organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 3-(2-nitro­phen­yl)-1-(1-phenyl­sulfonyl-1H-indol-3-yl)propan-1-one

aResearch and Development Centre, Bharathiar University, Coimbatore 641 046, India, bDepartment of Chemistry, Pallavan College of Engineering, Kanchipuram 631 502, India, cDepartment of Organic Chemistry, University of Madras, Guindy Campus, Chennai 600 025, India, dDepartment of Sciences, Chemistry and Materials Research Lab, Amrita Vishwa Vidyapeetham University, Ettimadai, Coimbatore 641 112, India, and eDepartment of Physics, CPCL Polytechnic College, Chennai 600 068, India
*Correspondence e-mail: ryamuna1@gmail.com, chakkaravarthi_2005@yahoo.com

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 16 October 2015; accepted 26 October 2015; online 31 October 2015)

In the title compound, C23H18N2O5S, the phenyl and benzene rings subtend dihedral angles of 78.18 (10) and 30.18 (9)°, respectively, with the indole ring system (r.m.s. deviation = 0.022 Å). The crystal structure features weak C—H⋯O and C—H⋯π inter­actions, which link the mol­ecules into a three-dimensional network.

1. Related literature

For the biological activity of indole derivatives, see: Andreev et al. (2015[Andreev, I. A., Manvar, D., Barreca, M. L., Belov, D. S., Basu, A., Sweeney, N. L., Ratmanova, N. K., Lukyanenko, E. R., Manfroni, G., Cecchetti, V., Frick, D. N., Altieri, A., Kaushik-Basu, N. & Kurkin, A. V. (2015). Eur. J. Med. Chem. 96, 250-258.]); Kolocouris et al. (1994[Kolocouris, N., Foscolos, G. B., Kolocouris, A., Marakos, P., Pouli, N., Fytas, G., Ikeda, S. & De Clercq, E. (1994). J. Med. Chem. 37, 2896-2902.]). For related structures, see: Chakkaravarthi et al. (2007[Chakkaravarthi, G., Ramesh, N., Mohanakrishnan, A. K. & Manivannan, V. (2007). Acta Cryst. E63, o3564.], 2008[Chakkaravarthi, G., Dhayalan, V., Mohanakrishnan, A. K. & Manivannan, V. (2008). Acta Cryst. E64, o542.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C23H18N2O5S

  • Mr = 434.45

  • Monoclinic, P 21 /n

  • a = 9.0224 (7) Å

  • b = 15.4581 (10) Å

  • c = 15.1347 (10) Å

  • β = 106.349 (2)°

  • V = 2025.5 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.20 mm−1

  • T = 295 K

  • 0.26 × 0.24 × 0.20 mm

2.2. Data collection

  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.950, Tmax = 0.961

  • 29555 measured reflections

  • 6149 independent reflections

  • 4060 reflections with I > 2σ(I)

  • Rint = 0.033

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.058

  • wR(F2) = 0.144

  • S = 1.09

  • 6149 reflections

  • 280 parameters

  • 3 restraints

  • H-atom parameters constrained

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.32 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg3 is the centroid of the C7–C12 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C9—H9⋯O2i 0.93 2.54 3.328 (2) 143
C22—H22⋯O3ii 0.93 2.42 3.319 (3) 163
C23—H23⋯O5iii 0.93 2.36 3.247 (3) 160
C16—H16ACg3iv 0.97 2.73 3.565 (2) 144
Symmetry codes: (i) x-1, y, z; (ii) x+1, y, z; (iii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iv) -x+1, -y, -z.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97 and PLATON.

Supporting information


Structural commentary top

Indole derivatives are known to exhibit anti-hepatitis C virus (Andreev et al., 2015) and anti­viral activity (Kolocouris et al., 1994). We herein report the crystal structure of (I) (Fig. 1). The ORTEP diagram of the title compound (I) is shown in Fig. 1. The geometric parameters of (I) are comparable with similar structures (Chakkaravarthi et al. 2007, 2008).

The phenyl ring (C1—C6) and benzene ring (C18—C23) make the dihedral angles of 78.18 (10)° and 30.18 (9)°, respectively with the indole ring system. The phenyl (C1—C6) and benzene (C18—C23) rings are inclined at angle of 69.93 (12)°. In the crystal structure, the inter­molecular weak C—H···O and C—H···π (Fig. 2 & Table 1) inter­actions form a three dimensional network.

Synthesis and crystallization top

To a solution of 1-(phenyl­sulfonyl)-1H-indole (0.5 g, 1.94 mmol) in dry DCM 3-(2-nitro­phenyl)­propanoyl chloride (0.62 g, 2.92 mmol) and SnCl4 (0.76 g, 2.92 mmol) were added slowly at 273 K under nitro­gen atmosphere and the resulting mixture was stirred at room temperature for 30 min after completion of starting material (monitored by TLC), the reaction mass was poured over ice water containing Conc. HCl (3 ml) and extracted with DCM (20 ml). The combined organic extracts were washed with water (30 ml), brine solution (10 ml) and dried Na2SO4. Removal of solvent followed by recrystallization of the crude product from methanol (3 ml) solution afforded the title compound as colourless blocks.

Refinement top

H atoms were positioned geometrically and refined using riding model, with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C) for C—H and C—H = 0.97 Å and Uiso(H) = 1.2Ueq(C) for CH2. The reflection (0 1 1) is omitted during refinement which is owing poor agreement.

Related literature top

For the biological activity of indole derivatives, see: Andreev et al. (2015); Kolocouris et al. (1994). For related structures, see: Chakkaravarthi et al. (2007, 2008).

Structure description top

Indole derivatives are known to exhibit anti-hepatitis C virus (Andreev et al., 2015) and anti­viral activity (Kolocouris et al., 1994). We herein report the crystal structure of (I) (Fig. 1). The ORTEP diagram of the title compound (I) is shown in Fig. 1. The geometric parameters of (I) are comparable with similar structures (Chakkaravarthi et al. 2007, 2008).

The phenyl ring (C1—C6) and benzene ring (C18—C23) make the dihedral angles of 78.18 (10)° and 30.18 (9)°, respectively with the indole ring system. The phenyl (C1—C6) and benzene (C18—C23) rings are inclined at angle of 69.93 (12)°. In the crystal structure, the inter­molecular weak C—H···O and C—H···π (Fig. 2 & Table 1) inter­actions form a three dimensional network.

For the biological activity of indole derivatives, see: Andreev et al. (2015); Kolocouris et al. (1994). For related structures, see: Chakkaravarthi et al. (2007, 2008).

Synthesis and crystallization top

To a solution of 1-(phenyl­sulfonyl)-1H-indole (0.5 g, 1.94 mmol) in dry DCM 3-(2-nitro­phenyl)­propanoyl chloride (0.62 g, 2.92 mmol) and SnCl4 (0.76 g, 2.92 mmol) were added slowly at 273 K under nitro­gen atmosphere and the resulting mixture was stirred at room temperature for 30 min after completion of starting material (monitored by TLC), the reaction mass was poured over ice water containing Conc. HCl (3 ml) and extracted with DCM (20 ml). The combined organic extracts were washed with water (30 ml), brine solution (10 ml) and dried Na2SO4. Removal of solvent followed by recrystallization of the crude product from methanol (3 ml) solution afforded the title compound as colourless blocks.

Refinement details top

H atoms were positioned geometrically and refined using riding model, with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C) for C—H and C—H = 0.97 Å and Uiso(H) = 1.2Ueq(C) for CH2. The reflection (0 1 1) is omitted during refinement which is owing poor agreement.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with displacement ellipsoids drawn at the 30% probability level.
[Figure 2] Fig. 2. The crystal packing of the title compound, viewed along the a axis. The C—H···O hydrogen bonds are shown as dashed lines (see Table 1). H atoms not involved in these interactions have been omitted for clarity.
3-(2-Nitrophenyl)-1-(1-phenylsulfonyl-1H-indol-3-yl)propan-1-one top
Crystal data top
C23H18N2O5SF(000) = 904
Mr = 434.45Dx = 1.425 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 7714 reflections
a = 9.0224 (7) Åθ = 2.4–28.3°
b = 15.4581 (10) ŵ = 0.20 mm1
c = 15.1347 (10) ÅT = 295 K
β = 106.349 (2)°Block, colourless
V = 2025.5 (2) Å30.26 × 0.24 × 0.20 mm
Z = 4
Data collection top
Bruker Kappa APEXII CCD
diffractometer
6149 independent reflections
Radiation source: fine-focus sealed tube4060 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
ω and φ scanθmax = 31.6°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1211
Tmin = 0.950, Tmax = 0.961k = 2122
29555 measured reflectionsl = 2120
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.058Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.144H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.048P)2 + 1.0896P]
where P = (Fo2 + 2Fc2)/3
6149 reflections(Δ/σ)max < 0.001
280 parametersΔρmax = 0.35 e Å3
3 restraintsΔρmin = 0.32 e Å3
Crystal data top
C23H18N2O5SV = 2025.5 (2) Å3
Mr = 434.45Z = 4
Monoclinic, P21/nMo Kα radiation
a = 9.0224 (7) ŵ = 0.20 mm1
b = 15.4581 (10) ÅT = 295 K
c = 15.1347 (10) Å0.26 × 0.24 × 0.20 mm
β = 106.349 (2)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
6149 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
4060 reflections with I > 2σ(I)
Tmin = 0.950, Tmax = 0.961Rint = 0.033
29555 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0583 restraints
wR(F2) = 0.144H-atom parameters constrained
S = 1.09Δρmax = 0.35 e Å3
6149 reflectionsΔρmin = 0.32 e Å3
280 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.7579 (2)0.01858 (14)0.38658 (13)0.0384 (4)
C20.6908 (3)0.05928 (17)0.44691 (16)0.0514 (6)
H20.64030.11200.43180.062*
C30.7005 (3)0.0197 (2)0.53057 (17)0.0663 (8)
H30.65650.04600.57240.080*
C40.7746 (3)0.0580 (2)0.55179 (18)0.0690 (8)
H40.78010.08420.60790.083*
C50.8408 (3)0.09752 (19)0.49126 (18)0.0655 (7)
H50.89070.15040.50650.079*
C60.8337 (3)0.05935 (16)0.40815 (16)0.0527 (6)
H60.87930.08570.36710.063*
C70.4643 (2)0.01056 (13)0.18344 (12)0.0327 (4)
C80.3702 (2)0.05590 (14)0.22590 (14)0.0400 (5)
H80.41110.09320.27490.048*
C90.2134 (2)0.04298 (15)0.19192 (15)0.0445 (5)
H90.14670.07150.21910.053*
C100.1528 (2)0.01177 (15)0.11793 (15)0.0445 (5)
H100.04630.01840.09610.053*
C110.2462 (2)0.05662 (13)0.07591 (14)0.0390 (4)
H110.20390.09270.02600.047*
C120.4060 (2)0.04658 (12)0.11020 (12)0.0314 (4)
C130.5371 (2)0.08392 (13)0.08696 (13)0.0330 (4)
C140.6664 (2)0.04867 (13)0.14399 (13)0.0349 (4)
H140.76690.06180.14380.042*
C150.5289 (2)0.15065 (14)0.01681 (14)0.0407 (5)
C160.6745 (2)0.17783 (14)0.00516 (13)0.0365 (4)
H16A0.72360.12730.02250.044*
H16B0.74530.20270.04940.044*
C170.6424 (2)0.24371 (14)0.08307 (13)0.0375 (4)
H17A0.55080.22590.13060.045*
H17B0.62010.29910.05960.045*
C180.7729 (2)0.25523 (12)0.12581 (12)0.0331 (4)
C190.7489 (2)0.27562 (13)0.21829 (13)0.0375 (4)
C200.8658 (3)0.27853 (15)0.26069 (16)0.0512 (6)
H200.84330.28950.32350.061*
C211.0150 (3)0.26509 (17)0.2093 (2)0.0612 (7)
H211.09540.26810.23640.073*
C221.0444 (3)0.24708 (17)0.11702 (19)0.0583 (7)
H221.14570.23870.08140.070*
C230.9255 (2)0.24134 (15)0.07669 (15)0.0452 (5)
H230.94850.22770.01440.054*
N10.62637 (18)0.00978 (11)0.20252 (11)0.0368 (4)
N20.5930 (2)0.29460 (14)0.27675 (13)0.0504 (4)
O10.68799 (19)0.15240 (10)0.28042 (12)0.0548 (4)
O20.89596 (16)0.05570 (11)0.26200 (11)0.0528 (4)
O30.40514 (19)0.18257 (14)0.02227 (16)0.0843 (7)
O40.5110 (2)0.34181 (14)0.24777 (13)0.0738 (6)
O50.5554 (2)0.26312 (16)0.35371 (12)0.0846 (7)
S10.75288 (6)0.06854 (4)0.28195 (4)0.04012 (14)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0297 (10)0.0474 (12)0.0366 (10)0.0047 (8)0.0069 (8)0.0104 (9)
C20.0462 (13)0.0614 (15)0.0479 (13)0.0007 (11)0.0153 (10)0.0164 (11)
C30.0641 (17)0.094 (2)0.0461 (13)0.0018 (16)0.0239 (12)0.0168 (14)
C40.0702 (18)0.092 (2)0.0437 (13)0.0085 (16)0.0135 (12)0.0041 (14)
C50.0732 (18)0.0651 (17)0.0550 (15)0.0096 (14)0.0130 (13)0.0070 (13)
C60.0536 (14)0.0578 (15)0.0476 (13)0.0061 (11)0.0155 (11)0.0091 (11)
C70.0253 (9)0.0404 (10)0.0338 (9)0.0015 (7)0.0106 (7)0.0059 (8)
C80.0353 (10)0.0500 (12)0.0379 (10)0.0038 (9)0.0153 (8)0.0015 (9)
C90.0327 (10)0.0569 (13)0.0499 (12)0.0094 (9)0.0217 (9)0.0047 (10)
C100.0249 (9)0.0551 (13)0.0551 (12)0.0025 (9)0.0137 (9)0.0089 (11)
C110.0297 (10)0.0428 (11)0.0431 (11)0.0032 (8)0.0078 (8)0.0022 (9)
C120.0278 (9)0.0348 (9)0.0327 (9)0.0012 (7)0.0104 (7)0.0058 (7)
C130.0285 (9)0.0379 (10)0.0345 (9)0.0014 (7)0.0118 (7)0.0030 (8)
C140.0262 (9)0.0450 (11)0.0356 (9)0.0024 (8)0.0121 (7)0.0008 (8)
C150.0320 (10)0.0450 (11)0.0458 (11)0.0016 (9)0.0121 (8)0.0065 (9)
C160.0304 (10)0.0447 (11)0.0333 (9)0.0010 (8)0.0071 (7)0.0069 (8)
C170.0341 (10)0.0439 (11)0.0341 (10)0.0030 (8)0.0088 (8)0.0061 (8)
C180.0316 (9)0.0346 (9)0.0312 (9)0.0012 (8)0.0057 (7)0.0035 (7)
C190.0391 (9)0.0370 (10)0.0352 (9)0.0011 (8)0.0084 (7)0.0092 (8)
C200.0593 (15)0.0524 (13)0.0483 (12)0.0049 (11)0.0258 (11)0.0171 (10)
C210.0493 (14)0.0625 (16)0.0833 (19)0.0094 (12)0.0377 (13)0.0260 (14)
C220.0299 (11)0.0644 (16)0.0780 (17)0.0042 (10)0.0108 (11)0.0224 (13)
C230.0353 (11)0.0550 (13)0.0400 (11)0.0012 (9)0.0020 (8)0.0097 (10)
N10.0247 (7)0.0512 (10)0.0353 (8)0.0006 (7)0.0096 (6)0.0061 (7)
N20.0463 (9)0.0630 (12)0.0374 (10)0.0006 (8)0.0042 (7)0.0201 (9)
O10.0543 (10)0.0441 (9)0.0673 (11)0.0027 (7)0.0192 (8)0.0051 (8)
O20.0296 (8)0.0740 (11)0.0580 (9)0.0098 (7)0.0173 (7)0.0095 (8)
O30.0350 (9)0.1001 (16)0.1185 (17)0.0172 (9)0.0228 (10)0.0669 (14)
O40.0556 (11)0.0885 (14)0.0741 (13)0.0308 (9)0.0130 (9)0.0299 (10)
O50.0781 (14)0.1281 (19)0.0350 (9)0.0157 (13)0.0045 (9)0.0106 (11)
S10.0301 (2)0.0473 (3)0.0443 (3)0.0062 (2)0.0126 (2)0.0080 (2)
Geometric parameters (Å, º) top
C1—C61.378 (3)C14—N11.383 (2)
C1—C21.381 (3)C14—H140.9300
C1—S11.751 (2)C15—O31.212 (3)
C2—C31.387 (4)C15—C161.502 (3)
C2—H20.9300C16—C171.523 (3)
C3—C41.367 (4)C16—H16A0.9700
C3—H30.9300C16—H16B0.9700
C4—C51.370 (4)C17—C181.505 (3)
C4—H40.9300C17—H17A0.9700
C5—C61.374 (3)C17—H17B0.9700
C5—H50.9300C18—C231.385 (3)
C6—H60.9300C18—C191.391 (3)
C7—C81.391 (3)C19—C201.381 (3)
C7—C121.399 (3)C19—N21.465 (3)
C7—N11.408 (2)C20—C211.368 (4)
C8—C91.377 (3)C20—H200.9300
C8—H80.9300C21—C221.375 (4)
C9—C101.387 (3)C21—H210.9300
C9—H90.9300C22—C231.379 (3)
C10—C111.377 (3)C22—H220.9300
C10—H100.9300C23—H230.9300
C11—C121.397 (3)N1—S11.6736 (17)
C11—H110.9300N2—O41.207 (3)
C12—C131.445 (2)N2—O51.219 (3)
C13—C141.355 (3)O1—S11.4199 (17)
C13—C151.467 (3)O2—S11.4200 (15)
C6—C1—C2121.5 (2)C13—C15—C16119.20 (17)
C6—C1—S1118.98 (16)C15—C16—C17111.76 (16)
C2—C1—S1119.51 (18)C15—C16—H16A109.3
C1—C2—C3118.4 (2)C17—C16—H16A109.3
C1—C2—H2120.8C15—C16—H16B109.3
C3—C2—H2120.8C17—C16—H16B109.3
C4—C3—C2120.2 (2)H16A—C16—H16B107.9
C4—C3—H3119.9C18—C17—C16114.23 (16)
C2—C3—H3119.9C18—C17—H17A108.7
C3—C4—C5120.7 (3)C16—C17—H17A108.7
C3—C4—H4119.6C18—C17—H17B108.7
C5—C4—H4119.6C16—C17—H17B108.7
C4—C5—C6120.2 (3)H17A—C17—H17B107.6
C4—C5—H5119.9C23—C18—C19115.16 (18)
C6—C5—H5119.9C23—C18—C17122.06 (17)
C5—C6—C1119.0 (2)C19—C18—C17122.69 (17)
C5—C6—H6120.5C20—C19—C18123.49 (19)
C1—C6—H6120.5C20—C19—N2116.22 (18)
C8—C7—C12122.82 (17)C18—C19—N2120.29 (18)
C8—C7—N1130.07 (18)C21—C20—C19119.3 (2)
C12—C7—N1107.11 (16)C21—C20—H20120.4
C9—C8—C7116.8 (2)C19—C20—H20120.4
C9—C8—H8121.6C20—C21—C22119.1 (2)
C7—C8—H8121.6C20—C21—H21120.4
C8—C9—C10121.31 (19)C22—C21—H21120.4
C8—C9—H9119.3C21—C22—C23120.7 (2)
C10—C9—H9119.3C21—C22—H22119.6
C11—C10—C9121.80 (19)C23—C22—H22119.6
C11—C10—H10119.1C22—C23—C18122.2 (2)
C9—C10—H10119.1C22—C23—H23118.9
C10—C11—C12118.3 (2)C18—C23—H23118.9
C10—C11—H11120.8C14—N1—C7108.51 (15)
C12—C11—H11120.8C14—N1—S1124.51 (13)
C11—C12—C7118.88 (17)C7—N1—S1126.97 (13)
C11—C12—C13134.02 (18)O4—N2—O5123.7 (2)
C7—C12—C13107.10 (16)O4—N2—C19119.0 (2)
C14—C13—C12107.52 (17)O5—N2—C19117.3 (2)
C14—C13—C15127.04 (17)O1—S1—O2121.30 (10)
C12—C13—C15125.39 (17)O1—S1—N1106.80 (9)
C13—C14—N1109.73 (16)O2—S1—N1104.39 (9)
C13—C14—H14125.1O1—S1—C1108.84 (10)
N1—C14—H14125.1O2—S1—C1109.71 (10)
O3—C15—C13119.40 (19)N1—S1—C1104.41 (9)
O3—C15—C16121.40 (19)
C6—C1—C2—C30.3 (3)C23—C18—C19—C202.7 (3)
S1—C1—C2—C3178.00 (18)C17—C18—C19—C20173.8 (2)
C1—C2—C3—C40.2 (4)C23—C18—C19—N2177.95 (19)
C2—C3—C4—C50.3 (4)C17—C18—C19—N25.6 (3)
C3—C4—C5—C60.1 (4)C18—C19—C20—C213.4 (4)
C4—C5—C6—C10.6 (4)N2—C19—C20—C21177.3 (2)
C2—C1—C6—C50.7 (3)C19—C20—C21—C221.4 (4)
S1—C1—C6—C5178.44 (19)C20—C21—C22—C230.9 (4)
C12—C7—C8—C90.6 (3)C21—C22—C23—C181.5 (4)
N1—C7—C8—C9179.64 (19)C19—C18—C23—C220.2 (3)
C7—C8—C9—C100.9 (3)C17—C18—C23—C22176.3 (2)
C8—C9—C10—C111.0 (3)C13—C14—N1—C71.3 (2)
C9—C10—C11—C120.6 (3)C13—C14—N1—S1178.71 (14)
C10—C11—C12—C72.1 (3)C8—C7—N1—C14177.3 (2)
C10—C11—C12—C13177.6 (2)C12—C7—N1—C141.8 (2)
C8—C7—C12—C112.2 (3)C8—C7—N1—S12.6 (3)
N1—C7—C12—C11178.61 (17)C12—C7—N1—S1178.24 (14)
C8—C7—C12—C13177.62 (18)C20—C19—N2—O4135.8 (2)
N1—C7—C12—C131.6 (2)C18—C19—N2—O444.9 (3)
C11—C12—C13—C14179.4 (2)C20—C19—N2—O542.3 (3)
C7—C12—C13—C140.8 (2)C18—C19—N2—O5137.1 (2)
C11—C12—C13—C153.0 (3)C14—N1—S1—O1139.88 (17)
C7—C12—C13—C15176.77 (18)C7—N1—S1—O140.16 (19)
C12—C13—C14—N10.3 (2)C14—N1—S1—O210.27 (19)
C15—C13—C14—N1177.84 (19)C7—N1—S1—O2169.78 (17)
C14—C13—C15—O3172.1 (2)C14—N1—S1—C1104.91 (17)
C12—C13—C15—O35.0 (3)C7—N1—S1—C175.05 (18)
C14—C13—C15—C168.0 (3)C6—C1—S1—O1172.14 (17)
C12—C13—C15—C16174.90 (18)C2—C1—S1—O15.6 (2)
O3—C15—C16—C173.1 (3)C6—C1—S1—O237.3 (2)
C13—C15—C16—C17176.79 (18)C2—C1—S1—O2140.47 (17)
C15—C16—C17—C18164.04 (17)C6—C1—S1—N174.09 (18)
C16—C17—C18—C2328.2 (3)C2—C1—S1—N1108.15 (18)
C16—C17—C18—C19148.00 (19)
Hydrogen-bond geometry (Å, º) top
Cg3 is the centroid of the C7–C12 ring.
D—H···AD—HH···AD···AD—H···A
C9—H9···O2i0.932.543.328 (2)143
C22—H22···O3ii0.932.423.319 (3)163
C23—H23···O5iii0.932.363.247 (3)160
C16—H16A···Cg3iv0.972.733.565 (2)144
Symmetry codes: (i) x1, y, z; (ii) x+1, y, z; (iii) x+1/2, y+1/2, z+1/2; (iv) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
Cg3 is the centroid of the C7–C12 ring.
D—H···AD—HH···AD···AD—H···A
C9—H9···O2i0.932.543.328 (2)143
C22—H22···O3ii0.932.423.319 (3)163
C23—H23···O5iii0.932.363.247 (3)160
C16—H16A···Cg3iv0.972.733.565 (2)144
Symmetry codes: (i) x1, y, z; (ii) x+1, y, z; (iii) x+1/2, y+1/2, z+1/2; (iv) x+1, y, z.
 

Acknowledgements

The authors wish to acknowledge the SAIF, IIT Madras for the data collection.

References

First citationAndreev, I. A., Manvar, D., Barreca, M. L., Belov, D. S., Basu, A., Sweeney, N. L., Ratmanova, N. K., Lukyanenko, E. R., Manfroni, G., Cecchetti, V., Frick, D. N., Altieri, A., Kaushik-Basu, N. & Kurkin, A. V. (2015). Eur. J. Med. Chem. 96, 250–258.  Web of Science CrossRef CAS PubMed Google Scholar
First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChakkaravarthi, G., Dhayalan, V., Mohanakrishnan, A. K. & Manivannan, V. (2008). Acta Cryst. E64, o542.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChakkaravarthi, G., Ramesh, N., Mohanakrishnan, A. K. & Manivannan, V. (2007). Acta Cryst. E63, o3564.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKolocouris, N., Foscolos, G. B., Kolocouris, A., Marakos, P., Pouli, N., Fytas, G., Ikeda, S. & De Clercq, E. (1994). J. Med. Chem. 37, 2896–2902.  CrossRef CAS PubMed Web of Science Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds