metal-organic compounds
κ4N,N′,N′′,O1}(nitrato-κO)copper(II) ethanol 0.25-solvate
of {2-[({2-[(2-aminoethyl)amino]ethyl}imino)methyl]-6-hydroxyphenolato-aDepartment of Chemistry, Aligarh Muslim University, Aligarh, 202 002, India, bFaculty of Pharmaceutical Science, Tokyo University of Science, Noda, Japan, and cMax-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz-1, 45470 Mülheim an der Ruhr, Germany
*Correspondence e-mail: shabanachem0711@gmail.com, s.kumar@msn.com
In the II complex, [Cu(C11H16N3O2)(NO3)]·0.25C2H5OH, the complex molecules are linked by N—H⋯O and O—H⋯O hydrogen bonds, forming a dimer with an approximate non-crystallographic twofold rotation axis of symmetry. In the monomeric unit, the Cu2+ ion exhibits a distorted square-pyramidal configuration, whereby the anionic [HL]− Schiff base ligand binds in a tetradentate fashion via the O and the three N atoms which all are approximately coplanar. The O atom of a nitrate anion occupies the fifth coordination site, causing the CuII atom to move slightly out of the approximate basal plane toward the bound nitrate group. The structure exhibits disorder of the ethanol solvent molecule.
of the title mononuclear CuKeywords: crystal structure; CuII complex; distorted square-pyramidal configuration; N—H⋯O hydrogen bond.
CCDC reference: 1410216
1. Related literature
For the corresponding Schiff base, see: Osterbere (1974); Patterson & Holm (1975).
2. Experimental
2.1. Crystal data
|
2.3. Refinement
|
Data collection: SMART (Bruker, 2013); cell SAINT (Bruker, 2013); data reduction: SAINT; program(s) used to solve structure: SHELXS2013 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: DIAMOND (Brandenburg, & Berndt, 1999) and Mercury (Macrae et al., 2008); software used to prepare material for publication: enCIFer (Allen et al., 2004).
Supporting information
CCDC reference: 1410216
https://doi.org/10.1107/S205698901501960X/gw2154sup1.cif
contains datablocks I, New_Global_Publ_Block. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S205698901501960X/gw2154Isup2.hkl
Schiff base ligands and their metal complexes have been the subject of research covering a vast area of metallo–organic as well as bio–inorganic chemistry (Osterbere, 1974; Patterson & Holm, 1975). The characteristic features of the coordination behaviour of metal ions with Schiff base ligands make the complexes useful in variety of catalytic transformations. Tetranuclear manganese clusters with alkoxo bridges have been proved as potential models to elaborate the mechanism of oxygen evolution by
in the oxidation of water in photosynthetic organisms.The title compound crystallizes in the monoclinic ο) in the dimer, but this is not mirrored by the nitrate groups. The trigonality index τ values for the coordination spheres of the two independent Cu atoms are 0.16 and 0.03 [τ = (β-α)/60] where α and β are given by the main opposing angles in the (Fig.3). For perfect square pyramidal and trigonal bipyramidal coordination geometries, the values of τ are zero and unity, respectively. For Cu1 β = O(1)–Cu(1)–N(2) = 173.40 (6)° and α = N(1)–Cu(1)–N(3) = 163.61 (6)°] (Table 2). According to these values, the coordination geometry around both copper ions is best described as distorted square-pyramidal with one nitrate occupying the axial position. The relationship of coordination geometries of the Cu atoms of the monomer units in the dimer is shown in Fig. 3. Several of the NH groups of the ligands in the dimers are additionally involved in N—H···O hydrogen bonds to neighboring dimers [N3···O2 = 3.138 (2) Å, N6···O5 = 2.960 (2) Å, N2···O10 = 3.017 (2) Å].
P21/n with two crystallographic independent molecules of the complex, which differ essentially in the orientation of the nitrate group (Fig. 1). The complexes are linked by N—H···O and O—H···O hydrogen bonds to form a dimer with an approximate non-crystallographic 2-fold axis of symmetry, passing along a rough line described by the midpoints of Cu1 and Cu2, O3 and O8, N3 and N7, O1 and O6, and O2 and O7 (Fig. 2). In each the Cu2+ ion exhibits a distorted square-pyramidal configuration, whereby the anionic [HL] binds in tetradentate fashion via O and the three N atoms of the Schiff base ligand, which are approximately coplanar. The O atom of a nitrate anion occupies the fifth coordination site, causing the Cu atom to move slightly out of the approximate basal plane toward the bound nitrate group. For Cu1, this displacement is 0.167 Å above mean plane defined by O1, N1, N2 and N3, and for Cu2 it is 0.192 Å above the mean plane defined by O6, N5, N6 and N7. The Cu—N bond lengths (1.95-2.02 Å) are comparable with those of other structurally similar copper(II) complexes (1.95-2.28 Å). The Cu—O bond length to the apical O atom of the nitrate group at 2.36 (4) Å (mean) is significantly longer that the Cu—O bond length to the Schiff base ligand in the basal position of square pyramid [1.929 (1) Å (mean)]. The basal coordination planes of each CuII unit lie approximately perpendicular to one other (ca. 86To a stirred solution of H2L (0.4 mmol, 0.089 g) dissolved in 40 mL of EtOH/CH3CN (1:1), Cu(NO3)2·3H2O (0.4 mmol, 0.096 g) was added, followed by addition of Et3N (0.12 mmol, 0.16 mL). The resulting mixture was refluxed for 5–6 h. The reaction mixture was filtered. After 2-5 d, dark-green crystals were obtained by slow diffusion of diethyl ether into the solution. IR data (KBr cm-1): 1613 ν(-CH=N), 3231, 3252, 1443 ν(N–H), 1223 ν(Ar–OH), 1110 ν(C–O) ,585 ν(M–O), 540 ν(M–N).
The ethanol solvent molecule is disordered about a centre of symmetry and was thus refined with site occupancy factors of 0.5. The O11—C23 and C23—C24 distances were restrained to target values of 1.43 (4) and 1.54 (4) Å, respectively. Rigid bond restraints and restraints towards isotropy were applied to the anisotropic atomic displacement parameters. H atoms were added at geometrically calculated positions and refined with the appropriate riding model.
Schiff base ligands and their metal complexes have been the subject of research covering a vast area of metallo–organic as well as bio–inorganic chemistry (Osterbere, 1974; Patterson & Holm, 1975). The characteristic features of the coordination behaviour of metal ions with Schiff base ligands make the complexes useful in variety of catalytic transformations. Tetranuclear manganese clusters with alkoxo bridges have been proved as potential models to elaborate the mechanism of oxygen evolution by
in the oxidation of water in photosynthetic organisms.The title compound crystallizes in the monoclinic ο) in the dimer, but this is not mirrored by the nitrate groups. The trigonality index τ values for the coordination spheres of the two independent Cu atoms are 0.16 and 0.03 [τ = (β-α)/60] where α and β are given by the main opposing angles in the (Fig.3). For perfect square pyramidal and trigonal bipyramidal coordination geometries, the values of τ are zero and unity, respectively. For Cu1 β = O(1)–Cu(1)–N(2) = 173.40 (6)° and α = N(1)–Cu(1)–N(3) = 163.61 (6)°] (Table 2). According to these values, the coordination geometry around both copper ions is best described as distorted square-pyramidal with one nitrate occupying the axial position. The relationship of coordination geometries of the Cu atoms of the monomer units in the dimer is shown in Fig. 3. Several of the NH groups of the ligands in the dimers are additionally involved in N—H···O hydrogen bonds to neighboring dimers [N3···O2 = 3.138 (2) Å, N6···O5 = 2.960 (2) Å, N2···O10 = 3.017 (2) Å].
P21/n with two crystallographic independent molecules of the complex, which differ essentially in the orientation of the nitrate group (Fig. 1). The complexes are linked by N—H···O and O—H···O hydrogen bonds to form a dimer with an approximate non-crystallographic 2-fold axis of symmetry, passing along a rough line described by the midpoints of Cu1 and Cu2, O3 and O8, N3 and N7, O1 and O6, and O2 and O7 (Fig. 2). In each the Cu2+ ion exhibits a distorted square-pyramidal configuration, whereby the anionic [HL] binds in tetradentate fashion via O and the three N atoms of the Schiff base ligand, which are approximately coplanar. The O atom of a nitrate anion occupies the fifth coordination site, causing the Cu atom to move slightly out of the approximate basal plane toward the bound nitrate group. For Cu1, this displacement is 0.167 Å above mean plane defined by O1, N1, N2 and N3, and for Cu2 it is 0.192 Å above the mean plane defined by O6, N5, N6 and N7. The Cu—N bond lengths (1.95-2.02 Å) are comparable with those of other structurally similar copper(II) complexes (1.95-2.28 Å). The Cu—O bond length to the apical O atom of the nitrate group at 2.36 (4) Å (mean) is significantly longer that the Cu—O bond length to the Schiff base ligand in the basal position of square pyramid [1.929 (1) Å (mean)]. The basal coordination planes of each CuII unit lie approximately perpendicular to one other (ca. 86For the corresponding Schiff base, see: Osterbere (1974); Patterson & Holm (1975).
To a stirred solution of H2L (0.4 mmol, 0.089 g) dissolved in 40 mL of EtOH/CH3CN (1:1), Cu(NO3)2·3H2O (0.4 mmol, 0.096 g) was added, followed by addition of Et3N (0.12 mmol, 0.16 mL). The resulting mixture was refluxed for 5–6 h. The reaction mixture was filtered. After 2-5 d, dark-green crystals were obtained by slow diffusion of diethyl ether into the solution. IR data (KBr cm-1): 1613 ν(-CH=N), 3231, 3252, 1443 ν(N–H), 1223 ν(Ar–OH), 1110 ν(C–O) ,585 ν(M–O), 540 ν(M–N).
detailsThe ethanol solvent molecule is disordered about a centre of symmetry and was thus refined with site occupancy factors of 0.5. The O11—C23 and C23—C24 distances were restrained to target values of 1.43 (4) and 1.54 (4) Å, respectively. Rigid bond restraints and restraints towards isotropy were applied to the anisotropic atomic displacement parameters. H atoms were added at geometrically calculated positions and refined with the appropriate riding model.
Data collection: SMART (Bruker, 2013); cell
SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXS2013 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: DIAMOND (Brandenburg, & Berndt, 1999) and Mercury (Macrae et al., 2008); software used to prepare material for publication: enCIFer (Allen et al., 2004).Fig. 1. Crystal structure of title complex, [Cu(HL)(NO3)]·0.25EtOH, showing the two independent molecules in the crystal in similar orientations with labelling of significant atoms (Solvent is omitted for clarity). | |
Fig. 2. Dimer of the title complex, [Cu(HL)(NO3)]·0.25EtOH, showing the N—H···O and O—H···O hydrogen-bonding interactions. The approximate non-crystallographic 2-fold axis of symmetry of the dimer in the crystal is vertical. Selected distances (Å): N3···O8 2.931 (2), N7···O3 3.126 (2), O1···O7 2.697 (2), O2···O6 2.737 (2). Carbon-bound hydrogen atoms have been omitted for clarity. | |
Fig. 3. Arrangement of atoms in dimers of title complex, [Cu(HL)(NO3)]·0.25EtOH, in the crystal, showing the relationship between the approximate coordination planes of the Cu atoms defined by the coordinating N and O atoms (angle between the mean planes in °). |
[Cu(C11H16N3O2)(NO3)]·0.25C2H6O | F(000) = 1484 |
Mr = 359.33 | Dx = 1.701 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
a = 11.952 (2) Å | Cell parameters from 10834 reflections |
b = 12.129 (2) Å | θ = 0.8–0.9° |
c = 19.590 (4) Å | µ = 1.59 mm−1 |
β = 98.921 (3)° | T = 100 K |
V = 2805.5 (9) Å3 | Prism, green |
Z = 8 | 0.16 × 0.11 × 0.08 mm |
Bruker AXS KappaCCD diffractometer | 10834 reflections with I > 2σ(I) |
Radiation source: FR591 rotating anode | Rint = 0.059 |
phi and ω scans | θmax = 37.4°, θmin = 3.0° |
Absorption correction: multi-scan (SADABS; Bruker, 2013) | h = −20→20 |
Tmin = 0.805, Tmax = 0.879 | k = −20→20 |
106043 measured reflections | l = −33→33 |
14120 independent reflections |
Refinement on F2 | 29 restraints |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.044 | H-atom parameters constrained |
wR(F2) = 0.112 | w = 1/[σ2(Fo2) + (0.0392P)2 + 3.8944P] where P = (Fo2 + 2Fc2)/3 |
S = 1.07 | (Δ/σ)max = 0.001 |
14120 reflections | Δρmax = 1.06 e Å−3 |
406 parameters | Δρmin = −1.15 e Å−3 |
[Cu(C11H16N3O2)(NO3)]·0.25C2H6O | V = 2805.5 (9) Å3 |
Mr = 359.33 | Z = 8 |
Monoclinic, P21/n | Mo Kα radiation |
a = 11.952 (2) Å | µ = 1.59 mm−1 |
b = 12.129 (2) Å | T = 100 K |
c = 19.590 (4) Å | 0.16 × 0.11 × 0.08 mm |
β = 98.921 (3)° |
Bruker AXS KappaCCD diffractometer | 14120 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2013) | 10834 reflections with I > 2σ(I) |
Tmin = 0.805, Tmax = 0.879 | Rint = 0.059 |
106043 measured reflections |
R[F2 > 2σ(F2)] = 0.044 | 29 restraints |
wR(F2) = 0.112 | H-atom parameters constrained |
S = 1.07 | Δρmax = 1.06 e Å−3 |
14120 reflections | Δρmin = −1.15 e Å−3 |
406 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Cu1 | 0.56242 (2) | 0.22501 (2) | 0.31990 (2) | 0.01125 (4) | |
O1 | 0.67530 (10) | 0.33955 (10) | 0.32549 (6) | 0.0133 (2) | |
O2 | 0.79704 (11) | 0.52715 (11) | 0.31545 (7) | 0.0178 (2) | |
H2 | 0.7585 | 0.4893 | 0.2844 | 0.027* | |
O3 | 0.41682 (13) | 0.35390 (12) | 0.31382 (9) | 0.0280 (3) | |
O4 | 0.27794 (16) | 0.43188 (14) | 0.35387 (11) | 0.0373 (4) | |
O5 | 0.30557 (12) | 0.25521 (12) | 0.36722 (8) | 0.0217 (3) | |
N1 | 0.59587 (12) | 0.19043 (13) | 0.41797 (7) | 0.0149 (2) | |
N2 | 0.46006 (12) | 0.09379 (12) | 0.31626 (8) | 0.0140 (2) | |
H2A | 0.3833 | 0.1202 | 0.3231 | 0.017* | |
N3 | 0.53736 (12) | 0.21467 (12) | 0.21599 (8) | 0.0135 (2) | |
H3A | 0.5207 | 0.2823 | 0.1971 | 0.016* | |
H3B | 0.6010 | 0.1892 | 0.2011 | 0.016* | |
N4 | 0.33393 (13) | 0.34802 (13) | 0.34611 (8) | 0.0166 (3) | |
C1 | 0.72842 (13) | 0.38286 (14) | 0.38339 (8) | 0.0124 (2) | |
C2 | 0.79243 (14) | 0.48064 (14) | 0.37829 (9) | 0.0139 (3) | |
C3 | 0.85100 (15) | 0.53096 (15) | 0.43647 (9) | 0.0183 (3) | |
H3 | 0.8931 | 0.5962 | 0.4316 | 0.022* | |
C4 | 0.84897 (17) | 0.48710 (18) | 0.50225 (10) | 0.0222 (4) | |
H4 | 0.8896 | 0.5221 | 0.5419 | 0.027* | |
C5 | 0.78789 (17) | 0.39301 (18) | 0.50912 (9) | 0.0207 (3) | |
H5 | 0.7868 | 0.3630 | 0.5538 | 0.025* | |
C6 | 0.72649 (14) | 0.34007 (15) | 0.45065 (9) | 0.0152 (3) | |
C7 | 0.66276 (15) | 0.24331 (16) | 0.46398 (9) | 0.0174 (3) | |
H7 | 0.6711 | 0.2171 | 0.5102 | 0.021* | |
C8 | 0.53173 (16) | 0.09540 (16) | 0.43800 (10) | 0.0188 (3) | |
H8A | 0.4611 | 0.1207 | 0.4537 | 0.023* | |
H8B | 0.5775 | 0.0546 | 0.4763 | 0.023* | |
C9 | 0.50393 (15) | 0.02128 (14) | 0.37510 (10) | 0.0179 (3) | |
H9A | 0.5727 | −0.0180 | 0.3659 | 0.021* | |
H9B | 0.4462 | −0.0340 | 0.3827 | 0.021* | |
C10 | 0.44999 (16) | 0.04397 (15) | 0.24709 (10) | 0.0186 (3) | |
H10A | 0.3816 | −0.0030 | 0.2382 | 0.022* | |
H10B | 0.5171 | −0.0023 | 0.2435 | 0.022* | |
C11 | 0.44169 (15) | 0.13761 (15) | 0.19500 (9) | 0.0179 (3) | |
H11A | 0.4453 | 0.1080 | 0.1483 | 0.022* | |
H11B | 0.3687 | 0.1768 | 0.1937 | 0.022* | |
Cu2 | 0.53711 (2) | 0.58282 (2) | 0.19038 (2) | 0.01359 (5) | |
O6 | 0.66003 (10) | 0.47838 (11) | 0.19655 (6) | 0.0144 (2) | |
O7 | 0.78265 (11) | 0.28994 (11) | 0.21571 (7) | 0.0164 (2) | |
H7A | 0.7543 | 0.3288 | 0.2442 | 0.025* | |
O8 | 0.42326 (11) | 0.42812 (12) | 0.14803 (8) | 0.0209 (3) | |
O9 | 0.25873 (13) | 0.34741 (13) | 0.13124 (9) | 0.0269 (3) | |
O10 | 0.27202 (12) | 0.51948 (13) | 0.16051 (9) | 0.0273 (3) | |
N5 | 0.56098 (12) | 0.63534 (12) | 0.09942 (8) | 0.0154 (2) | |
N6 | 0.43573 (13) | 0.71478 (13) | 0.18807 (8) | 0.0164 (3) | |
H6 | 0.3579 | 0.6929 | 0.1659 | 0.020* | |
N7 | 0.51519 (14) | 0.56904 (13) | 0.28940 (8) | 0.0182 (3) | |
H7B | 0.4958 | 0.4986 | 0.2984 | 0.022* | |
H7C | 0.5808 | 0.5858 | 0.3177 | 0.022* | |
N8 | 0.31697 (13) | 0.43119 (12) | 0.14697 (8) | 0.0152 (2) | |
C12 | 0.69497 (13) | 0.43548 (13) | 0.14185 (8) | 0.0125 (3) | |
C13 | 0.75845 (13) | 0.33588 (14) | 0.15149 (9) | 0.0136 (3) | |
C14 | 0.79762 (15) | 0.28423 (14) | 0.09677 (9) | 0.0165 (3) | |
H14 | 0.8388 | 0.2172 | 0.1044 | 0.020* | |
C15 | 0.77738 (16) | 0.32950 (16) | 0.03034 (9) | 0.0193 (3) | |
H15 | 0.8043 | 0.2934 | −0.0070 | 0.023* | |
C16 | 0.71802 (16) | 0.42696 (16) | 0.01954 (9) | 0.0191 (3) | |
H16 | 0.7056 | 0.4586 | −0.0254 | 0.023* | |
C17 | 0.67533 (15) | 0.48069 (14) | 0.07403 (9) | 0.0154 (3) | |
C18 | 0.61363 (15) | 0.58271 (15) | 0.05751 (9) | 0.0164 (3) | |
H18 | 0.6122 | 0.6125 | 0.0125 | 0.020* | |
C19 | 0.50038 (15) | 0.73849 (15) | 0.07816 (10) | 0.0179 (3) | |
H19A | 0.4275 | 0.7223 | 0.0484 | 0.021* | |
H19B | 0.5464 | 0.7854 | 0.0519 | 0.021* | |
C20 | 0.47980 (16) | 0.79697 (15) | 0.14363 (10) | 0.0197 (3) | |
H20A | 0.5514 | 0.8290 | 0.1677 | 0.024* | |
H20B | 0.4243 | 0.8573 | 0.1322 | 0.024* | |
C21 | 0.43072 (17) | 0.74907 (15) | 0.25968 (10) | 0.0195 (3) | |
H21A | 0.3632 | 0.7958 | 0.2612 | 0.023* | |
H21B | 0.4991 | 0.7922 | 0.2782 | 0.023* | |
C22 | 0.42422 (17) | 0.64578 (16) | 0.30250 (10) | 0.0200 (3) | |
H22A | 0.4339 | 0.6650 | 0.3522 | 0.024* | |
H22B | 0.3493 | 0.6103 | 0.2897 | 0.024* | |
O11 | 0.5614 (5) | 0.6050 (5) | 0.4859 (4) | 0.075 (2) | 0.5 |
H11 | 0.5313 | 0.6421 | 0.5144 | 0.113* | 0.5 |
C23 | 0.4943 (5) | 0.5153 (5) | 0.4647 (3) | 0.0330 (10) | 0.5 |
H23A | 0.5303 | 0.4739 | 0.4303 | 0.040* | 0.5 |
H23B | 0.4205 | 0.5428 | 0.4408 | 0.040* | 0.5 |
C24 | 0.4721 (6) | 0.4375 (5) | 0.5187 (3) | 0.0381 (12) | 0.5 |
H24A | 0.4237 | 0.3775 | 0.4976 | 0.057* | 0.5 |
H24B | 0.5439 | 0.4071 | 0.5419 | 0.057* | 0.5 |
H24C | 0.4338 | 0.4761 | 0.5524 | 0.057* | 0.5 |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu1 | 0.01251 (8) | 0.00876 (8) | 0.01241 (8) | −0.00203 (6) | 0.00167 (6) | 0.00106 (6) |
O1 | 0.0144 (5) | 0.0132 (5) | 0.0120 (5) | −0.0049 (4) | 0.0007 (4) | 0.0001 (4) |
O2 | 0.0200 (6) | 0.0154 (6) | 0.0166 (5) | −0.0066 (5) | −0.0012 (4) | 0.0027 (4) |
O3 | 0.0268 (7) | 0.0157 (6) | 0.0470 (9) | 0.0056 (5) | 0.0229 (7) | 0.0088 (6) |
O4 | 0.0363 (9) | 0.0180 (7) | 0.0643 (12) | 0.0118 (6) | 0.0285 (9) | 0.0078 (7) |
O5 | 0.0204 (6) | 0.0168 (6) | 0.0290 (7) | −0.0020 (5) | 0.0071 (5) | 0.0048 (5) |
N1 | 0.0159 (6) | 0.0139 (6) | 0.0152 (6) | −0.0031 (5) | 0.0030 (5) | 0.0033 (5) |
N2 | 0.0130 (5) | 0.0095 (5) | 0.0195 (6) | 0.0006 (4) | 0.0023 (5) | 0.0017 (5) |
N3 | 0.0130 (5) | 0.0102 (5) | 0.0171 (6) | −0.0010 (4) | 0.0014 (4) | 0.0004 (4) |
N4 | 0.0158 (6) | 0.0142 (6) | 0.0199 (7) | 0.0020 (5) | 0.0035 (5) | 0.0018 (5) |
C1 | 0.0117 (6) | 0.0120 (6) | 0.0130 (6) | −0.0007 (5) | 0.0004 (5) | −0.0010 (5) |
C2 | 0.0132 (6) | 0.0112 (6) | 0.0166 (7) | −0.0008 (5) | 0.0008 (5) | −0.0002 (5) |
C3 | 0.0184 (7) | 0.0157 (7) | 0.0197 (7) | −0.0034 (6) | −0.0005 (6) | −0.0035 (6) |
C4 | 0.0240 (8) | 0.0250 (9) | 0.0164 (7) | −0.0059 (7) | −0.0005 (6) | −0.0069 (6) |
C5 | 0.0233 (8) | 0.0256 (9) | 0.0125 (7) | −0.0042 (7) | 0.0000 (6) | −0.0030 (6) |
C6 | 0.0158 (7) | 0.0168 (7) | 0.0129 (6) | −0.0008 (6) | 0.0015 (5) | 0.0005 (5) |
C7 | 0.0180 (7) | 0.0207 (8) | 0.0133 (7) | −0.0008 (6) | 0.0021 (5) | 0.0038 (6) |
C8 | 0.0178 (7) | 0.0185 (8) | 0.0204 (8) | −0.0027 (6) | 0.0041 (6) | 0.0083 (6) |
C9 | 0.0149 (7) | 0.0115 (7) | 0.0269 (8) | −0.0010 (5) | 0.0025 (6) | 0.0065 (6) |
C10 | 0.0190 (7) | 0.0114 (7) | 0.0252 (8) | −0.0034 (6) | 0.0027 (6) | −0.0025 (6) |
C11 | 0.0174 (7) | 0.0158 (7) | 0.0191 (7) | −0.0033 (6) | −0.0021 (6) | −0.0022 (6) |
Cu2 | 0.01411 (9) | 0.01017 (9) | 0.01689 (9) | 0.00239 (7) | 0.00369 (7) | 0.00333 (7) |
O6 | 0.0146 (5) | 0.0151 (5) | 0.0137 (5) | 0.0041 (4) | 0.0029 (4) | 0.0019 (4) |
O7 | 0.0183 (5) | 0.0145 (5) | 0.0168 (5) | 0.0039 (4) | 0.0042 (4) | 0.0036 (4) |
O8 | 0.0142 (5) | 0.0161 (6) | 0.0325 (7) | 0.0015 (4) | 0.0041 (5) | 0.0020 (5) |
O9 | 0.0239 (7) | 0.0171 (6) | 0.0378 (8) | −0.0061 (5) | −0.0012 (6) | −0.0051 (6) |
O10 | 0.0179 (6) | 0.0173 (6) | 0.0474 (9) | 0.0026 (5) | 0.0076 (6) | −0.0077 (6) |
N5 | 0.0148 (6) | 0.0118 (6) | 0.0190 (6) | 0.0004 (5) | 0.0007 (5) | 0.0042 (5) |
N6 | 0.0143 (6) | 0.0132 (6) | 0.0219 (7) | 0.0009 (5) | 0.0033 (5) | 0.0036 (5) |
N7 | 0.0238 (7) | 0.0117 (6) | 0.0195 (7) | 0.0028 (5) | 0.0044 (5) | 0.0010 (5) |
N8 | 0.0158 (6) | 0.0139 (6) | 0.0153 (6) | −0.0009 (5) | 0.0002 (5) | 0.0014 (5) |
C12 | 0.0121 (6) | 0.0111 (6) | 0.0144 (6) | −0.0006 (5) | 0.0024 (5) | 0.0006 (5) |
C13 | 0.0124 (6) | 0.0113 (6) | 0.0170 (7) | −0.0010 (5) | 0.0023 (5) | 0.0005 (5) |
C14 | 0.0176 (7) | 0.0123 (7) | 0.0201 (7) | 0.0003 (5) | 0.0042 (6) | −0.0018 (5) |
C15 | 0.0225 (8) | 0.0190 (8) | 0.0170 (7) | −0.0019 (6) | 0.0047 (6) | −0.0031 (6) |
C16 | 0.0241 (8) | 0.0186 (8) | 0.0148 (7) | −0.0013 (6) | 0.0036 (6) | 0.0003 (6) |
C17 | 0.0169 (7) | 0.0135 (7) | 0.0158 (7) | −0.0010 (5) | 0.0024 (5) | 0.0014 (5) |
C18 | 0.0180 (7) | 0.0148 (7) | 0.0155 (7) | 0.0003 (6) | 0.0002 (5) | 0.0041 (5) |
C19 | 0.0176 (7) | 0.0141 (7) | 0.0211 (8) | 0.0025 (6) | 0.0006 (6) | 0.0060 (6) |
C20 | 0.0204 (8) | 0.0116 (7) | 0.0270 (9) | 0.0017 (6) | 0.0039 (6) | 0.0052 (6) |
C21 | 0.0221 (8) | 0.0119 (7) | 0.0250 (8) | 0.0022 (6) | 0.0054 (6) | −0.0001 (6) |
C22 | 0.0229 (8) | 0.0151 (7) | 0.0239 (8) | 0.0032 (6) | 0.0094 (6) | 0.0020 (6) |
O11 | 0.073 (4) | 0.051 (3) | 0.091 (4) | −0.036 (3) | −0.019 (3) | 0.022 (3) |
C23 | 0.032 (2) | 0.040 (3) | 0.027 (2) | 0.004 (2) | 0.0071 (18) | 0.0094 (19) |
C24 | 0.043 (3) | 0.029 (3) | 0.044 (3) | −0.003 (2) | 0.009 (3) | 0.001 (2) |
Cu1—O1 | 1.9278 (12) | Cu2—O8 | 2.3896 (15) |
Cu1—N1 | 1.9465 (15) | O6—C12 | 1.316 (2) |
Cu1—N2 | 2.0020 (15) | O7—C13 | 1.365 (2) |
Cu1—N3 | 2.0150 (15) | O7—H7A | 0.8400 |
Cu1—O3 | 2.3286 (15) | O8—N8 | 1.268 (2) |
O1—C1 | 1.3200 (19) | O9—N8 | 1.243 (2) |
O2—C2 | 1.363 (2) | O10—N8 | 1.245 (2) |
O2—H2 | 0.8400 | N5—C18 | 1.280 (2) |
O3—N4 | 1.257 (2) | N5—C19 | 1.473 (2) |
O4—N4 | 1.240 (2) | N6—C21 | 1.473 (3) |
O5—N4 | 1.264 (2) | N6—C20 | 1.473 (2) |
N1—C7 | 1.280 (2) | N6—H6 | 1.0000 |
N1—C8 | 1.471 (2) | N7—C22 | 1.483 (2) |
N2—C10 | 1.472 (2) | N7—H7B | 0.9100 |
N2—C9 | 1.480 (2) | N7—H7C | 0.9100 |
N2—H2A | 1.0000 | C12—C17 | 1.423 (2) |
N3—C11 | 1.485 (2) | C12—C13 | 1.423 (2) |
N3—H3A | 0.9100 | C13—C14 | 1.384 (2) |
N3—H3B | 0.9100 | C14—C15 | 1.399 (3) |
C1—C6 | 1.420 (2) | C14—H14 | 0.9500 |
C1—C2 | 1.423 (2) | C15—C16 | 1.378 (3) |
C2—C3 | 1.383 (2) | C15—H15 | 0.9500 |
C3—C4 | 1.398 (3) | C16—C17 | 1.412 (3) |
C3—H3 | 0.9500 | C16—H16 | 0.9500 |
C4—C5 | 1.373 (3) | C17—C18 | 1.451 (2) |
C4—H4 | 0.9500 | C18—H18 | 0.9500 |
C5—C6 | 1.415 (2) | C19—C20 | 1.519 (3) |
C5—H5 | 0.9500 | C19—H19A | 0.9900 |
C6—C7 | 1.445 (3) | C19—H19B | 0.9900 |
C7—H7 | 0.9500 | C20—H20A | 0.9900 |
C8—C9 | 1.520 (3) | C20—H20B | 0.9900 |
C8—H8A | 0.9900 | C21—C22 | 1.516 (3) |
C8—H8B | 0.9900 | C21—H21A | 0.9900 |
C9—H9A | 0.9900 | C21—H21B | 0.9900 |
C9—H9B | 0.9900 | C22—H22A | 0.9900 |
C10—C11 | 1.520 (3) | C22—H22B | 0.9900 |
C10—H10A | 0.9900 | O11—C23 | 1.377 (8) |
C10—H10B | 0.9900 | O11—H11 | 0.8400 |
C11—H11A | 0.9900 | C23—C24 | 1.471 (8) |
C11—H11B | 0.9900 | C23—H23A | 0.9900 |
Cu2—O6 | 1.9295 (12) | C23—H23B | 0.9900 |
Cu2—N5 | 1.9545 (15) | C24—H24A | 0.9800 |
Cu2—N6 | 2.0037 (15) | C24—H24B | 0.9800 |
Cu2—N7 | 2.0043 (16) | C24—H24C | 0.9800 |
O1—Cu1—N1 | 93.69 (6) | N5—Cu2—O8 | 95.46 (6) |
O1—Cu1—N2 | 173.40 (6) | N6—Cu2—O8 | 108.03 (6) |
N1—Cu1—N2 | 83.95 (6) | N7—Cu2—O8 | 96.76 (6) |
O1—Cu1—N3 | 95.47 (5) | C12—O6—Cu2 | 122.90 (11) |
N1—Cu1—N3 | 163.61 (6) | C13—O7—H7A | 109.5 |
N2—Cu1—N3 | 85.43 (6) | N8—O8—Cu2 | 119.86 (11) |
O1—Cu1—O3 | 91.72 (6) | C18—N5—C19 | 120.75 (15) |
N1—Cu1—O3 | 103.45 (6) | C18—N5—Cu2 | 125.32 (12) |
N2—Cu1—O3 | 94.83 (6) | C19—N5—Cu2 | 113.56 (12) |
N3—Cu1—O3 | 89.85 (6) | C21—N6—C20 | 116.27 (15) |
C1—O1—Cu1 | 125.08 (10) | C21—N6—Cu2 | 108.52 (11) |
C2—O2—H2 | 109.5 | C20—N6—Cu2 | 106.46 (11) |
N4—O3—Cu1 | 125.24 (12) | C21—N6—H6 | 108.5 |
C7—N1—C8 | 119.95 (15) | C20—N6—H6 | 108.5 |
C7—N1—Cu1 | 126.66 (12) | Cu2—N6—H6 | 108.5 |
C8—N1—Cu1 | 113.35 (11) | C22—N7—Cu2 | 108.93 (12) |
C10—N2—C9 | 116.22 (14) | C22—N7—H7B | 109.9 |
C10—N2—Cu1 | 108.75 (11) | Cu2—N7—H7B | 109.9 |
C9—N2—Cu1 | 107.70 (10) | C22—N7—H7C | 109.9 |
C10—N2—H2A | 108.0 | Cu2—N7—H7C | 109.9 |
C9—N2—H2A | 108.0 | H7B—N7—H7C | 108.3 |
Cu1—N2—H2A | 108.0 | O9—N8—O10 | 120.82 (16) |
C11—N3—Cu1 | 107.84 (11) | O9—N8—O8 | 120.08 (16) |
C11—N3—H3A | 110.1 | O10—N8—O8 | 119.09 (15) |
Cu1—N3—H3A | 110.1 | O6—C12—C17 | 125.50 (15) |
C11—N3—H3B | 110.1 | O6—C12—C13 | 117.21 (14) |
Cu1—N3—H3B | 110.1 | C17—C12—C13 | 117.29 (15) |
H3A—N3—H3B | 108.5 | O7—C13—C14 | 118.69 (15) |
O4—N4—O3 | 119.83 (16) | O7—C13—C12 | 120.07 (15) |
O4—N4—O5 | 120.90 (16) | C14—C13—C12 | 121.23 (15) |
O3—N4—O5 | 119.17 (15) | C13—C14—C15 | 120.82 (16) |
O1—C1—C6 | 125.26 (15) | C13—C14—H14 | 119.6 |
O1—C1—C2 | 117.61 (14) | C15—C14—H14 | 119.6 |
C6—C1—C2 | 117.13 (14) | C16—C15—C14 | 119.37 (17) |
O2—C2—C3 | 118.38 (15) | C16—C15—H15 | 120.3 |
O2—C2—C1 | 120.37 (14) | C14—C15—H15 | 120.3 |
C3—C2—C1 | 121.24 (16) | C15—C16—C17 | 121.17 (17) |
C2—C3—C4 | 120.84 (17) | C15—C16—H16 | 119.4 |
C2—C3—H3 | 119.6 | C17—C16—H16 | 119.4 |
C4—C3—H3 | 119.6 | C16—C17—C12 | 120.10 (16) |
C5—C4—C3 | 119.50 (17) | C16—C17—C18 | 117.12 (16) |
C5—C4—H4 | 120.3 | C12—C17—C18 | 122.78 (16) |
C3—C4—H4 | 120.3 | N5—C18—C17 | 124.45 (16) |
C4—C5—C6 | 120.99 (17) | N5—C18—H18 | 117.8 |
C4—C5—H5 | 119.5 | C17—C18—H18 | 117.8 |
C6—C5—H5 | 119.5 | N5—C19—C20 | 107.15 (14) |
C5—C6—C1 | 120.29 (16) | N5—C19—H19A | 110.3 |
C5—C6—C7 | 116.37 (16) | C20—C19—H19A | 110.3 |
C1—C6—C7 | 123.34 (15) | N5—C19—H19B | 110.3 |
N1—C7—C6 | 124.67 (16) | C20—C19—H19B | 110.3 |
N1—C7—H7 | 117.7 | H19A—C19—H19B | 108.5 |
C6—C7—H7 | 117.7 | N6—C20—C19 | 107.61 (15) |
N1—C8—C9 | 107.75 (14) | N6—C20—H20A | 110.2 |
N1—C8—H8A | 110.2 | C19—C20—H20A | 110.2 |
C9—C8—H8A | 110.2 | N6—C20—H20B | 110.2 |
N1—C8—H8B | 110.2 | C19—C20—H20B | 110.2 |
C9—C8—H8B | 110.2 | H20A—C20—H20B | 108.5 |
H8A—C8—H8B | 108.5 | N6—C21—C22 | 107.86 (15) |
N2—C9—C8 | 106.64 (14) | N6—C21—H21A | 110.1 |
N2—C9—H9A | 110.4 | C22—C21—H21A | 110.1 |
C8—C9—H9A | 110.4 | N6—C21—H21B | 110.1 |
N2—C9—H9B | 110.4 | C22—C21—H21B | 110.1 |
C8—C9—H9B | 110.4 | H21A—C21—H21B | 108.4 |
H9A—C9—H9B | 108.6 | N7—C22—C21 | 108.72 (15) |
N2—C10—C11 | 107.39 (14) | N7—C22—H22A | 109.9 |
N2—C10—H10A | 110.2 | C21—C22—H22A | 109.9 |
C11—C10—H10A | 110.2 | N7—C22—H22B | 109.9 |
N2—C10—H10B | 110.2 | C21—C22—H22B | 109.9 |
C11—C10—H10B | 110.2 | H22A—C22—H22B | 108.3 |
H10A—C10—H10B | 108.5 | C23—O11—H11 | 109.5 |
N3—C11—C10 | 108.50 (14) | O11—C23—C24 | 116.9 (6) |
N3—C11—H11A | 110.0 | O11—C23—H23A | 108.1 |
C10—C11—H11A | 110.0 | C24—C23—H23A | 108.1 |
N3—C11—H11B | 110.0 | O11—C23—H23B | 108.1 |
C10—C11—H11B | 110.0 | C24—C23—H23B | 108.1 |
H11A—C11—H11B | 108.4 | H23A—C23—H23B | 107.3 |
O6—Cu2—N5 | 93.08 (6) | C23—C24—H24A | 109.5 |
O6—Cu2—N6 | 167.90 (6) | C23—C24—H24B | 109.5 |
N5—Cu2—N6 | 83.82 (6) | H24A—C24—H24B | 109.5 |
O6—Cu2—N7 | 95.58 (6) | C23—C24—H24C | 109.5 |
N5—Cu2—N7 | 165.70 (6) | H24A—C24—H24C | 109.5 |
N6—Cu2—N7 | 85.36 (6) | H24B—C24—H24C | 109.5 |
O6—Cu2—O8 | 83.87 (5) |
D—H···A | D—H | H···A | D···A | D—H···A |
O2—H2···O1 | 0.84 | 2.28 | 2.7243 (18) | 114 |
O2—H2···O6 | 0.84 | 1.93 | 2.6969 (18) | 151 |
N2—H2A···O5 | 1.00 | 2.13 | 2.968 (2) | 140 |
N2—H2A···O10i | 1.00 | 2.29 | 3.017 (2) | 129 |
N3—H3A···O8 | 0.91 | 2.25 | 3.126 (2) | 162 |
N3—H3B···O2ii | 0.91 | 2.36 | 3.138 (2) | 143 |
N3—H3B···O7 | 0.91 | 2.47 | 3.071 (2) | 124 |
O7—H7A···O1 | 0.84 | 1.98 | 2.7365 (18) | 150 |
O7—H7A···O6 | 0.84 | 2.26 | 2.7096 (18) | 114 |
N6—H6···O5iii | 1.00 | 2.10 | 2.960 (2) | 143 |
N6—H6···O10 | 1.00 | 2.34 | 3.067 (2) | 129 |
N7—H7B···O3 | 0.91 | 2.04 | 2.932 (2) | 167 |
Symmetry codes: (i) −x+1/2, y−1/2, −z+1/2; (ii) −x+3/2, y−1/2, −z+1/2; (iii) −x+1/2, y+1/2, −z+1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
O2—H2···O1 | 0.84 | 2.28 | 2.7243 (18) | 113.6 |
O2—H2···O6 | 0.84 | 1.93 | 2.6969 (18) | 150.7 |
N2—H2A···O5 | 1.00 | 2.13 | 2.968 (2) | 140.1 |
N2—H2A···O10i | 1.00 | 2.29 | 3.017 (2) | 129.0 |
N3—H3A···O8 | 0.91 | 2.25 | 3.126 (2) | 161.7 |
N3—H3B···O2ii | 0.91 | 2.36 | 3.138 (2) | 143.2 |
N3—H3B···O7 | 0.91 | 2.47 | 3.071 (2) | 124.0 |
O7—H7A···O1 | 0.84 | 1.98 | 2.7365 (18) | 149.7 |
O7—H7A···O6 | 0.84 | 2.26 | 2.7096 (18) | 113.7 |
N6—H6···O5iii | 1.00 | 2.10 | 2.960 (2) | 142.8 |
N6—H6···O10 | 1.00 | 2.34 | 3.067 (2) | 129.1 |
N7—H7B···O3 | 0.91 | 2.04 | 2.932 (2) | 167.4 |
Symmetry codes: (i) −x+1/2, y−1/2, −z+1/2; (ii) −x+3/2, y−1/2, −z+1/2; (iii) −x+1/2, y+1/2, −z+1/2. |
Acknowledgements
This work was supported by grants from the Department of Science and Technology, SERB, New Delhi, India (SERB/F/815/2014–15). SN thanks the Chairman of the Department of Chemistry, Aligarh Muslim University, India, who facilitated this research.
References
Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Brandenburg, K. & Berndt, M. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Bruker (2013). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Osterbere, R. (1974). Coord. Chem. Rev. 12, 309–347. Google Scholar
Patterson, G. S. & Holm, R. H. (1975). Bioinorg. Chem. 4, 257–275. CrossRef PubMed CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.