organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 2-benzene­sulfon­amido-3-hy­dr­oxy­propanoic acid

aDepartment of Chemistry, Institute of Natural Sciences, University of Gujrat, Gujrat 50700, Pakistan, and bDepartment of Physics, University of Sargodha, Sargodha, Punjab, Pakistan
*Correspondence e-mail: dmntahir_uos@yahoo.com

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 22 October 2015; accepted 26 October 2015; online 31 October 2015)

In the title compound, C9H11NO5S, the O=S=O plane of the sulfonyl group is twisted at a dihedral angle of 52.54 (16)° with respect to the benzene ring. The dihedral angle between the carb­oxy­lic acid group and the benzene ring is 49.91 (16)°. In the crystal, C—H⋯O, N—H⋯O and O—H⋯O hydrogen bonds link the mol­ecules into (001) sheets.

1. Related literature

For related structures, see: Aguilar-Castro et al. (2004[Aguilar-Castro, L., Tlahuextl, M., Tapia-Benavides, A. R. & Alvarado-Rodríguez, J. G. (2004). Struct. Chem. 15, 215-221.]); Arshad et al. (2009[Arshad, M. N., Tahir, M. N., Khan, I. U., Shafiq, M. & Ahmad, S. (2009). Acta Cryst. E65, o940.], 2012[Arshad, M. N., Danish, M., Tahir, M. N., Aabideen, Z. U. & Asiri, A. M. (2012). Acta Cryst. E68, o2665.]); Zolotarev et al. (2014[Zolotarev, P. N., Arshad, M. N., Asiri, A. M., Al-amshany, Z. M. & Blatov, V. A. (2014). Cryst. Growth Des. 14, 1938-1949.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C9H11NO5S

  • Mr = 245.25

  • Orthorhombic, P 21 21 21

  • a = 5.0464 (4) Å

  • b = 9.9752 (8) Å

  • c = 21.4701 (17) Å

  • V = 1080.78 (15) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.31 mm−1

  • T = 296 K

  • 0.40 × 0.20 × 0.18 mm

2.2. Data collection

  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.890, Tmax = 0.950

  • 5013 measured reflections

  • 2354 independent reflections

  • 1978 reflections with I > 2σ(I)

  • Rint = 0.025

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.093

  • S = 1.03

  • 2354 reflections

  • 149 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.28 e Å−3

  • Absolute structure: Flack x determined using 919 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])

  • Absolute structure parameter: 0.05 (5)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O3i 0.84 (5) 1.81 (5) 2.621 (4) 164 (5)
O3—H3⋯O5i 0.82 1.96 2.754 (3) 164
N1—H1A⋯O4ii 0.86 2.39 3.066 (4) 136
C2—H2⋯O2iii 0.98 2.48 3.425 (5) 162
C6—H6⋯O5iv 0.93 2.52 3.342 (5) 148
C7—H7⋯O2v 0.93 2.58 3.347 (5) 141
Symmetry codes: (i) [-x+2, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) x+1, y, z; (iii) x-1, y, z; (iv) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z]; (v) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, -z].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The title compound (I), (Fig. 1) has been synthesized for complexation and other studius.

The crystal structures of N-((4-methylphenyl)sulfonyl)serine (Zolotarev et al., 2014), N(S)-(p-toluenesulfonyl)-L-alanine (Aguilar-Castro et al., 2004), 2-benzenesulfonamido-3-methylbutyric acid (Arshad et al., 2012) and (2R)-2-benzenesulfonamido-2- phenylethanoic acid (Arshad et al., 2009) have been reported which are related to the title compound.

The aminoacetic acid moiety B (C1/C2/N1/O1/O2) is roughly planar with r.m.s. deviation of 0.0588 Å. The dihedral angle between the benzene ring and B is 52.96 (14)°. The sulfonyl group C (S1/O4/O5) is oriented at a dihedral angle of 52.54 (16)° with the parent benzene ring. In the crystal, the molecules are linked into a two-dimensional polymeric network (Table 2, Fig. 2) due to H-bondings of C–H···O, N–H···O and O–H···O types with base vectors [100], [010] and in the plane (001).

Related literature top

For related structures, see: Aguilar-Castro et al. (2004); Arshad et al. (2009, 2012); Zolotarev et al. (2014).

Experimental top

The title compound was prepared by using equimolar ratio of L-serine and benzenesulfonyl chloride in 40 ml water. The benzenesulfonyl chloride disolved in distilled water was added pinch by pinch in the L-serine already disolved in distilled water and stirred at 296–298 K, while keeping the pH of the reaction mixture was maintained at 8–9 by adding 1.0 M sodium bicarbonate solution. The 1.0 M HCl solution was added after an hour which resulted in the form of white precipitates. The precipitates obtained were filtered and dried from which colourless needles of (I) were obtained after recrystallization from ethanol solution after 48 h. Yield: 68% Melting point: 493 K.

Refinement top

The coordinates of H-atom of carboxyl group were refined. The other H-atoms were positioned geometrically (O—H = 0.82, N—H = 0.86, C–H = 0.93—0.98 Å) and refined as riding with Uiso(H) = xUeq(C, N, O), where x = 1.5 for hydroxy and x = 1.2 for all other H-atoms.

Structure description top

The title compound (I), (Fig. 1) has been synthesized for complexation and other studius.

The crystal structures of N-((4-methylphenyl)sulfonyl)serine (Zolotarev et al., 2014), N(S)-(p-toluenesulfonyl)-L-alanine (Aguilar-Castro et al., 2004), 2-benzenesulfonamido-3-methylbutyric acid (Arshad et al., 2012) and (2R)-2-benzenesulfonamido-2- phenylethanoic acid (Arshad et al., 2009) have been reported which are related to the title compound.

The aminoacetic acid moiety B (C1/C2/N1/O1/O2) is roughly planar with r.m.s. deviation of 0.0588 Å. The dihedral angle between the benzene ring and B is 52.96 (14)°. The sulfonyl group C (S1/O4/O5) is oriented at a dihedral angle of 52.54 (16)° with the parent benzene ring. In the crystal, the molecules are linked into a two-dimensional polymeric network (Table 2, Fig. 2) due to H-bondings of C–H···O, N–H···O and O–H···O types with base vectors [100], [010] and in the plane (001).

For related structures, see: Aguilar-Castro et al. (2004); Arshad et al. (2009, 2012); Zolotarev et al. (2014).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 2012) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. View of the asymmetric unit of title compound with displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. The partial packing (PLATON; Spek, 2009), which shows that molecules form two dimensional polymeric network.
2-Benzenesulfonamido-3-hydroxypropanoic acid top
Crystal data top
C9H11NO5SDx = 1.507 Mg m3
Mr = 245.25Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121Cell parameters from 1978 reflections
a = 5.0464 (4) Åθ = 2.8–27.1°
b = 9.9752 (8) ŵ = 0.31 mm1
c = 21.4701 (17) ÅT = 296 K
V = 1080.78 (15) Å3Needle, colorless
Z = 40.40 × 0.20 × 0.18 mm
F(000) = 512
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2354 independent reflections
Radiation source: fine-focus sealed tube1978 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
Detector resolution: 7.80 pixels mm-1θmax = 27.1°, θmin = 2.8°
ω scansh = 66
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
k = 912
Tmin = 0.890, Tmax = 0.950l = 2727
5013 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.042H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.093 w = 1/[σ2(Fo2) + (0.0432P)2 + 0.1053P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
2354 reflectionsΔρmax = 0.21 e Å3
149 parametersΔρmin = 0.28 e Å3
0 restraintsAbsolute structure: Flack x determined using 919 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.05 (5)
Crystal data top
C9H11NO5SV = 1080.78 (15) Å3
Mr = 245.25Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 5.0464 (4) ŵ = 0.31 mm1
b = 9.9752 (8) ÅT = 296 K
c = 21.4701 (17) Å0.40 × 0.20 × 0.18 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2354 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
1978 reflections with I > 2σ(I)
Tmin = 0.890, Tmax = 0.950Rint = 0.025
5013 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.042H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.093Δρmax = 0.21 e Å3
S = 1.03Δρmin = 0.28 e Å3
2354 reflectionsAbsolute structure: Flack x determined using 919 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
149 parametersAbsolute structure parameter: 0.05 (5)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.68841 (17)0.37500 (8)0.12794 (3)0.0362 (2)
O10.7864 (6)0.8154 (3)0.20233 (14)0.0624 (8)
H10.871 (11)0.885 (5)0.194 (2)0.094*
O21.1199 (6)0.6949 (3)0.16402 (14)0.0651 (8)
O30.9705 (7)0.5474 (2)0.30216 (11)0.0583 (8)
H31.00590.60650.32740.087*
O40.4135 (5)0.3816 (3)0.14371 (11)0.0504 (6)
O50.8178 (6)0.2474 (2)0.12476 (11)0.0502 (6)
N10.8462 (6)0.4600 (2)0.17945 (11)0.0368 (6)
H1A0.99850.43230.19200.044*
C10.9047 (8)0.7029 (3)0.18768 (14)0.0406 (8)
C20.7369 (7)0.5833 (3)0.20543 (14)0.0384 (8)
H20.55830.59620.18860.046*
C30.7171 (9)0.5712 (4)0.27649 (16)0.0530 (10)
H3A0.64440.65330.29360.064*
H3B0.59900.49810.28730.064*
C40.7318 (7)0.4526 (3)0.05482 (14)0.0365 (8)
C50.9275 (9)0.4077 (4)0.01556 (16)0.0542 (10)
H51.03380.33550.02690.065*
C60.9645 (11)0.4717 (4)0.04132 (17)0.0653 (12)
H61.09880.44360.06790.078*
C70.8028 (10)0.5765 (4)0.05829 (16)0.0609 (11)
H70.82500.61800.09670.073*
C80.6103 (9)0.6193 (4)0.01864 (17)0.0618 (12)
H80.50280.69090.03010.074*
C90.5718 (9)0.5581 (4)0.03840 (17)0.0512 (9)
H90.43950.58790.06520.061*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0337 (4)0.0291 (3)0.0459 (4)0.0024 (4)0.0051 (4)0.0017 (3)
O10.061 (2)0.0327 (13)0.0933 (19)0.0046 (14)0.0105 (17)0.0028 (13)
O20.054 (2)0.0441 (14)0.097 (2)0.0024 (14)0.0283 (17)0.0134 (14)
O30.089 (2)0.0342 (13)0.0514 (14)0.0014 (15)0.0182 (15)0.0063 (10)
O40.0350 (13)0.0529 (14)0.0634 (14)0.0087 (13)0.0019 (13)0.0046 (12)
O50.0590 (17)0.0282 (11)0.0635 (14)0.0039 (11)0.0118 (16)0.0015 (10)
N10.0325 (16)0.0352 (14)0.0428 (12)0.0059 (13)0.0089 (14)0.0030 (11)
C10.042 (2)0.0349 (17)0.0444 (17)0.0068 (17)0.0013 (18)0.0026 (14)
C20.0300 (19)0.0357 (16)0.0496 (16)0.0040 (14)0.0014 (16)0.0043 (13)
C30.059 (3)0.0427 (19)0.0569 (19)0.005 (2)0.025 (2)0.0085 (15)
C40.036 (2)0.0331 (15)0.0405 (14)0.0015 (16)0.0064 (16)0.0051 (12)
C50.059 (3)0.051 (2)0.0528 (19)0.018 (2)0.001 (2)0.0045 (16)
C60.081 (3)0.069 (3)0.0457 (19)0.011 (3)0.014 (2)0.011 (2)
C70.080 (3)0.062 (2)0.0400 (16)0.000 (3)0.006 (2)0.0020 (16)
C80.071 (3)0.057 (2)0.058 (2)0.014 (2)0.011 (2)0.0106 (19)
C90.048 (2)0.050 (2)0.0560 (19)0.0159 (19)0.003 (2)0.0046 (17)
Geometric parameters (Å, º) top
S1—O41.429 (3)C3—H3A0.9700
S1—O51.432 (2)C3—H3B0.9700
S1—N11.605 (3)C4—C91.373 (5)
S1—C41.764 (3)C4—C51.374 (5)
O1—C11.310 (4)C5—C61.391 (5)
O1—H10.84 (5)C5—H50.9300
O2—C11.201 (4)C6—C71.375 (6)
O3—C31.413 (5)C6—H60.9300
O3—H30.8200C7—C81.360 (6)
N1—C21.458 (4)C7—H70.9300
N1—H1A0.8600C8—C91.382 (5)
C1—C21.512 (5)C8—H80.9300
C2—C31.534 (5)C9—H90.9300
C2—H20.9800
O4—S1—O5119.67 (16)C2—C3—H3A109.7
O4—S1—N1107.09 (15)O3—C3—H3B109.7
O5—S1—N1106.03 (14)C2—C3—H3B109.7
O4—S1—C4108.12 (15)H3A—C3—H3B108.2
O5—S1—C4106.92 (15)C9—C4—C5121.0 (3)
N1—S1—C4108.64 (14)C9—C4—S1119.5 (3)
C1—O1—H1115 (4)C5—C4—S1119.5 (3)
C3—O3—H3109.5C4—C5—C6119.1 (4)
C2—N1—S1121.4 (2)C4—C5—H5120.5
C2—N1—H1A119.3C6—C5—H5120.5
S1—N1—H1A119.3C7—C6—C5120.1 (4)
O2—C1—O1124.8 (4)C7—C6—H6119.9
O2—C1—C2124.1 (3)C5—C6—H6119.9
O1—C1—C2111.1 (3)C8—C7—C6119.7 (4)
N1—C2—C1110.9 (3)C8—C7—H7120.1
N1—C2—C3109.8 (3)C6—C7—H7120.1
C1—C2—C3110.4 (3)C7—C8—C9121.1 (4)
N1—C2—H2108.5C7—C8—H8119.4
C1—C2—H2108.5C9—C8—H8119.4
C3—C2—H2108.5C4—C9—C8118.9 (4)
O3—C3—C2110.0 (3)C4—C9—H9120.6
O3—C3—H3A109.7C8—C9—H9120.6
O4—S1—N1—C237.2 (3)N1—S1—C4—C983.5 (3)
O5—S1—N1—C2166.0 (2)O4—S1—C4—C5148.5 (3)
C4—S1—N1—C279.4 (3)O5—S1—C4—C518.4 (3)
S1—N1—C2—C1114.8 (3)N1—S1—C4—C595.6 (3)
S1—N1—C2—C3122.8 (3)C9—C4—C5—C60.7 (6)
O2—C1—C2—N111.0 (5)S1—C4—C5—C6178.4 (3)
O1—C1—C2—N1170.0 (3)C4—C5—C6—C71.4 (6)
O2—C1—C2—C3111.1 (4)C5—C6—C7—C81.4 (7)
O1—C1—C2—C368.0 (4)C6—C7—C8—C90.8 (7)
N1—C2—C3—O359.3 (4)C5—C4—C9—C80.1 (6)
C1—C2—C3—O363.3 (4)S1—C4—C9—C8179.1 (3)
O4—S1—C4—C932.4 (3)C7—C8—C9—C40.1 (7)
O5—S1—C4—C9162.5 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O3i0.84 (5)1.81 (5)2.621 (4)164 (5)
O3—H3···O5i0.821.962.754 (3)164
N1—H1A···O4ii0.862.393.066 (4)136
C2—H2···O2iii0.982.483.425 (5)162
C6—H6···O5iv0.932.523.342 (5)148
C7—H7···O2v0.932.583.347 (5)141
Symmetry codes: (i) x+2, y+1/2, z+1/2; (ii) x+1, y, z; (iii) x1, y, z; (iv) x+1/2, y+1/2, z; (v) x1/2, y+3/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O3i0.84 (5)1.81 (5)2.621 (4)164 (5)
O3—H3···O5i0.821.962.754 (3)164
N1—H1A···O4ii0.862.393.066 (4)136
C2—H2···O2iii0.982.483.425 (5)162
C6—H6···O5iv0.932.523.342 (5)148
C7—H7···O2v0.932.583.347 (5)141
Symmetry codes: (i) x+2, y+1/2, z+1/2; (ii) x+1, y, z; (iii) x1, y, z; (iv) x+1/2, y+1/2, z; (v) x1/2, y+3/2, z.
 

Acknowledgements

The authors acknowledge the provision of funds for the purchase of a diffractometer and encouragement by Dr Muhammad Akram Chaudhary, Ex-Vice Chancellor, University of Sargodha, Pakistan.

References

First citationAguilar-Castro, L., Tlahuextl, M., Tapia-Benavides, A. R. & Alvarado-Rodríguez, J. G. (2004). Struct. Chem. 15, 215–221.  CAS Google Scholar
First citationArshad, M. N., Danish, M., Tahir, M. N., Aabideen, Z. U. & Asiri, A. M. (2012). Acta Cryst. E68, o2665.  CSD CrossRef IUCr Journals Google Scholar
First citationArshad, M. N., Tahir, M. N., Khan, I. U., Shafiq, M. & Ahmad, S. (2009). Acta Cryst. E65, o940.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZolotarev, P. N., Arshad, M. N., Asiri, A. M., Al-amshany, Z. M. & Blatov, V. A. (2014). Cryst. Growth Des. 14, 1938–1949.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds