organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 2-cyclo­hexyl-1,3-thia­zolo[4,5-b]pyridine

aCornea Research Chair, Department of Optometry, College of Applied Medical Sciences, King Saud University, PO Box 10219, Riyadh 11433, Saudi Arabia, bSchool of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, Wales, and cCriminal Evidence, Ministry of Interior, Riyadh 11632, PO Box 86985, Saudi Arabia
*Correspondence e-mail: gelhiti@ksu.edu.sa, kariukib@cardiff.ac.uk

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 9 October 2015; accepted 10 October 2015; online 17 October 2015)

In the title compound, C12H14N2S, the cyclo­hexane ring adopts a chair conformation with the exocyclic C—C bond in an equatorial orientation. The mean plane through the cyclo­hexane ring (all atoms) is twisted from the thia­zolo­pyridine ring system (r.m.s. deviation = 0.013 Å) by 39.57 (6)°. In the crystal, mol­ecules form (100) sheets, although there are no specific directional inter­actions between them. The crystal stucture was refined as a two-component perfect twin.

1. Related literature

For background to the uses of thia­zolo­pyridine derivatives, see: Leysen et al. (1984[Leysen, D. C., Haemers, A. & Bollaert, W. (1984). J. Heterocycl. Chem. 21, 1361-1366.]). For a related structure reported by us and further references, see: El-Hiti et al. (2015[El-Hiti, G. A., Smith, K., Hegazy, A. S., Alanazi, S. A. & Kariuki, B. M. (2015). Acta Cryst. E71, o272-o273.]). For the first report of this compound and spectroscopic data, see: Smith et al. (1995[Smith, K., Anderson, D. & Matthews, I. (1995). Sulfur Lett. 18, 79-95.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C12H14N2S

  • Mr = 218.31

  • Monoclinic, P 21 /n

  • a = 7.8884 (5) Å

  • b = 11.8079 (7) Å

  • c = 12.2134 (6) Å

  • β = 100.589 (6)°

  • V = 1118.25 (11) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 2.29 mm−1

  • T = 293 K

  • 0.27 × 0.17 × 0.14 mm

2.2. Data collection

  • Agilent SuperNova Dual Source diffractometer with an Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2014[Agilent (2014). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.592, Tmax = 1.000

  • 7328 measured reflections

  • 3913 independent reflections

  • 3429 reflections with I > 2σ(I)

  • Rint = 0.015

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.063

  • wR(F2) = 0.180

  • S = 1.03

  • 3913 reflections

  • 136 parameters

  • H-atom parameters constrained

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.29 e Å−3

Data collection: CrysAlis PRO (Agilent, 2014[Agilent (2014). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and CHEMDRAW Ultra (Cambridge Soft, 2001[Cambridge Soft (2001). CHEMDRAW Ultra. Cambridge Soft Corporation, Cambridge, Massachusetts, USA.]).

Supporting information


Chemical context top

Thia­zolo­pyridine derivatives have been reported to exhibit inter­esting biological activities (Leysen et al., 1984). As part of our ongoing studies in this area (El-Hiti et al., 2015), we now report the structure of the title compound.

Structural commentary top

The asymmetric unit comprises one molecule of C12H14N2S (Fig. 1). The cyclo­hexane ring is in the chair conformation in the molecule. The least squares plane through the cyclo­hexane ring is twisted from the thia­zolo­pyridine group by 39.57 (6)°. In the crystal structure, the molecular axes are aligned along [001] (Fig. 2).

Synthesis and crystallization top

2-Cyclo­hexyl-1,3-thia­zolo[4,5-b]pyridine was obtained in qu­anti­tative yield from acid hydrolysis (HCl, 5 M) of 3-(diiso­propyl­amino­thio­carbonyl­thio)-2-(cyclo­hexyl­carbonyl­amino)­pyridine under reflux for 5 h (Smith et al., 1995). The compound may also be synthesized in 94% yield from acid hydrolysis (5 M HCl, 5 h reflux) of 3-(diiso­propyl­amino­thio­carbonyl­thio)-2-(bis(cyclo­hexyl­carbony)lamino) pyridine (Smith et al., 1995). Crystallization of the crude product from di­ethyl ether gave the title compound as colourless crystals. Spectroscopic and analytical data are consistent with those reported (Smith et al., 1995).

Refinement details top

The data were twinned and HKLF5 in Shelxl 2013 was used. H atoms were positioned geometrically and refined using a riding model with Uiso(H) constrained to be 1.2 times Ueq for the atom it is bonded to.

Related literature top

For background to the uses of thiazolopyridine derivatives, see: Leysen et al. (1984). For a related structure reported by us and further references, see: El-Hiti et al. (2015). For the first report of this compound and spectroscopic data, see: Smith et al. (1995).

Structure description top

Thia­zolo­pyridine derivatives have been reported to exhibit inter­esting biological activities (Leysen et al., 1984). As part of our ongoing studies in this area (El-Hiti et al., 2015), we now report the structure of the title compound.

The asymmetric unit comprises one molecule of C12H14N2S (Fig. 1). The cyclo­hexane ring is in the chair conformation in the molecule. The least squares plane through the cyclo­hexane ring is twisted from the thia­zolo­pyridine group by 39.57 (6)°. In the crystal structure, the molecular axes are aligned along [001] (Fig. 2).

For background to the uses of thiazolopyridine derivatives, see: Leysen et al. (1984). For a related structure reported by us and further references, see: El-Hiti et al. (2015). For the first report of this compound and spectroscopic data, see: Smith et al. (1995).

Synthesis and crystallization top

2-Cyclo­hexyl-1,3-thia­zolo[4,5-b]pyridine was obtained in qu­anti­tative yield from acid hydrolysis (HCl, 5 M) of 3-(diiso­propyl­amino­thio­carbonyl­thio)-2-(cyclo­hexyl­carbonyl­amino)­pyridine under reflux for 5 h (Smith et al., 1995). The compound may also be synthesized in 94% yield from acid hydrolysis (5 M HCl, 5 h reflux) of 3-(diiso­propyl­amino­thio­carbonyl­thio)-2-(bis(cyclo­hexyl­carbony)lamino) pyridine (Smith et al., 1995). Crystallization of the crude product from di­ethyl ether gave the title compound as colourless crystals. Spectroscopic and analytical data are consistent with those reported (Smith et al., 1995).

Refinement details top

The data were twinned and HKLF5 in Shelxl 2013 was used. H atoms were positioned geometrically and refined using a riding model with Uiso(H) constrained to be 1.2 times Ueq for the atom it is bonded to.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2014); cell refinement: CrysAlis PRO (Agilent, 2014); data reduction: CrysAlis PRO (Agilent, 2014); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012) and CHEMDRAW Ultra (Cambridge Soft, 2001).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of C12H14N2S with 50% probability displacement ellipsoids for nonhydrogen atoms.
[Figure 2] Fig. 2. Crystal packing viewed along the a axis.
2-Cyclohexyl-1,3-thiazolo[4,5-b]pyridine top
Crystal data top
C12H14N2SF(000) = 464
Mr = 218.31Dx = 1.297 Mg m3
Monoclinic, P21/nCu Kα radiation, λ = 1.54184 Å
a = 7.8884 (5) ÅCell parameters from 1721 reflections
b = 11.8079 (7) Åθ = 6.2–73.9°
c = 12.2134 (6) ŵ = 2.29 mm1
β = 100.589 (6)°T = 293 K
V = 1118.25 (11) Å3Needle, colourless
Z = 40.27 × 0.17 × 0.14 mm
Data collection top
Agilent SuperNova Dual Source
diffractometer with an Atlas detector
3429 reflections with I > 2σ(I)
ω scansRint = 0.015
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2014)
θmax = 74.2°, θmin = 5.3°
Tmin = 0.592, Tmax = 1.000h = 99
7328 measured reflectionsk = 1414
3913 independent reflectionsl = 1515
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.063H-atom parameters constrained
wR(F2) = 0.180 w = 1/[σ2(Fo2) + (0.1345P)2 + 0.113P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
3913 reflectionsΔρmax = 0.30 e Å3
136 parametersΔρmin = 0.29 e Å3
Crystal data top
C12H14N2SV = 1118.25 (11) Å3
Mr = 218.31Z = 4
Monoclinic, P21/nCu Kα radiation
a = 7.8884 (5) ŵ = 2.29 mm1
b = 11.8079 (7) ÅT = 293 K
c = 12.2134 (6) Å0.27 × 0.17 × 0.14 mm
β = 100.589 (6)°
Data collection top
Agilent SuperNova Dual Source
diffractometer with an Atlas detector
3913 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2014)
3429 reflections with I > 2σ(I)
Tmin = 0.592, Tmax = 1.000Rint = 0.015
7328 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0630 restraints
wR(F2) = 0.180H-atom parameters constrained
S = 1.03Δρmax = 0.30 e Å3
3913 reflectionsΔρmin = 0.29 e Å3
136 parameters
Special details top

Experimental. Absorption correction: CrysAlisPro, Agilent Technologies, Version 1.171.37.33 (release 27-03-2014 CrysAlis171 .NET) (compiled Mar 27 2014,17:12:48) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refined as a 2-component perfect twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.2814 (3)0.12366 (19)0.54649 (18)0.0467 (5)
C20.2459 (3)0.20807 (19)0.72356 (18)0.0467 (5)
C30.2223 (4)0.2609 (2)0.8209 (2)0.0561 (6)
H30.18180.33490.82120.067*
C40.2619 (4)0.1982 (3)0.9169 (2)0.0634 (7)
H40.24610.22910.98440.076*
C50.3249 (4)0.0897 (3)0.9136 (2)0.0659 (7)
H50.35050.05010.98050.079*
C60.3115 (3)0.0972 (2)0.72741 (18)0.0472 (5)
C70.2823 (3)0.0976 (2)0.42621 (18)0.0501 (5)
H70.39940.07410.42020.060*
C80.1612 (4)0.0018 (2)0.3883 (2)0.0616 (7)
H8A0.19720.06710.43500.074*
H8B0.04500.01810.39670.074*
C90.1620 (4)0.0321 (2)0.2671 (2)0.0654 (7)
H9A0.27580.05880.26000.079*
H9B0.08050.09290.24430.079*
C100.1149 (4)0.0680 (3)0.1922 (2)0.0706 (8)
H10A0.00300.09010.19370.085*
H10B0.12180.04710.11630.085*
C110.2341 (5)0.1671 (3)0.2281 (2)0.0856 (11)
H11A0.19640.23200.18110.103*
H11B0.35010.14780.21880.103*
C120.2352 (5)0.1982 (2)0.3501 (2)0.0709 (8)
H12A0.31760.25870.37230.085*
H12B0.12200.22570.35770.085*
N10.3309 (3)0.05196 (17)0.62604 (16)0.0529 (5)
N20.3519 (3)0.0371 (2)0.82184 (17)0.0616 (6)
S10.20709 (8)0.25440 (5)0.58736 (5)0.0545 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0509 (11)0.0426 (11)0.0457 (11)0.0033 (9)0.0065 (9)0.0001 (8)
C20.0516 (11)0.0423 (11)0.0436 (11)0.0036 (9)0.0021 (8)0.0008 (9)
C30.0664 (15)0.0505 (13)0.0496 (13)0.0023 (11)0.0058 (11)0.0090 (10)
C40.0767 (17)0.0704 (18)0.0419 (12)0.0073 (13)0.0076 (11)0.0079 (11)
C50.0794 (17)0.0733 (18)0.0425 (13)0.0014 (13)0.0047 (11)0.0092 (11)
C60.0507 (12)0.0475 (12)0.0425 (11)0.0013 (9)0.0060 (8)0.0012 (9)
C70.0547 (13)0.0510 (13)0.0453 (11)0.0017 (9)0.0107 (9)0.0023 (9)
C80.0855 (18)0.0504 (13)0.0502 (13)0.0138 (13)0.0160 (12)0.0044 (10)
C90.0846 (18)0.0552 (15)0.0563 (15)0.0118 (13)0.0121 (12)0.0137 (11)
C100.0842 (19)0.0764 (19)0.0473 (13)0.0011 (15)0.0020 (12)0.0089 (13)
C110.145 (3)0.0712 (19)0.0416 (13)0.030 (2)0.0189 (15)0.0008 (12)
C120.116 (2)0.0519 (15)0.0442 (13)0.0148 (15)0.0133 (13)0.0002 (11)
N10.0672 (12)0.0472 (10)0.0450 (10)0.0074 (9)0.0121 (8)0.0036 (8)
N20.0795 (14)0.0581 (13)0.0467 (11)0.0120 (11)0.0104 (9)0.0103 (9)
S10.0753 (5)0.0424 (4)0.0425 (4)0.0053 (2)0.0017 (3)0.0013 (2)
Geometric parameters (Å, º) top
C1—N11.294 (3)C7—H70.9800
C1—C71.502 (3)C8—C91.524 (4)
C1—S11.756 (2)C8—H8A0.9700
C2—C31.385 (3)C8—H8B0.9700
C2—C61.405 (3)C9—C101.499 (4)
C2—S11.724 (2)C9—H9A0.9700
C3—C41.374 (4)C9—H9B0.9700
C3—H30.9300C10—C111.515 (4)
C4—C51.378 (4)C10—H10A0.9700
C4—H40.9300C10—H10B0.9700
C5—N21.332 (3)C11—C121.534 (4)
C5—H50.9300C11—H11A0.9700
C6—N21.342 (3)C11—H11B0.9700
C6—N11.383 (3)C12—H12A0.9700
C7—C121.512 (4)C12—H12B0.9700
C7—C81.530 (3)
N1—C1—C7123.0 (2)H8A—C8—H8B108.0
N1—C1—S1115.61 (17)C10—C9—C8111.3 (2)
C7—C1—S1121.33 (17)C10—C9—H9A109.4
C3—C2—C6119.8 (2)C8—C9—H9A109.4
C3—C2—S1131.07 (19)C10—C9—H9B109.4
C6—C2—S1109.08 (17)C8—C9—H9B109.4
C4—C3—C2116.4 (2)H9A—C9—H9B108.0
C4—C3—H3121.8C9—C10—C11111.2 (2)
C2—C3—H3121.8C9—C10—H10A109.4
C3—C4—C5120.2 (2)C11—C10—H10A109.4
C3—C4—H4119.9C9—C10—H10B109.4
C5—C4—H4119.9C11—C10—H10B109.4
N2—C5—C4124.9 (2)H10A—C10—H10B108.0
N2—C5—H5117.6C10—C11—C12111.0 (3)
C4—C5—H5117.6C10—C11—H11A109.4
N2—C6—N1121.2 (2)C12—C11—H11A109.4
N2—C6—C2123.3 (2)C10—C11—H11B109.4
N1—C6—C2115.5 (2)C12—C11—H11B109.4
C1—C7—C12113.3 (2)H11A—C11—H11B108.0
C1—C7—C8109.77 (19)C7—C12—C11111.5 (3)
C12—C7—C8110.3 (2)C7—C12—H12A109.3
C1—C7—H7107.8C11—C12—H12A109.3
C12—C7—H7107.8C7—C12—H12B109.3
C8—C7—H7107.8C11—C12—H12B109.3
C9—C8—C7111.1 (2)H12A—C12—H12B108.0
C9—C8—H8A109.4C1—N1—C6110.6 (2)
C7—C8—H8A109.4C5—N2—C6115.3 (2)
C9—C8—H8B109.4C2—S1—C189.19 (10)
C7—C8—H8B109.4

Experimental details

Crystal data
Chemical formulaC12H14N2S
Mr218.31
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)7.8884 (5), 11.8079 (7), 12.2134 (6)
β (°) 100.589 (6)
V3)1118.25 (11)
Z4
Radiation typeCu Kα
µ (mm1)2.29
Crystal size (mm)0.27 × 0.17 × 0.14
Data collection
DiffractometerAgilent SuperNova Dual Source
diffractometer with an Atlas detector
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2014)
Tmin, Tmax0.592, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
7328, 3913, 3429
Rint0.015
(sin θ/λ)max1)0.624
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.063, 0.180, 1.03
No. of reflections3913
No. of parameters136
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.30, 0.29

Computer programs: CrysAlis PRO (Agilent, 2014), SHELXS97 (Sheldrick, 2008), SHELXL2013 (Sheldrick, 2015), ORTEP-3 for Windows (Farrugia, 2012), WinGX (Farrugia, 2012) and CHEMDRAW Ultra (Cambridge Soft, 2001).

 

Acknowledgements

The authors extend their appreciation to the Criminal Evidence Department, Ministry of Inter­ior, Riyadh, Saudi Arabia, for funding this research and to Cardiff University for continued support.

References

First citationAgilent (2014). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationCambridge Soft (2001). CHEMDRAW Ultra. Cambridge Soft Corporation, Cambridge, Massachusetts, USA.  Google Scholar
First citationEl-Hiti, G. A., Smith, K., Hegazy, A. S., Alanazi, S. A. & Kariuki, B. M. (2015). Acta Cryst. E71, o272–o273.  CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationLeysen, D. C., Haemers, A. & Bollaert, W. (1984). J. Heterocycl. Chem. 21, 1361–1366.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSmith, K., Anderson, D. & Matthews, I. (1995). Sulfur Lett. 18, 79–95.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds