organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 5-(furan-2-yl)-N-phenyl-1,3,4-oxa­diazol-2-amine

aDepartment of Chemistry, Banaras Hindu University, Varanasi 221 005, India, and bSchool of Studies in Chemistry, Jiwaji University, Gwalior 474 011, India
*Correspondence e-mail: manoj_vns2005@yahoo.co.in

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 10 October 2015; accepted 14 October 2015; online 24 October 2015)

The title compound, C12H9N3O2, was obtained as a cyclized oxa­diazole derivative from substituted thio­semicarbazide in the presence of manganese(II) acetate. The furan ring is disordered over two orientations, with occupancies of 0.76 (2) and 0.24 (2). The dihedral angles between the central oxa­diazole ring and the pendant phenyl ring and furan ring (major disorder component) are 3.34 (18) and 5.7 (6)°, respectively. A short intra­molecular C—H⋯O contact generates an S(6) ring. In the crystal, inversion dimers linked by pairs of N—H⋯N hydrogen bonds generate R22[8] loops. The dimers are linked by C—H⋯π and ππ inter­actions [range of centroid–centroid distances = 3.291 (2)–3.460 (8) Å], generating a three-dimensional network.

1. Related literature

For heterocyclic ligands that form metal complexes, see: Tarafder et al. (2001[Tarafder, Md. T. H., Saravanan, N., Crouse, K. A. & Ali, A. M. b. (2001). Transition Met. Chem. 26, 613-618.]); Ali & Ali (2007[Ali, S. & Ali, R. (2007). Tetrahedron Lett. 48, 1549-1551.]); Singh et al. (2007[Singh, N. K., Butcher, R. J., Tripathi, P., Srivastava, A. K. & Bharty, M. K. (2007). Acta Cryst. E63, o782-o784.]); Zhao et al. (2007[Zhao, X.-X., Ma, J.-P., Dong, Y. B., Huang, R.-Q. & Lai, T. (2007). Cryst. Growth Des. 7, 1058-1068.]); Zhang et al. (2007[Zhang, Z.-H., Tian, Y.-L. & Guo, Y.-M. (2007). Inorg. Chim. Acta, 360, 2783-2788.]); Amin et al. (2004[Amin, O. H., Al-Hayaly, L. J., Al-Jibori, S. A. & Al-Allaf, T. A. K. (2004). Polyhedron, 23, 2013-2020.]). For applications in medicine and agriculture, see: Pachhamia & Parikh (1988[Pachhamia, V. L. & Parikh, A. R. (1988). J. Indian Chem. Soc. 65, 357-361.]); Xu et al. (2002[Xu, L. Z., Jiao, K., Zhang, S. S. & Kuang, S. P. (2002). Bull. Korean. Chem. Soc. 23, 1699-1701.]). For related structures, see: Foks et al. (2002[Foks, H., Mieczkowska, J., Janowiec, M., Zwolska, Z. & Andrzejczyk, Z. (2002). Chem. Heterocycl. Compd. 38, 810-816.]); Dani et al. (2013[Dani, R. K., Bharty, M. K., Kushawaha, S. K., Paswan, S., Prakash, O., Singh, N. K. & Singh, N. K. (2013). J. Mol. Struct. 1054-1055, 251-261.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C12H9N3O2

  • Mr = 227.22

  • Monoclinic, P 21 /n

  • a = 13.195 (3) Å

  • b = 5.6162 (8) Å

  • c = 14.958 (3) Å

  • β = 107.00 (2)°

  • V = 1060.0 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 293 K

  • 0.4 × 0.3 × 0.15 mm

2.2. Data collection

  • Agilent Xcalibur Eos diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.941, Tmax = 1.000

  • 4305 measured reflections

  • 2405 independent reflections

  • 1057 reflections with I > 2σ(I)

  • Rint = 0.039

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.064

  • wR(F2) = 0.142

  • S = 1.01

  • 2405 reflections

  • 174 parameters

  • 40 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg4 are the centroids of the O1A/C1/C2/C3/C4 and C7–C12 five- and six-membered rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3N3⋯N2i 1.02 (3) 1.87 (3) 2.892 (3) 178 (2)
C12—H12A⋯O2 0.93 2.27 2.892 (4) 123
C9—H9ACg1ii 0.93 3.00 3.653 (4) 129
C2—H2ACg4iii 0.93 2.93 3.664 (5) 137
Symmetry codes: (i) -x+1, -y+2, -z+1; (ii) [x-{\script{1\over 2}}, -y-{\script{1\over 2}}, z-{\script{1\over 2}}]; (iii) [x-{\script{3\over 2}}, -y+{\script{1\over 2}}, z-{\script{3\over 2}}].

Data collection: CrysAlis PRO (Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS2013 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

1,3,4-Oxa­diazole-2-thio­nes, an important class of heterocyclic ligands in the field of coordination chemistry (Tarafder et al., 2001; Ali & Ali, 2007; Singh et al., 2007; Zhao et al., 2007; Zhang et al., 2007; Amin et al., 2004) have wide applications both in medicine and agriculture (Pachhamia & Parikh, 1988; Xu et al., 2002). The cyclization of 3-acyl­dithio­carbazate esters, N-aroyldi­thio­carbaza­tes and their salts to the corresponding 1,3,4-oxa­diazole in the presence of base is reported in the literature (Foks et al., 2002). Further, 5-benzyl-N- phenyl-1,3,4-thia­diazole-2-amine and 2-(5-phenyl-1,3,4-thia­diazol-2-yl)pyridine have also been reported in the presence of managnese(II) nitrate via loss of H2O (Dani et al., 2013). It is known that in the presence of strong acid, N-acyl­hydrazine carbodi­thio­ate is converted into thia­diazole but in presence of weak acid or base they are cyclized into oxa­diazole. In the present case, managanese(II) acetate behaves like a weak acid and thus converts thio­semicarbazide into oxa­diazole via loss of H2S.

In the title compound (Fig. 2), the mean plane of the central oxa­diazole ring (O2/C5/N1/N2/C6) forms dihedral angles of 5.65 and 3.34° with the furan (O1/C1–C4) and phenyl rings (C7–C12), respectively. Both the furan and phenyl rings are twisted by an angle of 7.51°. The C–N bond lengths, N1–C5 1.290 (4) and N2–C6 1.302 (4) Å, are similar to standard C N 1.28 Å. The distances found within the oxa­diazole ring are inter­mediate between single and double bond, suggesting considerable delocalization in the ring. In the crystal, pairs of inter­molecular N—H···N hydrogen bonds between the oxa­diazole ring and the amine group forming dimers with an R22[8] ring motif (Fig. 3, Table 1) and an intra­molecular C—H···O inter­action is also found. Molecules are further linked by weak C—H···N and two C—H···π inter­actions, involving (C7–C12) and (O1/C1–C4) rings. In addition, weak π···π inter­molecular stacking inter­actions [Cg1···Cg2 (x, 1+y, z) = 3.460 (8)Å; Cg2···Cg2 (1–x, 1–y, 1–z) = 3.291 (2)Å; Cg2···Cg3 (x, –1+y, z) = 3.431 (4)Å; Cg1: O1/C1–C4; Cg2: O2/C5/N1/N2/C6; Cg3: O1A/C1A–C4A] are present and influences the crystal packing. The furan ring is disordered over two positions, with occupancies of 0.76 (2) and 0.24 (2).

Experimental top

Referring to Fig. 1, a mixture of furan-2-carb­oxy­lic acid hydrazide (1.260 g, 10 mmol) and phenyl iso­thio­cyanate (1.2 ml, 10 mmol) in absolute ethanol (20 mL) was refluxed for 4 h. The solid N-(furan-2-carbonyl)-4-phenyl­thio­semicarbazide obtained upon cooling was filtered off and washed with water and ether (50:50 v/v). A mixture of methano­lic solution of N-(furan-2-carbonyl)-4-phenyl­thio­semicarbazide (0.261 g, 1.00 mmol) and Mn(OAc)2.4H2O (0.246 g, 1 mmol) was stirred for 4 h. A clear yellow solution obtained was filtered off and kept for crystallization. Colourless needles were obtained after 10 days. Yield: 60%; m.p.: 476–478 K. Anal. Calc. for C12H9N3O2(%):C 63.43, H 3.99, N 18.49. Found: C 63.68, H 4.05, N 18.61. 1H NMR (DMSO-d6): δ [ppm] = 11.60 (s, 1H, NH), 8.80–7.31 (m, 3H, furan), 7.80–6.76 (m, 5H, Phenyl). 13C NMR (DMSO-d6): δ [ppm] = 161.3 (C6), 162.0 (C5), 153.7 (C4), 146.9 (C1), 144.8 (C3), 140.7 (C2) (furan C); 120.6–145.2 (phenyl C) (Fig. 2). IR (selected, KBr): 3210 [ν(N– H)], 1605 [ν(CN)], 1076 [ν(N – N)] cm-1.

Refinement top

The H atom bonded to N3 was located in a difference Fourier map and refined freely; N3–H3N3 = 1.02 (3) Å. Other H atoms were positioned geometrically and allowed to ride on their parent atoms, with C—H = 0.93 Å, and with Uiso(H) = 1.2Ueq(C). The ISOR restraint and EADP constraint commands in the SHELXL2014 software were used for the disordered atoms.

Related literature top

For heterocyclic ligands that form metal complexes, see: Tarafder et al. (2001); Ali & Ali (2007); Singh et al. (2007); Zhao et al. (2007); Zhang et al. (2007); Amin et al. (2004). For applications in medicine and agriculture, see: Pachhamia & Parikh (1988); Xu et al. (2002). For related structures, see: Foks et al. (2002); Dani et al. (2013).

Structure description top

1,3,4-Oxa­diazole-2-thio­nes, an important class of heterocyclic ligands in the field of coordination chemistry (Tarafder et al., 2001; Ali & Ali, 2007; Singh et al., 2007; Zhao et al., 2007; Zhang et al., 2007; Amin et al., 2004) have wide applications both in medicine and agriculture (Pachhamia & Parikh, 1988; Xu et al., 2002). The cyclization of 3-acyl­dithio­carbazate esters, N-aroyldi­thio­carbaza­tes and their salts to the corresponding 1,3,4-oxa­diazole in the presence of base is reported in the literature (Foks et al., 2002). Further, 5-benzyl-N- phenyl-1,3,4-thia­diazole-2-amine and 2-(5-phenyl-1,3,4-thia­diazol-2-yl)pyridine have also been reported in the presence of managnese(II) nitrate via loss of H2O (Dani et al., 2013). It is known that in the presence of strong acid, N-acyl­hydrazine carbodi­thio­ate is converted into thia­diazole but in presence of weak acid or base they are cyclized into oxa­diazole. In the present case, managanese(II) acetate behaves like a weak acid and thus converts thio­semicarbazide into oxa­diazole via loss of H2S.

In the title compound (Fig. 2), the mean plane of the central oxa­diazole ring (O2/C5/N1/N2/C6) forms dihedral angles of 5.65 and 3.34° with the furan (O1/C1–C4) and phenyl rings (C7–C12), respectively. Both the furan and phenyl rings are twisted by an angle of 7.51°. The C–N bond lengths, N1–C5 1.290 (4) and N2–C6 1.302 (4) Å, are similar to standard C N 1.28 Å. The distances found within the oxa­diazole ring are inter­mediate between single and double bond, suggesting considerable delocalization in the ring. In the crystal, pairs of inter­molecular N—H···N hydrogen bonds between the oxa­diazole ring and the amine group forming dimers with an R22[8] ring motif (Fig. 3, Table 1) and an intra­molecular C—H···O inter­action is also found. Molecules are further linked by weak C—H···N and two C—H···π inter­actions, involving (C7–C12) and (O1/C1–C4) rings. In addition, weak π···π inter­molecular stacking inter­actions [Cg1···Cg2 (x, 1+y, z) = 3.460 (8)Å; Cg2···Cg2 (1–x, 1–y, 1–z) = 3.291 (2)Å; Cg2···Cg3 (x, –1+y, z) = 3.431 (4)Å; Cg1: O1/C1–C4; Cg2: O2/C5/N1/N2/C6; Cg3: O1A/C1A–C4A] are present and influences the crystal packing. The furan ring is disordered over two positions, with occupancies of 0.76 (2) and 0.24 (2).

Referring to Fig. 1, a mixture of furan-2-carb­oxy­lic acid hydrazide (1.260 g, 10 mmol) and phenyl iso­thio­cyanate (1.2 ml, 10 mmol) in absolute ethanol (20 mL) was refluxed for 4 h. The solid N-(furan-2-carbonyl)-4-phenyl­thio­semicarbazide obtained upon cooling was filtered off and washed with water and ether (50:50 v/v). A mixture of methano­lic solution of N-(furan-2-carbonyl)-4-phenyl­thio­semicarbazide (0.261 g, 1.00 mmol) and Mn(OAc)2.4H2O (0.246 g, 1 mmol) was stirred for 4 h. A clear yellow solution obtained was filtered off and kept for crystallization. Colourless needles were obtained after 10 days. Yield: 60%; m.p.: 476–478 K. Anal. Calc. for C12H9N3O2(%):C 63.43, H 3.99, N 18.49. Found: C 63.68, H 4.05, N 18.61. 1H NMR (DMSO-d6): δ [ppm] = 11.60 (s, 1H, NH), 8.80–7.31 (m, 3H, furan), 7.80–6.76 (m, 5H, Phenyl). 13C NMR (DMSO-d6): δ [ppm] = 161.3 (C6), 162.0 (C5), 153.7 (C4), 146.9 (C1), 144.8 (C3), 140.7 (C2) (furan C); 120.6–145.2 (phenyl C) (Fig. 2). IR (selected, KBr): 3210 [ν(N– H)], 1605 [ν(CN)], 1076 [ν(N – N)] cm-1.

For heterocyclic ligands that form metal complexes, see: Tarafder et al. (2001); Ali & Ali (2007); Singh et al. (2007); Zhao et al. (2007); Zhang et al. (2007); Amin et al. (2004). For applications in medicine and agriculture, see: Pachhamia & Parikh (1988); Xu et al. (2002). For related structures, see: Foks et al. (2002); Dani et al. (2013).

Refinement details top

The H atom bonded to N3 was located in a difference Fourier map and refined freely; N3–H3N3 = 1.02 (3) Å. Other H atoms were positioned geometrically and allowed to ride on their parent atoms, with C—H = 0.93 Å, and with Uiso(H) = 1.2Ueq(C). The ISOR restraint and EADP constraint commands in the SHELXL2014 software were used for the disordered atoms.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SHELXS2013 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Scheme showing the synthesis of the title compound.
[Figure 2] Fig. 2. The molecular structure of (I) showing 50% probability displacement ellipsoids.
[Figure 3] Fig. 3. The molecular packing of the title compound, viewed along the b-axis. Dashed lines indicate weak N—H···N intermolecular hydrogen bonding between the oxadiazole ring and the amine group, forming dimers with an R22[8] ring motif.
5-(Furan-2-yl)-N-phenyl-1,3,4-oxadiazol-2-amine top
Crystal data top
C12H9N3O2F(000) = 472
Mr = 227.22Dx = 1.424 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 13.195 (3) ÅCell parameters from 594 reflections
b = 5.6162 (8) Åθ = 3.1–29.0°
c = 14.958 (3) ŵ = 0.10 mm1
β = 107.00 (2)°T = 293 K
V = 1060.0 (3) Å3Needle, colourless
Z = 40.4 × 0.3 × 0.15 mm
Data collection top
Agilent Xcalibur Eos
diffractometer
2405 independent reflections
Radiation source: Enhance (Mo) X-ray Source1057 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.039
Detector resolution: 16.0938 pixels mm-1θmax = 29.1°, θmin = 3.2°
ω scansh = 1813
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
k = 77
Tmin = 0.941, Tmax = 1.000l = 1917
4305 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.064Hydrogen site location: mixed
wR(F2) = 0.142H atoms treated by a mixture of independent and constrained refinement
S = 1.01 w = 1/[σ2(Fo2) + (0.0308P)2]
where P = (Fo2 + 2Fc2)/3
2405 reflections(Δ/σ)max < 0.001
174 parametersΔρmax = 0.19 e Å3
40 restraintsΔρmin = 0.21 e Å3
Crystal data top
C12H9N3O2V = 1060.0 (3) Å3
Mr = 227.22Z = 4
Monoclinic, P21/nMo Kα radiation
a = 13.195 (3) ŵ = 0.10 mm1
b = 5.6162 (8) ÅT = 293 K
c = 14.958 (3) Å0.4 × 0.3 × 0.15 mm
β = 107.00 (2)°
Data collection top
Agilent Xcalibur Eos
diffractometer
2405 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
1057 reflections with I > 2σ(I)
Tmin = 0.941, Tmax = 1.000Rint = 0.039
4305 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.06440 restraints
wR(F2) = 0.142H atoms treated by a mixture of independent and constrained refinement
S = 1.01Δρmax = 0.19 e Å3
2405 reflectionsΔρmin = 0.21 e Å3
174 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O20.65450 (17)0.5460 (3)0.46696 (13)0.0425 (6)
N10.6233 (2)0.5577 (4)0.60530 (17)0.0463 (7)
N20.5682 (2)0.7470 (4)0.54975 (17)0.0445 (7)
N30.5544 (2)0.8799 (4)0.39788 (17)0.0449 (7)
H3N30.512 (2)1.014 (5)0.4150 (19)0.067 (11)*
O10.7733 (7)0.1580 (16)0.5086 (4)0.0560 (14)0.76 (2)
C10.8374 (6)0.0405 (14)0.5478 (9)0.057 (2)0.76 (2)
H1A0.87160.13920.51580.068*0.76 (2)
C20.8412 (7)0.0643 (15)0.6370 (8)0.062 (2)0.76 (2)
H2A0.87800.18150.67760.074*0.76 (2)
C30.7797 (8)0.1194 (18)0.6598 (6)0.0470 (17)0.76 (2)
H3A0.76920.14770.71770.056*0.76 (2)
C40.740 (2)0.244 (4)0.5812 (9)0.0395 (13)0.76 (2)
O1A0.790 (3)0.093 (5)0.5177 (17)0.0560 (14)0.24 (2)
C1A0.844 (3)0.073 (5)0.587 (2)0.057 (2)0.24 (2)
H1AA0.88680.19560.57660.068*0.24 (2)
C2A0.826 (3)0.029 (5)0.6672 (18)0.062 (2)0.24 (2)
H2AA0.85450.11130.72260.074*0.24 (2)
C3A0.755 (3)0.163 (6)0.655 (2)0.0470 (17)0.24 (2)
H3AA0.72440.22420.69890.056*0.24 (2)
C4A0.741 (8)0.238 (13)0.568 (3)0.0395 (13)0.24 (2)
C50.6717 (3)0.4467 (5)0.5543 (2)0.0411 (8)
C60.5901 (3)0.7321 (5)0.4705 (2)0.0409 (8)
C70.5742 (3)0.8830 (5)0.3105 (2)0.0408 (8)
C80.5304 (3)1.0704 (5)0.2521 (2)0.0515 (9)
H8A0.49161.18600.27220.062*
C90.5436 (3)1.0878 (6)0.1647 (2)0.0627 (11)
H9A0.51291.21390.12590.075*
C100.6013 (3)0.9215 (6)0.1342 (2)0.0607 (11)
H10A0.60970.93320.07480.073*
C110.6470 (3)0.7360 (6)0.1925 (2)0.0593 (10)
H11A0.68760.62380.17270.071*
C120.6330 (3)0.7158 (5)0.2798 (2)0.0518 (9)
H12A0.66330.58890.31830.062*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O20.0432 (14)0.0445 (12)0.0412 (12)0.0048 (11)0.0147 (11)0.0035 (9)
N10.0496 (18)0.0517 (15)0.0372 (15)0.0012 (15)0.0123 (14)0.0020 (12)
N20.0463 (18)0.0501 (16)0.0384 (15)0.0039 (14)0.0146 (14)0.0015 (12)
N30.0511 (19)0.0456 (16)0.0418 (16)0.0102 (14)0.0192 (15)0.0040 (12)
O10.061 (3)0.044 (4)0.065 (2)0.017 (3)0.022 (2)0.006 (2)
C10.049 (3)0.036 (3)0.081 (6)0.014 (2)0.014 (4)0.012 (4)
C20.060 (4)0.064 (3)0.055 (5)0.001 (3)0.007 (4)0.014 (4)
C30.043 (5)0.048 (4)0.042 (2)0.017 (3)0.001 (3)0.017 (2)
C40.042 (2)0.043 (2)0.035 (4)0.0025 (17)0.013 (5)0.002 (4)
O1A0.061 (3)0.044 (4)0.065 (2)0.017 (3)0.022 (2)0.006 (2)
C1A0.049 (3)0.036 (3)0.081 (6)0.014 (2)0.014 (4)0.012 (4)
C2A0.060 (4)0.064 (3)0.055 (5)0.001 (3)0.007 (4)0.014 (4)
C3A0.043 (5)0.048 (4)0.042 (2)0.017 (3)0.001 (3)0.017 (2)
C4A0.042 (2)0.043 (2)0.035 (4)0.0025 (17)0.013 (5)0.002 (4)
C50.042 (2)0.0453 (18)0.0321 (17)0.0056 (17)0.0056 (16)0.0040 (14)
C60.039 (2)0.0412 (18)0.0430 (19)0.0004 (16)0.0122 (16)0.0018 (15)
C70.041 (2)0.0437 (18)0.0377 (18)0.0019 (17)0.0112 (16)0.0004 (14)
C80.062 (2)0.0446 (19)0.052 (2)0.0121 (18)0.023 (2)0.0051 (16)
C90.079 (3)0.062 (2)0.052 (2)0.020 (2)0.026 (2)0.0165 (17)
C100.073 (3)0.070 (2)0.047 (2)0.010 (2)0.030 (2)0.0091 (18)
C110.070 (3)0.061 (2)0.056 (2)0.013 (2)0.033 (2)0.0006 (18)
C120.058 (2)0.0509 (19)0.051 (2)0.0180 (19)0.0230 (19)0.0114 (16)
Geometric parameters (Å, º) top
O2—C61.358 (3)C1A—C2A1.321 (16)
O2—C51.376 (3)C1A—H1AA0.9300
N1—C51.290 (4)C2A—C3A1.397 (16)
N1—N21.413 (3)C2A—H2AA0.9300
N2—C61.302 (4)C3A—C4A1.335 (16)
N3—C61.339 (3)C3A—H3AA0.9300
N3—C71.406 (4)C4A—C51.46 (2)
N3—H3N31.02 (3)C7—C121.379 (4)
O1—C41.375 (6)C7—C81.382 (4)
O1—C11.418 (6)C8—C91.371 (4)
C1—C21.328 (7)C8—H8A0.9300
C1—H1A0.9300C9—C101.365 (4)
C2—C31.414 (7)C9—H9A0.9300
C2—H2A0.9300C10—C111.379 (4)
C3—C41.337 (6)C10—H10A0.9300
C3—H3A0.9300C11—C121.376 (4)
C4—C51.433 (8)C11—H11A0.9300
O1A—C4A1.387 (16)C12—H12A0.9300
O1A—C1A1.418 (16)
C6—O2—C5101.9 (2)C3A—C4A—O1A112.9 (16)
C5—N1—N2105.9 (2)C3A—C4A—C5107 (2)
C6—N2—N1105.9 (3)O1A—C4A—C5140 (3)
C6—N3—C7130.2 (3)N1—C5—O2113.1 (3)
C6—N3—H3N3110.1 (16)N1—C5—C4126.5 (5)
C7—N3—H3N3119.5 (16)O2—C5—C4120.3 (5)
C4—O1—C1103.9 (5)N1—C5—C4A134.6 (14)
C2—C1—O1109.7 (5)O2—C5—C4A112.2 (13)
C2—C1—H1A125.1N2—C6—N3125.4 (3)
O1—C1—H1A125.1N2—C6—O2113.2 (3)
C1—C2—C3108.3 (5)N3—C6—O2121.4 (3)
C1—C2—H2A125.9C12—C7—C8118.7 (3)
C3—C2—H2A125.9C12—C7—N3125.2 (3)
C4—C3—C2106.1 (5)C8—C7—N3116.1 (3)
C4—C3—H3A127.0C9—C8—C7120.7 (3)
C2—C3—H3A127.0C9—C8—H8A119.6
C3—C4—O1112.1 (6)C7—C8—H8A119.6
C3—C4—C5135.8 (8)C10—C9—C8120.6 (3)
O1—C4—C5112.1 (8)C10—C9—H9A119.7
C4A—O1A—C1A102.0 (14)C8—C9—H9A119.7
C2A—C1A—O1A110.6 (15)C9—C10—C11119.2 (3)
C2A—C1A—H1AA124.7C9—C10—H10A120.4
O1A—C1A—H1AA124.7C11—C10—H10A120.4
C1A—C2A—C3A108.7 (16)C12—C11—C10120.5 (3)
C1A—C2A—H2AA125.6C12—C11—H11A119.8
C3A—C2A—H2AA125.6C10—C11—H11A119.8
C4A—C3A—C2A105.5 (16)C11—C12—C7120.3 (3)
C4A—C3A—H3AA127.3C11—C12—H12A119.9
C2A—C3A—H3AA127.3C7—C12—H12A119.9
C5—N1—N2—C60.7 (3)C3—C4—C5—O2173 (3)
C4—O1—C1—C20.7 (18)O1—C4—C5—O26 (3)
O1—C1—C2—C30.2 (11)C3A—C4A—C5—N12 (12)
C1—C2—C3—C41.1 (19)O1A—C4A—C5—N1173 (9)
C2—C3—C4—O12 (3)C3A—C4A—C5—O2178 (5)
C2—C3—C4—C5179 (3)O1A—C4A—C5—O27 (15)
C1—O1—C4—C31 (3)N1—N2—C6—N3179.4 (3)
C1—O1—C4—C5179.2 (18)N1—N2—C6—O20.9 (3)
C4A—O1A—C1A—C2A1 (7)C7—N3—C6—N2178.8 (3)
O1A—C1A—C2A—C3A2 (5)C7—N3—C6—O21.5 (5)
C1A—C2A—C3A—C4A5 (7)C5—O2—C6—N20.7 (3)
C2A—C3A—C4A—O1A6 (10)C5—O2—C6—N3179.6 (3)
C2A—C3A—C4A—C5177 (5)C6—N3—C7—C124.1 (5)
C1A—O1A—C4A—C3A5 (9)C6—N3—C7—C8175.8 (3)
C1A—O1A—C4A—C5180 (12)C12—C7—C8—C91.1 (5)
N2—N1—C5—O20.2 (3)N3—C7—C8—C9178.9 (3)
N2—N1—C5—C4178.7 (18)C7—C8—C9—C100.8 (6)
N2—N1—C5—C4A180 (7)C8—C9—C10—C110.4 (6)
C6—O2—C5—N10.3 (3)C9—C10—C11—C121.3 (6)
C6—O2—C5—C4178.3 (17)C10—C11—C12—C70.9 (6)
C6—O2—C5—C4A180 (5)C8—C7—C12—C110.3 (5)
C3—C4—C5—N15 (5)N3—C7—C12—C11179.8 (3)
O1—C4—C5—N1175.9 (13)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg4 are the centroids of the O1A/C1/C2/C3/C4 and C7–C12 five- and six-membered rings, respectively.
D—H···AD—HH···AD···AD—H···A
N3—H3N3···N2i1.02 (3)1.87 (3)2.892 (3)178 (2)
C12—H12A···O20.932.272.892 (4)123
C9—H9A···Cg1ii0.933.003.653 (4)129
C2—H2A···Cg4iii0.932.933.664 (5)137
Symmetry codes: (i) x+1, y+2, z+1; (ii) x1/2, y1/2, z1/2; (iii) x3/2, y+1/2, z3/2.
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg4 are the centroids of the O1A/C1/C2/C3/C4 and C7–C12 five- and six-membered rings, respectively.
D—H···AD—HH···AD···AD—H···A
N3—H3N3···N2i1.02 (3)1.87 (3)2.892 (3)178 (2)
C12—H12A···O20.932.272.892 (4)123
C9—H9A···Cg1ii0.933.003.653 (4)129
C2—H2A···Cg4iii0.932.933.664 (5)137
Symmetry codes: (i) x+1, y+2, z+1; (ii) x1/2, y1/2, z1/2; (iii) x3/2, y+1/2, z3/2.
 

Acknowledgements

This work was supported by the Department of Science and Technology (DST), New Delhi, India (Young Scientist Project No. SR/FT/CS-63/2011). We express our sincere thanks to Professor Ray J. Butcher for useful discussions.

References

First citationAgilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationAli, S. & Ali, R. (2007). Tetrahedron Lett. 48, 1549–1551.  Google Scholar
First citationAmin, O. H., Al-Hayaly, L. J., Al-Jibori, S. A. & Al-Allaf, T. A. K. (2004). Polyhedron, 23, 2013–2020.  CrossRef CAS Google Scholar
First citationDani, R. K., Bharty, M. K., Kushawaha, S. K., Paswan, S., Prakash, O., Singh, N. K. & Singh, N. K. (2013). J. Mol. Struct. 1054–1055, 251–261.  CSD CrossRef CAS Google Scholar
First citationFoks, H., Mieczkowska, J., Janowiec, M., Zwolska, Z. & Andrzejczyk, Z. (2002). Chem. Heterocycl. Compd. 38, 810–816.  CrossRef CAS Google Scholar
First citationPachhamia, V. L. & Parikh, A. R. (1988). J. Indian Chem. Soc. 65, 357–361.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSingh, N. K., Butcher, R. J., Tripathi, P., Srivastava, A. K. & Bharty, M. K. (2007). Acta Cryst. E63, o782–o784.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationTarafder, Md. T. H., Saravanan, N., Crouse, K. A. & Ali, A. M. b. (2001). Transition Met. Chem. 26, 613–618.  CrossRef Google Scholar
First citationXu, L. Z., Jiao, K., Zhang, S. S. & Kuang, S. P. (2002). Bull. Korean. Chem. Soc. 23, 1699–1701.  CAS Google Scholar
First citationZhang, Z.-H., Tian, Y.-L. & Guo, Y.-M. (2007). Inorg. Chim. Acta, 360, 2783–2788.  Web of Science CSD CrossRef CAS Google Scholar
First citationZhao, X.-X., Ma, J.-P., Dong, Y. B., Huang, R.-Q. & Lai, T. (2007). Cryst. Growth Des. 7, 1058–1068.  CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds