaga, 2006a; Akitsu, 2007) and optical anisotropy in polymeric films (Akitsu & Itoh, 2010). Also free Schiff base ligands may act as photochromic, thermochromics, and fluorescence materials (Akitsu et al., 2004; Hadjoudis & Mavridis, 2004; Akitsu & Einaga, 2006b). Recently, we have synthesized the title compound (I). Herewith we present its crystal structure.

The molecule of (I) (Fig. I) adopts an E configuration with respect to the imine CN double bond with C13—C12—N3—C14 torsion angle of 178.6 (2) °. Thus, the π-conjugated system around the imine group is essentially planar. All bond lengths and angles in (I) correspond well to those observed in similar Schiff base ligands (Akitsu & Einaga, 2006b; Miura et al., 2009; Aritake et al., 2010) and azobenzene derivatives (Aslantas et al., 2007; Khandar & Rezvani, 1999). The C11—O1 bond distance of 1.350 (3) Å suggests that it is the phenol-imine tautomer. The contraction of the C12N3 bond [1.285 (3) Å] is also in agreement with the phenol-imine tautomer. As for the azobenzene moiety, the azo NN double bond adopts an E configuration with the NN distance of 1.256 (3) Å. Hydroxyl group is involved in intramolecular O—H···N hydrogen bond (Table 1).

In the crystal, C—H···π interactions (Table 1) consolidate the crystal packing, which exhibits short intermolecular Br1···C20(1/2+x, 1/2-y, 2-z) contact of 3.400 (3) Å.

For applications of chiral photochromic Schiff base compounds, see: Akitsu & Einaga (2005a,b; 2006a,b); Akitsu (2007); Akitsu & Itoh (2010). For the crystal structures of related compounds, see: Akitsu et al. (2004); Aslantas et al. (2007); Aritake et al. (2010); Hadjoudis & Mavridis (2004); Khandar & Rezvani (1999); Miura et al. (2009).

Computing details top

Data collection: APEX2 (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I) showing the atomic numbering and 50% probability displacement ellipsoids.
2-{(R)-[1-(4-Bromophenyl)ethyl]iminomethyl}-4-(phenyldiazenyl)phenol top
Crystal data top
C21H18BrN3ODx = 1.496 Mg m3
Mr = 408.29Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P21212Cell parameters from 10349 reflections
a = 7.271 (3) Åθ = 2.8–27.7°
b = 41.901 (15) ŵ = 2.28 mm1
c = 5.952 (2) ÅT = 113 K
V = 1813.3 (11) Å3Needle, orange
Z = 40.37 × 0.23 × 0.08 mm
F(000) = 832
Data collection top
Bruker APEXII CCD
diffractometer
4176 independent reflections
Radiation source: fine-focus sealed tube3723 reflections with I > 2σ(I)
Detector resolution: 8.333 pixels mm-1Rint = 0.027
φ and ω scansθmax = 27.7°, θmin = 2.8°
Absorption correction: empirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
h = 89
Tmin = 0.486, Tmax = 0.833k = 5433
10349 measured reflectionsl = 77
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.026H-atom parameters constrained
wR(F2) = 0.047 w = 1/[σ2(Fo2)]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max = 0.002
4176 reflectionsΔρmax = 0.57 e Å3
237 parametersΔρmin = 0.40 e Å3
0 restraintsAbsolute structure: Flack x determined using 1360 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.005 (4)
Crystal data top
C21H18BrN3OV = 1813.3 (11) Å3
Mr = 408.29Z = 4
Orthorhombic, P21212Mo Kα radiation
a = 7.271 (3) ŵ = 2.28 mm1
b = 41.901 (15) ÅT = 113 K
c = 5.952 (2) Å0.37 × 0.23 × 0.08 mm
Data collection top
Bruker APEXII CCD
diffractometer
4176 independent reflections
Absorption correction: empirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
3723 reflections with I > 2σ(I)
Tmin = 0.486, Tmax = 0.833Rint = 0.027
10349 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.026H-atom parameters constrained
wR(F2) = 0.047Δρmax = 0.57 e Å3
S = 1.01Δρmin = 0.40 e Å3
4176 reflectionsAbsolute structure: Flack x determined using 1360 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
237 parametersAbsolute structure parameter: 0.005 (4)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br11.09221 (4)0.26333 (2)0.94955 (5)0.02934 (9)
C10.2882 (4)0.55533 (6)0.2777 (4)0.0162 (6)
H10.3470.540.1850.019*
C20.2286 (3)0.54700 (5)0.4928 (4)0.0132 (6)
C30.2610 (4)0.58613 (6)0.2004 (5)0.0191 (6)
H30.30330.59190.05510.023*
C40.1732 (4)0.60841 (6)0.3323 (5)0.0193 (7)
H40.15310.62940.27660.023*
C50.1136 (4)0.60022 (5)0.5478 (5)0.0189 (6)
H50.05490.61570.63970.023*
C60.1400 (3)0.56948 (5)0.6277 (4)0.0153 (6)
H60.0980.56380.77330.018*
C70.3225 (3)0.45296 (5)0.6999 (4)0.0130 (6)
H70.36790.45790.55430.016*
C80.2539 (4)0.47727 (5)0.8343 (4)0.0133 (6)
C90.1948 (3)0.47027 (5)1.0517 (5)0.0147 (5)
H90.15380.4871.14730.018*
C100.1954 (4)0.43923 (6)1.1290 (4)0.0147 (6)
H100.15240.43471.27620.018*
C110.2586 (3)0.41462 (5)0.9931 (4)0.0152 (6)
C120.3926 (4)0.39625 (5)0.6274 (4)0.0142 (5)
H120.43830.40150.48260.017*
C130.3259 (4)0.42154 (5)0.7748 (4)0.0120 (6)
C140.4556 (3)0.34250 (5)0.5321 (5)0.0170 (6)
H140.50280.35330.3940.02*
C150.2920 (4)0.32168 (6)0.4678 (5)0.0273 (7)
H15A0.24620.31060.60140.041*
H15B0.33050.3060.35510.041*
H15C0.19410.33510.40540.041*
C160.6884 (4)0.29788 (5)0.5224 (5)0.0206 (6)
H160.64020.29240.37910.025*
C170.6118 (4)0.32344 (5)0.6378 (4)0.0148 (6)
C180.6859 (4)0.33094 (6)0.8466 (4)0.0212 (7)
H180.6370.34840.92890.025*
C190.8302 (4)0.31341 (5)0.9371 (5)0.0220 (6)
H190.87990.31891.07960.026*
C200.9003 (4)0.28803 (5)0.8183 (4)0.0186 (6)
C210.8323 (4)0.28005 (6)0.6082 (5)0.0214 (7)
H210.88310.26280.52530.026*
N10.2355 (3)0.50990 (4)0.7656 (4)0.0149 (5)
N20.2565 (3)0.51440 (4)0.5585 (4)0.0150 (5)
N30.3906 (3)0.36692 (4)0.6905 (3)0.0169 (5)
O10.2552 (3)0.38445 (4)1.0728 (3)0.0200 (4)
H1A0.29880.3720.97580.03*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.03065 (17)0.02551 (13)0.03187 (16)0.01116 (13)0.00603 (16)0.00168 (14)
C10.0158 (16)0.0182 (13)0.0147 (15)0.0033 (11)0.0014 (12)0.0026 (11)
C20.0111 (13)0.0139 (11)0.0148 (17)0.0035 (9)0.0047 (11)0.0012 (10)
C30.0191 (16)0.0228 (14)0.0154 (15)0.0084 (12)0.0061 (13)0.0028 (11)
C40.0186 (16)0.0148 (13)0.0246 (17)0.0040 (11)0.0077 (14)0.0051 (12)
C50.0162 (15)0.0147 (11)0.0258 (14)0.0011 (10)0.0031 (16)0.0051 (12)
C60.0130 (16)0.0177 (12)0.0151 (14)0.0012 (10)0.0021 (11)0.0001 (11)
C70.0099 (14)0.0172 (12)0.0118 (14)0.0022 (10)0.0003 (11)0.0005 (11)
C80.0117 (15)0.0122 (12)0.0161 (15)0.0003 (10)0.0025 (12)0.0009 (11)
C90.0127 (14)0.0186 (12)0.0128 (13)0.0002 (10)0.0016 (14)0.0050 (12)
C100.0140 (15)0.0229 (13)0.0071 (13)0.0014 (11)0.0001 (11)0.0019 (11)
C110.0119 (14)0.0159 (12)0.0176 (18)0.0004 (10)0.0017 (11)0.0051 (10)
C120.0106 (14)0.0176 (12)0.0145 (13)0.0000 (11)0.0009 (12)0.0013 (10)
C130.0091 (14)0.0147 (12)0.0123 (14)0.0014 (10)0.0006 (12)0.0004 (10)
C140.0213 (16)0.0132 (11)0.0166 (14)0.0005 (10)0.0031 (13)0.0004 (11)
C150.0249 (17)0.0213 (13)0.0357 (18)0.0018 (11)0.0050 (16)0.0010 (14)
C160.0267 (16)0.0190 (13)0.0162 (16)0.0006 (11)0.0005 (14)0.0027 (11)
C170.0183 (15)0.0101 (11)0.0159 (13)0.0032 (11)0.0042 (13)0.0015 (10)
C180.0292 (18)0.0126 (12)0.0219 (16)0.0034 (11)0.0003 (14)0.0041 (11)
C190.0277 (16)0.0200 (12)0.0182 (14)0.0008 (11)0.0032 (15)0.0047 (13)
C200.0186 (15)0.0148 (12)0.0224 (15)0.0015 (12)0.0000 (15)0.0052 (11)
C210.0271 (17)0.0166 (13)0.0206 (17)0.0048 (11)0.0045 (13)0.0051 (11)
N10.0144 (13)0.0154 (11)0.0149 (13)0.0001 (9)0.0004 (10)0.0007 (9)
N20.0160 (12)0.0145 (10)0.0146 (12)0.0005 (8)0.0010 (12)0.0021 (10)
N30.0157 (13)0.0151 (10)0.0198 (12)0.0015 (9)0.0020 (12)0.0012 (9)
O10.0279 (12)0.0150 (8)0.0172 (10)0.0034 (7)0.0064 (10)0.0036 (8)
Geometric parameters (Å, º) top
Br1—C201.905 (3)C11—C131.419 (4)
C1—C31.384 (3)C12—N31.285 (3)
C1—C21.396 (3)C12—C131.459 (3)
C1—H10.95C12—H120.95
C2—C61.395 (3)C14—N31.470 (3)
C2—N21.435 (3)C14—C151.524 (3)
C3—C41.376 (4)C14—C171.524 (4)
C3—H30.95C14—H141.0
C4—C51.397 (4)C15—H15A0.98
C4—H40.95C15—H15B0.98
C5—C61.386 (3)C15—H15C0.98
C5—H50.95C16—C211.383 (4)
C6—H60.95C16—C171.389 (3)
C7—C81.388 (3)C16—H160.95
C7—C131.390 (3)C17—C181.390 (4)
C7—H70.95C18—C191.389 (4)
C8—C91.395 (3)C18—H180.95
C8—N11.433 (3)C19—C201.375 (3)
C9—C101.380 (3)C19—H190.95
C9—H90.95C20—C211.386 (4)
C10—C111.389 (3)C21—H210.95
C10—H100.95N1—N21.256 (3)
C11—O11.350 (3)O1—H1A0.84
C3—C1—C2119.6 (2)C7—C13—C12120.1 (2)
C3—C1—H1120.2C11—C13—C12121.1 (2)
C2—C1—H1120.2N3—C14—C15108.0 (2)
C6—C2—C1120.1 (2)N3—C14—C17109.8 (2)
C6—C2—N2123.5 (2)C15—C14—C17112.67 (19)
C1—C2—N2116.4 (2)N3—C14—H14108.8
C4—C3—C1120.6 (3)C15—C14—H14108.8
C4—C3—H3119.7C17—C14—H14108.8
C1—C3—H3119.7C14—C15—H15A109.5
C3—C4—C5120.1 (2)C14—C15—H15B109.5
C3—C4—H4120.0H15A—C15—H15B109.5
C5—C4—H4120.0C14—C15—H15C109.5
C6—C5—C4120.0 (3)H15A—C15—H15C109.5
C6—C5—H5120.0H15B—C15—H15C109.5
C4—C5—H5120.0C21—C16—C17122.5 (3)
C5—C6—C2119.6 (2)C21—C16—H16118.7
C5—C6—H6120.2C17—C16—H16118.7
C2—C6—H6120.2C16—C17—C18117.4 (2)
C8—C7—C13121.1 (2)C16—C17—C14119.9 (2)
C8—C7—H7119.4C18—C17—C14122.6 (2)
C13—C7—H7119.4C19—C18—C17121.3 (2)
C7—C8—C9119.4 (2)C19—C18—H18119.3
C7—C8—N1124.7 (2)C17—C18—H18119.3
C9—C8—N1115.9 (2)C20—C19—C18119.3 (3)
C10—C9—C8120.4 (2)C20—C19—H19120.3
C10—C9—H9119.8C18—C19—H19120.3
C8—C9—H9119.8C19—C20—C21121.2 (3)
C9—C10—C11120.5 (2)C19—C20—Br1118.8 (2)
C9—C10—H10119.8C21—C20—Br1120.02 (19)
C11—C10—H10119.8C16—C21—C20118.2 (2)
O1—C11—C10119.0 (2)C16—C21—H21120.9
O1—C11—C13121.3 (2)C20—C21—H21120.9
C10—C11—C13119.7 (2)N2—N1—C8114.3 (2)
N3—C12—C13121.0 (2)N1—N2—C2113.1 (2)
N3—C12—H12119.5C12—N3—C14118.3 (2)
C13—C12—H12119.5C11—O1—H1A109.5
C7—C13—C11118.8 (2)
C3—C1—C2—C60.8 (4)C21—C16—C17—C180.3 (4)
C3—C1—C2—N2178.1 (2)C21—C16—C17—C14178.9 (2)
C2—C1—C3—C41.0 (4)N3—C14—C17—C16176.7 (2)
C1—C3—C4—C51.2 (4)C15—C14—C17—C1656.2 (3)
C3—C4—C5—C61.1 (4)N3—C14—C17—C184.8 (3)
C4—C5—C6—C20.9 (4)C15—C14—C17—C18125.3 (3)
C1—C2—C6—C50.8 (4)C16—C17—C18—C190.5 (4)
N2—C2—C6—C5177.9 (2)C14—C17—C18—C19179.0 (2)
C13—C7—C8—C92.8 (4)C17—C18—C19—C200.4 (4)
C13—C7—C8—N1176.2 (2)C18—C19—C20—C211.3 (4)
C7—C8—C9—C103.3 (4)C18—C19—C20—Br1177.8 (2)
N1—C8—C9—C10175.8 (2)C17—C16—C21—C200.6 (4)
C8—C9—C10—C111.4 (4)C19—C20—C21—C161.5 (4)
C9—C10—C11—O1179.2 (2)Br1—C20—C21—C16177.69 (19)
C9—C10—C11—C131.1 (4)C7—C8—N1—N211.8 (4)
C8—C7—C13—C110.3 (4)C9—C8—N1—N2167.2 (2)
C8—C7—C13—C12177.8 (2)C8—N1—N2—C2177.17 (19)
O1—C11—C13—C7178.7 (2)C6—C2—N2—N116.5 (3)
C10—C11—C13—C71.6 (4)C1—C2—N2—N1166.3 (2)
O1—C11—C13—C120.5 (4)C13—C12—N3—C14178.6 (2)
C10—C11—C13—C12179.8 (2)C15—C14—N3—C12113.7 (3)
N3—C12—C13—C7177.4 (2)C17—C14—N3—C12123.1 (3)
N3—C12—C13—C110.7 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···N30.841.842.585 (3)148
C12—H12···Cg1i0.952.803.399 (3)122
C10—H10···Cg1ii0.952.743.415 (3)128
C6—H6···Cg2iii0.952.753.423 (3)128
Symmetry codes: (i) x+1, y+1, z; (ii) x, y+1, z+1; (iii) x, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···N30.841.842.585 (3)148
C12—H12···Cg1i0.952.803.399 (3)122
C10—H10···Cg1ii0.952.743.415 (3)128
C6—H6···Cg2iii0.952.753.423 (3)128
Symmetry codes: (i) x+1, y+1, z; (ii) x, y+1, z+1; (iii) x, y, z+1.
 

References

First citationAkitsu, T. (2007). Polyhedron, 26, 2527–2535.  Web of Science CSD CrossRef CAS Google Scholar
First citationAkitsu, T. & Einaga, Y. (2005a). Polyhedron, 24, 1869–1877.  Web of Science CSD CrossRef CAS Google Scholar
First citationAkitsu, T. & Einaga, Y. (2005b). Polyhedron, 24, 2933–2943.  Web of Science CSD CrossRef CAS Google Scholar
First citationAkitsu, T. & Einaga, Y. (2006a). Polyhedron, 25, 1089–1095  CSD CrossRef CAS Google Scholar
First citationAkitsu, T. & Einaga, Y. (2006b). Acta Cryst. E62, o4315–o4317.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAkitsu, T. & Itoh, T. (2010). Polyhedron, 29, 477–487.  Web of Science CSD CrossRef CAS Google Scholar
First citationAkitsu, T., Takeuchi, Y. & Einaga, Y. (2004). Acta Cryst. C60, o801–o802.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationAritake, Y., Watanabe, Y. & Akitsu, T. (2010). Acta Cryst. E66, o749.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAslantaş, M., Kurtoğlu, N., Şahin, E. & Kurtoğlu, M. (2007). Acta Cryst. E63, o3637.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (1998). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHadjoudis, E. & Mavridis, I. M. (2004). Chem. Soc. Rev. 33, 579–588.  Web of Science PubMed CAS Google Scholar
First citationKhandar, A. A. & Rezvani, Z. (1999). Polyhedron, 18, 129–133.  Web of Science CrossRef CAS Google Scholar
First citationMiura, Y., Aritake, Y. & Akitsu, T. (2009). Acta Cryst. E65, o2381.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds