organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of a second triclinic polymorph of 2-methyl­pyridinium picrate

aPG and Research Department of Chemistry, Seethalakshmi Ramaswami College, Tiruchirappalli 620 002, Tamil Nadu, India
*Correspondence e-mail: kalaivbalaj@yahoo.co.in

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 19 September 2015; accepted 10 October 2015; online 17 October 2015)

The title mol­ecular salt, C6H8N+·C6H2N3O7 (systematic name: 2-methyl­pyridinium 2,4,6-tri­nitro­phenolate), crystallizes with two cations and two anions in the asymmetric unit. In the crystal, the cations are linked to the anions via bifurcated N—H⋯(O,O) hydrogen bonds, generating R12(6) graph-set motifs. Numerous C—H⋯O hydrogen bonds are observed between these cation–anion pairs, which result in a three-dimensional network. In addition, weak aromatic ππ stacking between the 2-methyl­pyridinium rings [inter-centroid distance = 3.8334 (19) Å] and very weak stacking [inter-centroid distance = 4.0281 (16) Å] between inversion-related pairs of picrate anions is observed. The title salt is a second triclinic polymorph of the structure (also with Z′ = 2) reported earlier [Anita et al. (2006). Acta Cryst. C62, o567–o570; Chan et al. (2014[Chan, E. J., Grabowsky, S., Harrowfield, J. M., Shi, M. W., Skelton, B. W., Sobolev, A. N. & White, A. H. (2014). CrystEngComm, 16, 4508-4538.]). CrystEngComm, 16, 4508–4538]. In the title compound, the cations and anions display a chequerboard arrangement when viewed down [100], whereas in the first polymorph, (010) layers of alternating cations and anions are apparent in a [100] view. It is inter­esting that the unit-cell lengths are almost identical for the two polymorphs, although the inter-axial angles are quite different.

1. Related literature

For the first triclinic polymorph of 2-methyl­pyridinium picrate, see: Anitha et al. (2006[Anitha, K., Athimoolam, S. & Natarajan, S. (2006). Acta Cryst. C62, o567-o570.]); Chan et al. (2014[Chan, E. J., Grabowsky, S., Harrowfield, J. M., Shi, M. W., Skelton, B. W., Sobolev, A. N. & White, A. H. (2014). CrystEngComm, 16, 4508-4538.]). For the crystal structure of the isomeric 3-methyl­pyridinium picrate, see: Gomathi & Kalaivani (2015[Gomathi, J. & Kalaivani, D. (2015). Acta Cryst. E71, 1196-1198.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C6H8N+·C6H2N3O7

  • Mr = 322.24

  • Triclinic, [P \overline 1]

  • a = 8.1524 (4) Å

  • b = 11.8809 (6) Å

  • c = 14.6377 (9) Å

  • α = 102.077 (3)°

  • β = 90.001 (3)°

  • γ = 100.692 (3)°

  • V = 1361.21 (13) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.13 mm−1

  • T = 296 K

  • 0.35 × 0.35 × 0.30 mm

2.2. Data collection

  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.952, Tmax = 0.969

  • 25854 measured reflections

  • 4789 independent reflections

  • 3165 reflections with I > 2σ(I)

  • Rint = 0.034

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.052

  • wR(F2) = 0.159

  • S = 1.06

  • 4789 reflections

  • 423 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N7—H7A⋯O9 0.95 (4) 2.28 (4) 2.813 (4) 114 (3)
N7—H7A⋯O14 0.95 (4) 1.76 (4) 2.678 (3) 160 (3)
N8—H8A⋯O1 0.94 (4) 2.35 (4) 2.894 (4) 117 (3)
N8—H8A⋯O7 0.94 (4) 1.76 (4) 2.660 (3) 158 (4)
C5—H5⋯O2i 0.93 2.50 3.423 (4) 170
C9—H9⋯O8ii 0.93 2.45 3.365 (3) 167
C14—H14⋯O10iii 0.93 2.54 3.456 (4) 167
C17—H17⋯O3 0.93 2.34 3.078 (4) 136
C18—H18B⋯O12i 0.96 2.64 3.488 (5) 148
C20—H20⋯O13iv 0.93 2.55 3.247 (4) 132
C23—H23⋯O8ii 0.93 2.63 3.394 (4) 140
C23—H23⋯O11 0.93 2.36 3.122 (4) 139
Symmetry codes: (i) x+1, y, z; (ii) x-1, y, z; (iii) x+1, y+1, z; (iv) x-1, y-1, z.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SIR92 (Altomare et al., 1993[Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.]); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXL2014.

Supporting information


Comment top

Previous attempt in our laboratories to synthesize carbon-bonded anionic sigma complex with two heterocyclic moieties (substituted imidazole and pyridine) from the ethanolic solution containing 2-chloro-1,3,5-trinitrobenzene, hydantoin and 3-methylpyridine yielded 3-methylpyridinium picrate, a triclinic polymorph (Gomathi & Kalaivani, 2015). In the present work, a similar attempt with 2-methylpyridine instead of 3-methylpyridine in the reaction mixture, yielded 2-methylpyridinium picrate which crystallizes in the triclinic system with space group P1. Fig. 1 & 2 depict ORTEP and packing view of title molecular salt of present investigation respectively. Anita et al. (Anitha et al., 2006) have synthesized 2-methylpyridinium picrate by slow evaporation of the aqueous solution containing pyridoxine and picric acid in a 1:1 stoichiometric ratio at room temperature. They isolated instead of the expected picric acid complex with pyridoxine, crystals of 2-methylpyridinium picrate. Another group (Chan et al., 2014) has prepared 2-methylpyridinium picrate by adding picric acid to liquid 2-methylpyridine without other organic solvents. 2-Methylpyridinium picrate synthesized by both the groups also crystallize in the triclinic system with space group P1. The unit cell parameters of 2-methylpyridinium picrate of both the groups are nearly similar. However, 2-methypyridinium picrate reported in this article differs in the inter-axial bond angles noticeably. In addition to this observation, no disorder is observed in the title molecule, whereas, 2-methylpyridinium picrate reported by Anita et al. one of the oxygen atoms of the nitro group of picrate anion is disordered, with occupancy factors of 0.71 and 0.29. The dihedral angles between the planes of phenyl ring of picrate anions and that of 2-methylpyridinium cations of two molecules present in the asymmetric unit are greater than 80 ° [dihedral angle between (i) planes constituting C1-C2-C3-C4-C5-C6 and N7-C13-C14-C15-C16-C17, 85.54 (11)°; (ii) C1-C2-C3-C4-C5-C6 and N8-C19-C20-C21-C22-C23, 87.60 (11)°; (iii) C7-C8-C9-C10-C11-C12 and N7-C13-C14-C15-C16-C17, 80.60 (11)°; (iv) C7-C8-C9-C10-C11-C12 and N8-C19-C20-C21-C22-C23, 82.49 (10)°], which unambigously reflects the absence of π-bonding between the aromatic rings of anion and cation and supports the fact that the main contributing factor of the formation of the product is proton-transfer reaction. Protonation of the nitrogen atom is further evidenced from the values of the C-N bond distances. N-H···O hydrogen bonding is noticed between the cation and anion parts of two molecules of asymmetric unit and the bifurcation at N-H forming N-H···O hydrogen bonds with the oxygen atoms of phenolate and nitro group results in R12(6) ring motif and this sort of linkage is highly responsible for the stability of the molecule. Along with this ring motif, other ring motifs such as R22(7), R33(13) and R43(19) are also stabilizing the crystal system. The nitro group involved in forming R12(6) ring motif bends only slightly from the plane of the aromatic ring to which it is attached [dihedral angles, 21.68 (16)° and 24.16 (12)°], whereas, the other nitro group lying on the other side of C-O- bond twists from the ring remarkably [dihedral angles, 79.94 (12)° and 53.29 (15)°]. This kind of twisting may probably reduce the strain due to overcrowding around C-O-. The plane of the nitro group para with respect to C-O- lies almost in the plane of the phenyl ring [dihedral angles, 5.02 (19)° and 3.08 (29)°].

Related literature top

For the first triclinic polymorph of 2-methylpyridinium picrate, see: Anitha et al. (2006); Chan et al. (2014). For the crystal structure of the isomeric 3-methylpyridinium picrate, see: Gomathi & Kalaivani (2015).

Experimental top

2-Chloro-1,3,5-trinitrobenzene [2.56 g (0.01 mol)] was dissolved in 30 ml of rectified spirit and mixed with hydantoin [1.00 g (0.01 mol)] in 20 ml of the same solvent. After mixing of these two solutions, 3 ml of 2-methylpyridine (0.03 mol) was added and the solution was heated to 318 K. The solution was stirred at this temperature with the help of magnetic stirrer for 5 h. The solution was cooled to room temperature and then filtered carefully. The clear maroon-red colour solution obtained was allowed to evaporate slowly maintaining the temperature at 293 K. After a period of six weeks, maroon-red coloured crystals formed from the solution. The crystals were filtered, powdered and washed with 30 ml of dry ether and recrystallized from rectified spirit. Instead of the expected carbon-bonded anionic sigma complex with hydantoin, crystals of 2-methylpyridinium picrate were obtained (yield: 70%; m.p.: 423 K).

Refinement top

Crystal data, data collection and structure refinement details are summarized.

Structure description top

Previous attempt in our laboratories to synthesize carbon-bonded anionic sigma complex with two heterocyclic moieties (substituted imidazole and pyridine) from the ethanolic solution containing 2-chloro-1,3,5-trinitrobenzene, hydantoin and 3-methylpyridine yielded 3-methylpyridinium picrate, a triclinic polymorph (Gomathi & Kalaivani, 2015). In the present work, a similar attempt with 2-methylpyridine instead of 3-methylpyridine in the reaction mixture, yielded 2-methylpyridinium picrate which crystallizes in the triclinic system with space group P1. Fig. 1 & 2 depict ORTEP and packing view of title molecular salt of present investigation respectively. Anita et al. (Anitha et al., 2006) have synthesized 2-methylpyridinium picrate by slow evaporation of the aqueous solution containing pyridoxine and picric acid in a 1:1 stoichiometric ratio at room temperature. They isolated instead of the expected picric acid complex with pyridoxine, crystals of 2-methylpyridinium picrate. Another group (Chan et al., 2014) has prepared 2-methylpyridinium picrate by adding picric acid to liquid 2-methylpyridine without other organic solvents. 2-Methylpyridinium picrate synthesized by both the groups also crystallize in the triclinic system with space group P1. The unit cell parameters of 2-methylpyridinium picrate of both the groups are nearly similar. However, 2-methypyridinium picrate reported in this article differs in the inter-axial bond angles noticeably. In addition to this observation, no disorder is observed in the title molecule, whereas, 2-methylpyridinium picrate reported by Anita et al. one of the oxygen atoms of the nitro group of picrate anion is disordered, with occupancy factors of 0.71 and 0.29. The dihedral angles between the planes of phenyl ring of picrate anions and that of 2-methylpyridinium cations of two molecules present in the asymmetric unit are greater than 80 ° [dihedral angle between (i) planes constituting C1-C2-C3-C4-C5-C6 and N7-C13-C14-C15-C16-C17, 85.54 (11)°; (ii) C1-C2-C3-C4-C5-C6 and N8-C19-C20-C21-C22-C23, 87.60 (11)°; (iii) C7-C8-C9-C10-C11-C12 and N7-C13-C14-C15-C16-C17, 80.60 (11)°; (iv) C7-C8-C9-C10-C11-C12 and N8-C19-C20-C21-C22-C23, 82.49 (10)°], which unambigously reflects the absence of π-bonding between the aromatic rings of anion and cation and supports the fact that the main contributing factor of the formation of the product is proton-transfer reaction. Protonation of the nitrogen atom is further evidenced from the values of the C-N bond distances. N-H···O hydrogen bonding is noticed between the cation and anion parts of two molecules of asymmetric unit and the bifurcation at N-H forming N-H···O hydrogen bonds with the oxygen atoms of phenolate and nitro group results in R12(6) ring motif and this sort of linkage is highly responsible for the stability of the molecule. Along with this ring motif, other ring motifs such as R22(7), R33(13) and R43(19) are also stabilizing the crystal system. The nitro group involved in forming R12(6) ring motif bends only slightly from the plane of the aromatic ring to which it is attached [dihedral angles, 21.68 (16)° and 24.16 (12)°], whereas, the other nitro group lying on the other side of C-O- bond twists from the ring remarkably [dihedral angles, 79.94 (12)° and 53.29 (15)°]. This kind of twisting may probably reduce the strain due to overcrowding around C-O-. The plane of the nitro group para with respect to C-O- lies almost in the plane of the phenyl ring [dihedral angles, 5.02 (19)° and 3.08 (29)°].

For the first triclinic polymorph of 2-methylpyridinium picrate, see: Anitha et al. (2006); Chan et al. (2014). For the crystal structure of the isomeric 3-methylpyridinium picrate, see: Gomathi & Kalaivani (2015).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015).

Figures top
[Figure 1] Fig. 1. ORTEP view of the title molecular salt with displacement ellipsoids drawn at 40% probability.
[Figure 2] Fig. 2. A partial view of the crystal packing diagram of the title molecular salt (hydrogen bonds and ππ stacking are shown as dotted lines).
2-Methylpyridinium 2,4,6-trinitrophenolate top
Crystal data top
C6H8N+·C6H2N3O7Z = 4
Mr = 322.24F(000) = 664
Triclinic, P1Dx = 1.572 Mg m3
a = 8.1524 (4) ÅMo Kα radiation, λ = 0.71073 Å
b = 11.8809 (6) ÅCell parameters from 6819 reflections
c = 14.6377 (9) Åθ = 2.5–25.5°
α = 102.077 (3)°µ = 0.13 mm1
β = 90.001 (3)°T = 296 K
γ = 100.692 (3)°Block, yellow
V = 1361.21 (13) Å30.35 × 0.35 × 0.30 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
4789 independent reflections
Radiation source: fine-focus sealed tube3165 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
ω and φ scanθmax = 25.0°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 99
Tmin = 0.952, Tmax = 0.969k = 1414
25854 measured reflectionsl = 1717
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.052H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.159 w = 1/[σ2(Fo2) + (0.0576P)2 + 1.224P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
4789 reflectionsΔρmax = 0.35 e Å3
423 parametersΔρmin = 0.27 e Å3
Crystal data top
C6H8N+·C6H2N3O7γ = 100.692 (3)°
Mr = 322.24V = 1361.21 (13) Å3
Triclinic, P1Z = 4
a = 8.1524 (4) ÅMo Kα radiation
b = 11.8809 (6) ŵ = 0.13 mm1
c = 14.6377 (9) ÅT = 296 K
α = 102.077 (3)°0.35 × 0.35 × 0.30 mm
β = 90.001 (3)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
4789 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
3165 reflections with I > 2σ(I)
Tmin = 0.952, Tmax = 0.969Rint = 0.034
25854 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0520 restraints
wR(F2) = 0.159H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.35 e Å3
4789 reflectionsΔρmin = 0.27 e Å3
423 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.2716 (3)0.1874 (2)0.86637 (19)0.0366 (6)
C20.2025 (3)0.2910 (2)0.8744 (2)0.0393 (7)
C30.2970 (3)0.4009 (2)0.8818 (2)0.0411 (7)
H30.24570.46570.88770.049*
C40.4672 (3)0.4148 (2)0.88062 (19)0.0369 (6)
C50.5471 (3)0.3206 (2)0.87618 (19)0.0359 (6)
H50.66300.33080.87770.043*
C60.4504 (3)0.2134 (2)0.86961 (19)0.0345 (6)
C70.6949 (3)0.3848 (2)0.64217 (19)0.0367 (6)
C80.5153 (3)0.3557 (2)0.62748 (19)0.0359 (6)
C90.4225 (3)0.2467 (2)0.61397 (19)0.0372 (6)
H90.30710.23460.60470.045*
C100.5014 (3)0.1533 (2)0.61406 (19)0.0361 (6)
C110.6715 (3)0.1706 (2)0.62624 (19)0.0382 (7)
H110.72390.10710.62480.046*
C120.7637 (3)0.2815 (2)0.64042 (19)0.0370 (6)
C131.1475 (4)0.6975 (3)0.6877 (2)0.0460 (7)
C141.2631 (4)0.7880 (3)0.7391 (3)0.0559 (9)
H141.33020.84010.70900.067*
C151.2802 (4)0.8019 (3)0.8328 (3)0.0592 (9)
H151.35840.86350.86670.071*
C161.1837 (4)0.7263 (3)0.8779 (3)0.0572 (9)
H161.19610.73460.94220.069*
C171.0688 (4)0.6385 (3)0.8267 (3)0.0535 (8)
H171.00120.58600.85620.064*
C181.1222 (5)0.6719 (4)0.5849 (3)0.0747 (11)
H18A1.19790.72860.55970.112*
H18B1.14300.59480.55920.112*
H18C1.00930.67550.56910.112*
C190.1835 (3)0.1337 (2)0.8099 (2)0.0412 (7)
C200.2865 (4)0.2209 (3)0.7485 (2)0.0524 (8)
H200.35910.27820.77080.063*
C210.2835 (4)0.2242 (3)0.6552 (3)0.0627 (10)
H210.35350.28390.61380.075*
C220.1775 (5)0.1400 (3)0.6221 (3)0.0640 (10)
H220.17530.14080.55840.077*
C230.0760 (4)0.0555 (3)0.6837 (3)0.0569 (9)
H230.00240.00220.66230.068*
C240.1811 (5)0.1215 (3)0.9123 (2)0.0641 (9)
H24A0.26080.18420.92810.096*
H24B0.07150.12470.93430.096*
H24C0.20960.04770.94120.096*
N10.0244 (3)0.2838 (3)0.8789 (2)0.0583 (8)
N20.5652 (3)0.5307 (2)0.88834 (18)0.0459 (6)
N30.5319 (3)0.1137 (2)0.86915 (19)0.0420 (6)
N40.9426 (3)0.2915 (2)0.6504 (2)0.0513 (7)
N50.4056 (3)0.0360 (2)0.59800 (18)0.0463 (6)
N60.4285 (3)0.4513 (2)0.6237 (2)0.0485 (7)
N71.0518 (3)0.6267 (2)0.7348 (2)0.0458 (6)
N80.0805 (3)0.0542 (2)0.7744 (2)0.0455 (6)
O10.0686 (3)0.1928 (2)0.8495 (3)0.1149 (13)
O20.0287 (3)0.3707 (2)0.9134 (3)0.0944 (10)
O30.7155 (3)0.5408 (2)0.8829 (2)0.0747 (8)
O40.4947 (3)0.61454 (18)0.90051 (17)0.0594 (6)
O50.5817 (4)0.1009 (3)0.9423 (2)0.0988 (11)
O60.5417 (4)0.0464 (2)0.79711 (19)0.0767 (8)
O70.1934 (2)0.08461 (17)0.86122 (15)0.0512 (6)
O81.0032 (3)0.2064 (2)0.6182 (2)0.0866 (9)
O91.0276 (3)0.3819 (2)0.6908 (2)0.0953 (10)
O100.4784 (3)0.04584 (18)0.59417 (15)0.0536 (6)
O110.2538 (3)0.0224 (2)0.5862 (2)0.0737 (8)
O120.3364 (4)0.4393 (3)0.5559 (2)0.0983 (11)
O130.4468 (3)0.5344 (2)0.6878 (2)0.0752 (8)
O140.7744 (2)0.48653 (17)0.64961 (16)0.0523 (6)
H7A0.970 (5)0.565 (3)0.700 (2)0.072 (11)*
H8A0.003 (5)0.005 (3)0.814 (3)0.085 (12)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0308 (14)0.0384 (16)0.0384 (16)0.0002 (12)0.0031 (11)0.0091 (13)
C20.0229 (13)0.0440 (17)0.0499 (18)0.0025 (12)0.0006 (11)0.0104 (14)
C30.0349 (15)0.0379 (16)0.0528 (19)0.0088 (12)0.0022 (13)0.0132 (14)
C40.0305 (14)0.0343 (15)0.0437 (17)0.0009 (11)0.0022 (12)0.0098 (13)
C50.0269 (13)0.0381 (15)0.0403 (16)0.0011 (11)0.0017 (11)0.0074 (12)
C60.0314 (14)0.0352 (15)0.0366 (16)0.0059 (11)0.0018 (11)0.0071 (12)
C70.0318 (14)0.0365 (16)0.0390 (16)0.0017 (12)0.0023 (11)0.0063 (13)
C80.0317 (14)0.0326 (15)0.0423 (17)0.0067 (11)0.0019 (11)0.0052 (12)
C90.0268 (13)0.0414 (16)0.0409 (17)0.0048 (12)0.0012 (11)0.0046 (13)
C100.0329 (14)0.0318 (15)0.0411 (17)0.0019 (11)0.0042 (11)0.0057 (12)
C110.0361 (15)0.0349 (15)0.0450 (17)0.0097 (12)0.0056 (12)0.0094 (13)
C120.0274 (13)0.0402 (16)0.0428 (17)0.0048 (12)0.0006 (11)0.0086 (13)
C130.0430 (16)0.0397 (17)0.060 (2)0.0148 (14)0.0040 (14)0.0156 (15)
C140.0464 (18)0.0427 (18)0.079 (3)0.0026 (14)0.0071 (17)0.0229 (17)
C150.053 (2)0.0429 (19)0.074 (3)0.0037 (15)0.0136 (17)0.0069 (17)
C160.0511 (19)0.063 (2)0.057 (2)0.0121 (17)0.0037 (16)0.0115 (18)
C170.0365 (16)0.056 (2)0.072 (3)0.0031 (14)0.0095 (15)0.0270 (18)
C180.098 (3)0.076 (3)0.057 (2)0.035 (2)0.006 (2)0.014 (2)
C190.0365 (15)0.0333 (15)0.0545 (19)0.0067 (12)0.0012 (13)0.0106 (14)
C200.0489 (18)0.0364 (17)0.067 (2)0.0052 (14)0.0052 (16)0.0111 (16)
C210.063 (2)0.048 (2)0.069 (3)0.0044 (17)0.0196 (18)0.0004 (18)
C220.071 (2)0.074 (3)0.050 (2)0.022 (2)0.0042 (18)0.0120 (19)
C230.0455 (18)0.062 (2)0.071 (3)0.0114 (16)0.0139 (17)0.0315 (19)
C240.073 (2)0.063 (2)0.055 (2)0.0104 (18)0.0016 (17)0.0122 (18)
N10.0306 (14)0.0527 (17)0.091 (2)0.0057 (13)0.0026 (13)0.0164 (16)
N20.0393 (14)0.0389 (15)0.0577 (17)0.0015 (11)0.0034 (11)0.0140 (12)
N30.0369 (13)0.0374 (14)0.0507 (17)0.0042 (10)0.0032 (11)0.0095 (13)
N40.0319 (13)0.0450 (16)0.078 (2)0.0065 (12)0.0019 (12)0.0159 (14)
N50.0416 (15)0.0393 (15)0.0535 (16)0.0004 (12)0.0106 (11)0.0073 (12)
N60.0413 (14)0.0418 (15)0.0621 (18)0.0093 (11)0.0072 (13)0.0090 (14)
N70.0325 (13)0.0381 (14)0.0644 (19)0.0009 (11)0.0052 (12)0.0107 (13)
N80.0334 (13)0.0389 (14)0.0624 (19)0.0024 (11)0.0012 (12)0.0103 (13)
O10.0293 (13)0.0564 (17)0.239 (4)0.0057 (12)0.0048 (17)0.003 (2)
O20.0400 (14)0.0627 (17)0.181 (3)0.0171 (12)0.0187 (16)0.0202 (19)
O30.0350 (13)0.0545 (15)0.131 (2)0.0054 (10)0.0125 (13)0.0251 (15)
O40.0605 (14)0.0346 (12)0.0830 (17)0.0070 (10)0.0091 (12)0.0143 (11)
O50.151 (3)0.096 (2)0.0671 (19)0.072 (2)0.0282 (18)0.0147 (16)
O60.108 (2)0.0571 (16)0.0671 (18)0.0379 (15)0.0000 (15)0.0016 (14)
O70.0380 (11)0.0385 (12)0.0740 (15)0.0062 (9)0.0104 (10)0.0170 (10)
O80.0375 (13)0.0568 (16)0.165 (3)0.0165 (12)0.0103 (15)0.0163 (17)
O90.0410 (14)0.0557 (16)0.176 (3)0.0013 (12)0.0321 (16)0.0013 (18)
O100.0617 (14)0.0335 (12)0.0650 (15)0.0068 (10)0.0075 (11)0.0113 (10)
O110.0383 (13)0.0528 (14)0.120 (2)0.0063 (10)0.0119 (13)0.0102 (14)
O120.122 (2)0.091 (2)0.089 (2)0.0606 (19)0.0448 (19)0.0001 (16)
O130.0726 (17)0.0431 (14)0.101 (2)0.0219 (12)0.0229 (14)0.0149 (14)
O140.0399 (11)0.0373 (12)0.0764 (16)0.0041 (9)0.0136 (10)0.0151 (11)
Geometric parameters (Å, º) top
C1—O71.256 (3)C17—N71.328 (4)
C1—C21.429 (4)C17—H170.9300
C1—C61.431 (4)C18—H18A0.9600
C2—C31.371 (4)C18—H18B0.9600
C2—N11.441 (3)C18—H18C0.9600
C3—C41.367 (4)C19—N81.334 (4)
C3—H30.9300C19—C201.369 (4)
C4—C51.385 (4)C19—C241.475 (4)
C4—N21.441 (3)C20—C211.358 (5)
C5—C61.353 (4)C20—H200.9300
C5—H50.9300C21—C221.366 (5)
C6—N31.459 (3)C21—H210.9300
C7—O141.244 (3)C22—C231.348 (5)
C7—C121.437 (4)C22—H220.9300
C7—C81.446 (4)C23—N81.325 (4)
C8—C91.348 (4)C23—H230.9300
C8—N61.455 (4)C24—H24A0.9600
C9—C101.382 (4)C24—H24B0.9600
C9—H90.9300C24—H24C0.9600
C10—C111.370 (4)N1—O11.196 (3)
C10—N51.438 (3)N1—O21.206 (3)
C11—C121.365 (4)N2—O31.213 (3)
C11—H110.9300N2—O41.222 (3)
C12—N41.446 (3)N3—O51.193 (3)
C13—N71.337 (4)N3—O61.195 (3)
C13—C141.377 (4)N4—O91.200 (3)
C13—C181.478 (5)N4—O81.215 (3)
C14—C151.351 (5)N5—O101.222 (3)
C14—H140.9300N5—O111.225 (3)
C15—C161.358 (5)N6—O131.198 (3)
C15—H150.9300N6—O121.213 (3)
C16—C171.356 (5)N7—H7A0.95 (4)
C16—H160.9300N8—H8A0.94 (4)
O7—C1—C2127.2 (2)C13—C18—H18A109.5
O7—C1—C6121.0 (3)C13—C18—H18B109.5
C2—C1—C6111.7 (2)H18A—C18—H18B109.5
C3—C2—C1123.7 (2)C13—C18—H18C109.5
C3—C2—N1116.3 (3)H18A—C18—H18C109.5
C1—C2—N1120.0 (2)H18B—C18—H18C109.5
C4—C3—C2119.5 (3)N8—C19—C20117.5 (3)
C4—C3—H3120.2N8—C19—C24118.3 (3)
C2—C3—H3120.2C20—C19—C24124.2 (3)
C3—C4—C5121.4 (2)C21—C20—C19120.5 (3)
C3—C4—N2119.0 (2)C21—C20—H20119.8
C5—C4—N2119.5 (2)C19—C20—H20119.8
C6—C5—C4117.6 (2)C20—C21—C22120.0 (3)
C6—C5—H5121.2C20—C21—H21120.0
C4—C5—H5121.2C22—C21—H21120.0
C5—C6—C1126.0 (3)C23—C22—C21118.6 (3)
C5—C6—N3118.6 (2)C23—C22—H22120.7
C1—C6—N3115.4 (2)C21—C22—H22120.7
O14—C7—C12126.6 (2)N8—C23—C22120.4 (3)
O14—C7—C8122.2 (2)N8—C23—H23119.8
C12—C7—C8111.0 (2)C22—C23—H23119.8
C9—C8—C7125.3 (2)C19—C24—H24A109.5
C9—C8—N6117.4 (2)C19—C24—H24B109.5
C7—C8—N6117.3 (2)H24A—C24—H24B109.5
C8—C9—C10119.0 (2)C19—C24—H24C109.5
C8—C9—H9120.5H24A—C24—H24C109.5
C10—C9—H9120.5H24B—C24—H24C109.5
C11—C10—C9120.7 (2)O1—N1—O2120.9 (3)
C11—C10—N5119.2 (2)O1—N1—C2120.3 (3)
C9—C10—N5120.1 (2)O2—N1—C2118.9 (3)
C12—C11—C10119.6 (3)O3—N2—O4122.7 (2)
C12—C11—H11120.2O3—N2—C4118.2 (2)
C10—C11—H11120.2O4—N2—C4119.1 (2)
C11—C12—C7124.4 (2)O5—N3—O6122.5 (3)
C11—C12—N4116.0 (2)O5—N3—C6117.9 (3)
C7—C12—N4119.6 (2)O6—N3—C6119.6 (3)
N7—C13—C14117.2 (3)O9—N4—O8121.5 (3)
N7—C13—C18117.6 (3)O9—N4—C12120.1 (3)
C14—C13—C18125.2 (3)O8—N4—C12118.4 (3)
C15—C14—C13120.7 (3)O10—N5—O11122.8 (2)
C15—C14—H14119.7O10—N5—C10119.1 (2)
C13—C14—H14119.7O11—N5—C10118.1 (2)
C14—C15—C16120.4 (3)O13—N6—O12123.8 (3)
C14—C15—H15119.8O13—N6—C8119.2 (3)
C16—C15—H15119.8O12—N6—C8116.9 (3)
C17—C16—C15118.3 (3)C17—N7—C13122.7 (3)
C17—C16—H16120.8C17—N7—H7A119 (2)
C15—C16—H16120.8C13—N7—H7A118 (2)
N7—C17—C16120.6 (3)C23—N8—C19123.0 (3)
N7—C17—H17119.7C23—N8—H8A116 (2)
C16—C17—H17119.7C19—N8—H8A121 (2)
O7—C1—C2—C3178.5 (3)C15—C16—C17—N70.2 (5)
C6—C1—C2—C31.6 (4)N8—C19—C20—C210.7 (5)
O7—C1—C2—N11.0 (5)C24—C19—C20—C21178.5 (3)
C6—C1—C2—N1175.8 (3)C19—C20—C21—C220.2 (5)
C1—C2—C3—C40.8 (5)C20—C21—C22—C230.8 (5)
N1—C2—C3—C4178.3 (3)C21—C22—C23—N80.5 (5)
C2—C3—C4—C52.9 (4)C3—C2—N1—O1160.5 (4)
C2—C3—C4—N2179.9 (3)C1—C2—N1—O121.9 (5)
C3—C4—C5—C62.4 (4)C3—C2—N1—O220.0 (5)
N2—C4—C5—C6179.6 (2)C1—C2—N1—O2157.6 (3)
C4—C5—C6—C10.3 (4)C3—C4—N2—O3176.7 (3)
C4—C5—C6—N3177.2 (2)C5—C4—N2—O36.0 (4)
O7—C1—C6—C5179.2 (3)C3—C4—N2—O43.7 (4)
C2—C1—C6—C52.1 (4)C5—C4—N2—O4173.6 (3)
O7—C1—C6—N31.6 (4)C5—C6—N3—O579.3 (4)
C2—C1—C6—N3175.5 (2)C1—C6—N3—O598.5 (3)
O14—C7—C8—C9176.3 (3)C5—C6—N3—O6103.1 (3)
C12—C7—C8—C90.1 (4)C1—C6—N3—O679.1 (3)
O14—C7—C8—N61.4 (4)C11—C12—N4—O9156.7 (3)
C12—C7—C8—N6177.6 (2)C7—C12—N4—O925.7 (4)
C7—C8—C9—C100.2 (4)C11—C12—N4—O822.4 (4)
N6—C8—C9—C10177.9 (3)C7—C12—N4—O8155.2 (3)
C8—C9—C10—C111.0 (4)C11—C10—N5—O101.1 (4)
C8—C9—C10—N5178.8 (3)C9—C10—N5—O10176.7 (3)
C9—C10—C11—C121.4 (4)C11—C10—N5—O11179.2 (3)
N5—C10—C11—C12179.2 (2)C9—C10—N5—O111.4 (4)
C10—C11—C12—C71.1 (4)C9—C8—N6—O13126.6 (3)
C10—C11—C12—N4178.6 (3)C7—C8—N6—O1355.5 (4)
O14—C7—C12—C11175.7 (3)C9—C8—N6—O1251.1 (4)
C8—C7—C12—C110.3 (4)C7—C8—N6—O12126.8 (3)
O14—C7—C12—N41.7 (4)C16—C17—N7—C131.6 (5)
C8—C7—C12—N4177.8 (2)C14—C13—N7—C172.4 (4)
N7—C13—C14—C151.4 (5)C18—C13—N7—C17177.0 (3)
C18—C13—C14—C15177.9 (3)C22—C23—N8—C190.4 (5)
C13—C14—C15—C160.2 (5)C20—C19—N8—C231.0 (4)
C14—C15—C16—C171.1 (5)C24—C19—N8—C23178.2 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N7—H7A···O90.95 (4)2.28 (4)2.813 (4)114 (3)
N7—H7A···O140.95 (4)1.76 (4)2.678 (3)160 (3)
N8—H8A···O10.94 (4)2.35 (4)2.894 (4)117 (3)
N8—H8A···O70.94 (4)1.76 (4)2.660 (3)158 (4)
C5—H5···O2i0.932.503.423 (4)170
C9—H9···O8ii0.932.453.365 (3)167
C14—H14···O10iii0.932.543.456 (4)167
C17—H17···O30.932.343.078 (4)136
C18—H18B···O12i0.962.643.488 (5)148
C20—H20···O13iv0.932.553.247 (4)132
C23—H23···O8ii0.932.633.394 (4)140
C23—H23···O110.932.363.122 (4)139
Symmetry codes: (i) x+1, y, z; (ii) x1, y, z; (iii) x+1, y+1, z; (iv) x1, y1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N7—H7A···O90.95 (4)2.28 (4)2.813 (4)114 (3)
N7—H7A···O140.95 (4)1.76 (4)2.678 (3)160 (3)
N8—H8A···O10.94 (4)2.35 (4)2.894 (4)117 (3)
N8—H8A···O70.94 (4)1.76 (4)2.660 (3)158 (4)
C5—H5···O2i0.932.503.423 (4)170
C9—H9···O8ii0.932.453.365 (3)167
C14—H14···O10iii0.932.543.456 (4)167
C17—H17···O30.932.343.078 (4)136
C18—H18B···O12i0.962.643.488 (5)148
C20—H20···O13iv0.932.553.247 (4)132
C23—H23···O8ii0.932.633.394 (4)140
C23—H23···O110.932.363.122 (4)139
Symmetry codes: (i) x+1, y, z; (ii) x1, y, z; (iii) x+1, y+1, z; (iv) x1, y1, z.
 

Acknowledgements

The authors are thankful to UGC, New Delhi, for financial support and the SAIF, IIT Madras, Chennai, for the data collection.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.  CrossRef Web of Science IUCr Journals Google Scholar
First citationAnitha, K., Athimoolam, S. & Natarajan, S. (2006). Acta Cryst. C62, o567–o570.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChan, E. J., Grabowsky, S., Harrowfield, J. M., Shi, M. W., Skelton, B. W., Sobolev, A. N. & White, A. H. (2014). CrystEngComm, 16, 4508–4538.  Web of Science CSD CrossRef CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGomathi, J. & Kalaivani, D. (2015). Acta Cryst. E71, 1196–1198.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds