organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 2-fluoro-N-(1,3-thia­zol-2-yl)benzamide

aDepartamento de Química – Facultad de Ciencias Naturales y Exactas, Universidad del Valle, Apartado 25360, Santiago de Cali, Colombia, bDepartamento de Química, Universidad de los Andes, Carrera 1 No 18A12, Bogotá, Colombia, cFacultad de Química Ambiental, Universidad Santo Tomás, Campus Universitario Floridablanca, Santander, Colombia, and dEscuela de Química, Facultad de Ciencias, Universidad Industrial de Santander, Apartado 678, Bucaramanga, Colombia
*Correspondence e-mail: rodimo26@yahoo.es

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 9 October 2015; accepted 11 October 2015; online 24 October 2015)

In the title compound, C10H7FN2OS, the mean plane of the central amide fragment (r.m.s. deviation = 0.048 Å) makes dihedral angles of 35.28 (8) and 10.14 (12)° with those of the fluoro­benzene and thia­zole rings, respectively. The thia­zole S and amide O atoms lie to the same side of the mol­ecule. In the crystal, pairs of N—H⋯N hydrogen bonds connect the mol­ecules into inversion dimers with R22(8) motifs, and weak C—H⋯O inter­actions connect the mol­ecules into C(6) [001] chains. Together, the N—H⋯N and C—H⋯O hydrogen bonds generate (100) sheets.

1. Related literature

For thia­zole derivatives as inhibitors for cancer cell growth, see: Schade et al. (2008[Schade, A. E., Schieven, G. L., Townsend, R., Jankowska, A. M., Susulic, V., Zhang, R., Szpurka, H. & Maciejewski, J. P. (2008). Blood. 111, 1366-1377.]). For carboxamides with synthetic and biological inter­est, see: Moreno-Fuquen et al. (2014a[Moreno-Fuquen, R., Sánchez, D. F. & Ellena, J. (2014a). Acta Cryst. E70, o1252.],b[Moreno-Fuquen, R., Azcárate, A. & Kennedy, A. R. (2014b). Acta Cryst. E70, o613.]). For related structures, see: Zonouzi et al. (2009[Zonouzi, A., Mirzazadeh, R., Rahmani, H. & Ng, S. W. (2009). Acta Cryst. E65, o817.]); Saeed et al. (2010[Saeed, S., Rashid, N. & Wong, W.-T. (2010). Acta Cryst. E66, o3078.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C10H7FN2OS

  • Mr = 222.24

  • Monoclinic, P 21 /c

  • a = 12.2171 (8) Å

  • b = 5.0741 (3) Å

  • c = 15.7078 (10) Å

  • β = 98.820 (6)°

  • V = 962.22 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.32 mm−1

  • T = 295 K

  • 0.40 × 0.17 × 0.08 mm

2.2. Data collection

  • Rigaku Pilatus 200K diffractometer

  • Absorption correction: multi-scan CrystalClear; Rigaku, 2008[Rigaku (2008). CrystalClear. Rigaku Corporation, Tokyo, Japan.] Tmin = 0.701, Tmax = 1.000

  • 8722 measured reflections

  • 2169 independent reflections

  • 1556 reflections with I > 2σ(I)

  • Rint = 0.060

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.098

  • S = 0.89

  • 2169 reflections

  • 136 parameters

  • H-atom parameters constrained

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.30 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯N2i 0.86 2.11 2.944 (2) 165
C3—H3⋯O1ii 0.93 2.62 3.474 (2) 153
Symmetry codes: (i) -x, -y+1, -z+2; (ii) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].

Data collection: CrystalClear (Rigaku, 2008[Rigaku (2008). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS2014 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Comment top

Continuing with our current studies on the synthesis of new N-heterocyclic carboxamide derivatives of synthetic and biological interest (Moreno-Fuquen et al., 2014a, Moreno-Fuquen et al., 2014b), the title compound 2-fluoro-N-(thiazol-2-yl)benzamide (I) was obtained by direct reaction of 2-fluorobenzoyl chloride and 2-aminothiazole in the presence of triethylamine as base under mild conditions. Structures of similar molecules were compared with (I), i.e. N-(1,3-thiazol-2-yl)benzamide (Zonouzi et al., 2009) and 2,4-dichloro-N-(1,3-thiazol-2-yl)benzamide (Saeed et al., 2010). The molecular structure of (I) is shown in Fig. 1. The central amide moiety, C8-N1-C7(-O1)-C1, is essentially planar (r.m.s. deviation for all non-H atoms = 0.048 Å) and it forms dihedral angles of 35.28 (8)° with the C1-C6 ring and 10.14 (12)° with the thiazole ring. The C=O bond is anti to the o-F1 substituent in the aromatic ring. The N-H and C=O bonds in the central amide group are also anti to each other. Comparing (I) with the two aforementioned similar structures, reveals that significant differences in bond lengths and bond angles are not observed. In the crystal structure, dimer formation is observed. Molecules of (I) are linked by hydrogen bonding of moderate strength. The N-H group of the central amide moiety, in the molecule at (x,y,z) acts as hydrogen bond donor to N2 atom of the thiazole molecule at (-x,-y+1,-z+2), (see Table 1). In turn these dimers are connected by weak hydrogen bonds: The C-H group in the molecule at (x,y,z) acts as hydrogen bond donor to carbonyl O1 atom in the molecule at (x,-y+3/2,z+1/2), forming chains C(6) of molecules along [001], see Fig. 2.

Related literature top

For thiazole derivatives as inhibitors for cancer cell growth, see: Schade et al. (2008). For carboxamides with synthetic and biological interest, see: Moreno-Fuquen et al. (2014a,b). For related structures, see: Zonouzi et al. (2009); Saeed et al. (2010).

Experimental top

2-Fluorobenzoyl chloride (143 µl, 1.2 mmol) was added dropwise to a solution of 2-aminothiazole (100 mg, 1.0 mmol) and triethylamine (278 µl, 2.0 mmol) in dichloromethane (3.0 mL). The mixture was stirred at room temperature for 4 h until the starting amine was not longer detected by thin-layer chromatography. After solvent was removed under reduced pressure, the resulting solid was dissolved in H2O (3.0 ml) and extracted with EtOAc (2 × 3.0 ml). The combined organic layers were dried with MgSO4 anhydrous and the solvent was removed under reduced pressure to afford the pure amide product. Colourless plates of (I) were grown by slow evaporation, at room temperature and in air, from a solution in methanol [61% yield, m.p. 443 (1) K].

Refinement top

All H-atoms were located in difference Fourier maps and were positioned geometrically [C—H = 0.93 Å for aromatic and N—H= 0.86 Å] and were refined using a riding-model approximation with Uiso(H) constrained to 1.2 times Ueq of the respective parent atom.

Structure description top

Continuing with our current studies on the synthesis of new N-heterocyclic carboxamide derivatives of synthetic and biological interest (Moreno-Fuquen et al., 2014a, Moreno-Fuquen et al., 2014b), the title compound 2-fluoro-N-(thiazol-2-yl)benzamide (I) was obtained by direct reaction of 2-fluorobenzoyl chloride and 2-aminothiazole in the presence of triethylamine as base under mild conditions. Structures of similar molecules were compared with (I), i.e. N-(1,3-thiazol-2-yl)benzamide (Zonouzi et al., 2009) and 2,4-dichloro-N-(1,3-thiazol-2-yl)benzamide (Saeed et al., 2010). The molecular structure of (I) is shown in Fig. 1. The central amide moiety, C8-N1-C7(-O1)-C1, is essentially planar (r.m.s. deviation for all non-H atoms = 0.048 Å) and it forms dihedral angles of 35.28 (8)° with the C1-C6 ring and 10.14 (12)° with the thiazole ring. The C=O bond is anti to the o-F1 substituent in the aromatic ring. The N-H and C=O bonds in the central amide group are also anti to each other. Comparing (I) with the two aforementioned similar structures, reveals that significant differences in bond lengths and bond angles are not observed. In the crystal structure, dimer formation is observed. Molecules of (I) are linked by hydrogen bonding of moderate strength. The N-H group of the central amide moiety, in the molecule at (x,y,z) acts as hydrogen bond donor to N2 atom of the thiazole molecule at (-x,-y+1,-z+2), (see Table 1). In turn these dimers are connected by weak hydrogen bonds: The C-H group in the molecule at (x,y,z) acts as hydrogen bond donor to carbonyl O1 atom in the molecule at (x,-y+3/2,z+1/2), forming chains C(6) of molecules along [001], see Fig. 2.

For thiazole derivatives as inhibitors for cancer cell growth, see: Schade et al. (2008). For carboxamides with synthetic and biological interest, see: Moreno-Fuquen et al. (2014a,b). For related structures, see: Zonouzi et al. (2009); Saeed et al. (2010).

Computing details top

Data collection: CrystalClear (Rigaku, 2008); cell refinement: CrystalClear (Rigaku, 2008); data reduction: CrystalClear (Rigaku, 2008); program(s) used to solve structure: SHELXS2014 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2006); software used to prepare material for publication: WinGX (Farrugia, 2012).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. Part of the crystal structure of (I), showing the formation of hydrogen-bonded C(13) chains parallel to [311] [Symmetry code: (i) -x - 1/2, y - 1/2, -z + 1/2].
(I) top
Crystal data top
C10H7FN2OSDx = 1.534 Mg m3
Mr = 222.24Melting point: 443(1) K
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 12.2171 (8) ÅCell parameters from 8732 reflections
b = 5.0741 (3) Åθ = 3.3–27.5°
c = 15.7078 (10) ŵ = 0.32 mm1
β = 98.820 (6)°T = 295 K
V = 962.22 (11) Å3Plate, colourless
Z = 40.40 × 0.17 × 0.08 mm
F(000) = 456
Data collection top
Rigaku Pilatus 200K
diffractometer
2169 independent reflections
Radiation source: Sealed tube_Mo1556 reflections with I > 2σ(I)
Graphite Monochromator monochromatorRint = 0.060
profile data from ω–scansθmax = 27.5°, θmin = 3.3°
Absorption correction: multi-scan
CrystalClear; Rigaku, 2008
h = 1515
Tmin = 0.701, Tmax = 1.000k = 66
8722 measured reflectionsl = 2020
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.098H-atom parameters constrained
S = 0.89 w = 1/[σ2(Fo2) + (0.0481P)2]
where P = (Fo2 + 2Fc2)/3
2169 reflections(Δ/σ)max < 0.001
136 parametersΔρmax = 0.22 e Å3
0 restraintsΔρmin = 0.30 e Å3
Crystal data top
C10H7FN2OSV = 962.22 (11) Å3
Mr = 222.24Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.2171 (8) ŵ = 0.32 mm1
b = 5.0741 (3) ÅT = 295 K
c = 15.7078 (10) Å0.40 × 0.17 × 0.08 mm
β = 98.820 (6)°
Data collection top
Rigaku Pilatus 200K
diffractometer
2169 independent reflections
Absorption correction: multi-scan
CrystalClear; Rigaku, 2008
1556 reflections with I > 2σ(I)
Tmin = 0.701, Tmax = 1.000Rint = 0.060
8722 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.098H-atom parameters constrained
S = 0.89Δρmax = 0.22 e Å3
2169 reflectionsΔρmin = 0.30 e Å3
136 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.18106 (4)0.17354 (10)0.85154 (3)0.04570 (16)
F10.21170 (8)0.5331 (2)1.16166 (6)0.0518 (3)
C10.30360 (13)0.7730 (4)1.06395 (10)0.0358 (4)
O10.31999 (9)0.5432 (3)0.93486 (8)0.0496 (3)
C80.11054 (13)0.3206 (3)0.92625 (10)0.0343 (4)
N10.15631 (11)0.5105 (3)0.98371 (9)0.0383 (3)
H10.11560.57581.01850.046*
C30.32638 (15)0.8821 (4)1.21586 (12)0.0479 (5)
H30.30930.84921.27060.057*
N20.01031 (11)0.2339 (3)0.92704 (9)0.0398 (3)
C20.28064 (13)0.7317 (4)1.14663 (11)0.0380 (4)
C50.42365 (16)1.1283 (4)1.12149 (14)0.0533 (5)
H50.47221.26351.11290.064*
C90.01271 (15)0.0323 (4)0.86792 (11)0.0432 (4)
H90.07990.05720.86040.052*
C70.26161 (13)0.6006 (4)0.98871 (10)0.0362 (4)
C100.06810 (15)0.0259 (4)0.82218 (11)0.0466 (5)
H100.06360.15650.78020.056*
C60.37735 (14)0.9737 (4)1.05305 (12)0.0442 (4)
H60.39591.00450.99870.053*
C40.39778 (16)1.0819 (4)1.20273 (14)0.0549 (5)
H40.42891.18641.24880.066*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0485 (3)0.0515 (3)0.0392 (3)0.0029 (2)0.01349 (19)0.0103 (2)
F10.0561 (6)0.0604 (8)0.0405 (6)0.0113 (6)0.0126 (5)0.0059 (5)
C10.0343 (8)0.0378 (9)0.0358 (9)0.0023 (8)0.0067 (6)0.0007 (7)
O10.0485 (7)0.0616 (9)0.0425 (7)0.0039 (7)0.0198 (6)0.0084 (6)
C80.0403 (9)0.0355 (9)0.0279 (8)0.0032 (7)0.0077 (6)0.0002 (7)
N10.0380 (7)0.0433 (9)0.0351 (7)0.0017 (7)0.0109 (6)0.0090 (6)
C30.0443 (9)0.0626 (13)0.0361 (9)0.0066 (9)0.0042 (7)0.0049 (9)
N20.0415 (8)0.0404 (8)0.0385 (8)0.0017 (7)0.0097 (6)0.0049 (7)
C20.0345 (8)0.0425 (10)0.0375 (9)0.0023 (8)0.0065 (6)0.0019 (8)
C50.0442 (10)0.0454 (12)0.0687 (14)0.0062 (9)0.0037 (9)0.0016 (10)
C90.0482 (10)0.0382 (10)0.0421 (10)0.0024 (9)0.0037 (8)0.0026 (8)
C70.0392 (8)0.0370 (10)0.0335 (9)0.0012 (8)0.0088 (7)0.0014 (7)
C100.0588 (11)0.0410 (11)0.0392 (10)0.0036 (9)0.0047 (8)0.0094 (8)
C60.0401 (9)0.0467 (11)0.0470 (10)0.0022 (8)0.0105 (8)0.0036 (9)
C40.0489 (10)0.0569 (13)0.0551 (12)0.0012 (10)0.0045 (9)0.0170 (11)
Geometric parameters (Å, º) top
S1—C101.716 (2)C3—C21.375 (2)
S1—C81.7280 (16)C3—H30.9300
F1—C21.357 (2)N2—C91.381 (2)
C1—C21.386 (2)C5—C61.380 (3)
C1—C61.388 (2)C5—C41.381 (3)
C1—C71.496 (2)C5—H50.9300
O1—C71.2223 (18)C9—C101.340 (2)
C8—N21.303 (2)C9—H90.9300
C8—N11.379 (2)C10—H100.9300
N1—C71.356 (2)C6—H60.9300
N1—H10.8600C4—H40.9300
C3—C41.373 (3)
C10—S1—C888.45 (8)C6—C5—H5120.1
C2—C1—C6117.07 (16)C4—C5—H5120.1
C2—C1—C7123.89 (16)C10—C9—N2115.65 (16)
C6—C1—C7118.82 (15)C10—C9—H9122.2
N2—C8—N1121.13 (14)N2—C9—H9122.2
N2—C8—S1115.33 (13)O1—C7—N1121.90 (16)
N1—C8—S1123.50 (12)O1—C7—C1121.34 (15)
C7—N1—C8124.02 (14)N1—C7—C1116.75 (14)
C7—N1—H1118.0C9—C10—S1110.75 (14)
C8—N1—H1118.0C9—C10—H10124.6
C4—C3—C2118.77 (18)S1—C10—H10124.6
C4—C3—H3120.6C5—C6—C1121.16 (18)
C2—C3—H3120.6C5—C6—H6119.4
C8—N2—C9109.78 (14)C1—C6—H6119.4
F1—C2—C3117.53 (15)C3—C4—C5120.35 (18)
F1—C2—C1119.71 (15)C3—C4—H4119.8
C3—C2—C1122.75 (17)C5—C4—H4119.8
C6—C5—C4119.88 (19)
C10—S1—C8—N21.98 (14)C8—N1—C7—O19.4 (3)
C10—S1—C8—N1175.93 (15)C8—N1—C7—C1170.15 (15)
N2—C8—N1—C7177.02 (16)C2—C1—C7—O1140.34 (18)
S1—C8—N1—C70.8 (2)C6—C1—C7—O134.1 (3)
N1—C8—N2—C9175.59 (15)C2—C1—C7—N139.2 (2)
S1—C8—N2—C92.38 (19)C6—C1—C7—N1146.37 (16)
C4—C3—C2—F1179.02 (16)N2—C9—C10—S10.2 (2)
C4—C3—C2—C10.0 (3)C8—S1—C10—C90.94 (14)
C6—C1—C2—F1178.05 (14)C4—C5—C6—C10.8 (3)
C7—C1—C2—F13.6 (3)C2—C1—C6—C51.3 (3)
C6—C1—C2—C30.9 (3)C7—C1—C6—C5176.13 (16)
C7—C1—C2—C3175.41 (16)C2—C3—C4—C50.6 (3)
C8—N2—C9—C101.6 (2)C6—C5—C4—C30.2 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···N2i0.862.112.944 (2)165
C3—H3···O1ii0.932.623.474 (2)153
Symmetry codes: (i) x, y+1, z+2; (ii) x, y+3/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···N2i0.862.112.944 (2)165
C3—H3···O1ii0.932.623.474 (2)153
Symmetry codes: (i) x, y+1, z+2; (ii) x, y+3/2, z+1/2.
 

Acknowledgements

RMF is grateful to the Universidad del Valle, Colombia, for partial financial support. JAH also wants to thank Universidad Industrial de Santander (UIS) and Laboratorio de Rayos X, Guatiguara, for partial financial support.

References

First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMoreno-Fuquen, R., Azcárate, A. & Kennedy, A. R. (2014b). Acta Cryst. E70, o613.  CSD CrossRef IUCr Journals Google Scholar
First citationMoreno-Fuquen, R., Sánchez, D. F. & Ellena, J. (2014a). Acta Cryst. E70, o1252.  CSD CrossRef IUCr Journals Google Scholar
First citationRigaku (2008). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSaeed, S., Rashid, N. & Wong, W.-T. (2010). Acta Cryst. E66, o3078.  CSD CrossRef IUCr Journals Google Scholar
First citationSchade, A. E., Schieven, G. L., Townsend, R., Jankowska, A. M., Susulic, V., Zhang, R., Szpurka, H. & Maciejewski, J. P. (2008). Blood. 111, 1366-1377.  CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationZonouzi, A., Mirzazadeh, R., Rahmani, H. & Ng, S. W. (2009). Acta Cryst. E65, o817.  CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds