organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 3,4′-di­phenyl-3′-p-tolyl-4′H-spiro­[indan-2,5′-[1,2]oxazol]-1-one

aLaboratoire de Chimie Organique, Faculté des Sciences Dhar el Mahraz, Université Sidi Mohammed Ben Abdellah, BP 1796 Atlas, 30000 Fès, Morocco, and bLaboratoire de Chimie du Solide Appliquée, Faculté des Sciences, Université Mohammed V, Avenue Ibn Battouta, BP 1014, Rabat, Morocco
*Correspondence e-mail: asmae.mahfoud@yahoo.fr

Edited by H. Ishida, Okayama University, Japan (Received 6 October 2015; accepted 15 October 2015; online 24 October 2015)

In the title compound, C30H23NO2, the five-membered rings are both in envelope conformations with the same spiro C atom as the flap. The benzene ring and the two phenyl rings are inclined to the mean plane of the indene ring system by 83.98 (8), 81.46 (8) and 72.31 (7)°. In the crystal, mol­ecules are linked by pairs of C—H⋯O hydrogen bonds into inversion dimers. The dimers are further connected by C—H⋯N inter­actions, forming layers parallel to (10-1).

1. Related literature

For general background to 1,3-dipolar cyclo­addition reactions, see: Al Houari et al. (2008[Al Houari, G., Baba, M. F., Miqueu, K., Sotiropoulos, J. M., Garrigues, B., Benhadda, T., Benlarbi, N., Safir, I. & Kerbal, A. (2008). J. Marocain Chim. Heterocycl. 7, 16-20.], 2010[Al Houari, G., Bennani-Kella, A., Bennani, B., Daoudi, M., Benlarbi, N., El Yazidi, M., Garrigues, B. & Kerbal, A. (2010). J. Marocain Chim. Heterocycl. 9, 36-43.]). For a related structure, see: Akhazzane et al. (2010[Akhazzane, M., Zouihri, H., Daran, J.-C., Kerbal, A. & Al Houari, G. (2010). Acta Cryst. E66, o3067.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C30H23NO2

  • Mr = 429.49

  • Monoclinic, P 21 /n

  • a = 9.7381 (7) Å

  • b = 20.5072 (14) Å

  • c = 11.8261 (8) Å

  • β = 102.836 (2)°

  • V = 2302.7 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 296 K

  • 0.42 × 0.31 × 0.26 mm

2.2. Data collection

  • Bruker X8 APEX diffractometer

  • 38803 measured reflections

  • 5942 independent reflections

  • 3783 reflections with I > 2σ(I)

  • Rint = 0.042

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.150

  • S = 1.03

  • 5942 reflections

  • 298 parameters

  • H-atom parameters constrained

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C10—H10⋯O1i 0.98 2.47 3.4169 (18) 163
C2—H2⋯N1ii 0.93 2.56 3.280 (2) 135
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

In this paper we studied the stereochemistry in the reaction of p-tolylnitriloxide with (2E)-2-benzylidene-3-phenyl-2,3-dihydro-1H-inden-1-one. The X-Ray crystal study shows that the cabonyl group is in the position 5 of the isoxazoline. We also found that the phenyl group imposes an exclusive anti approach of the dipole. This stereochemistry is due to steric effects (Al Houari et al., 2008, 2010; Akhazzane et al., 2010).

The molecule of the title compound is formed by two fused five- and six-membered rings linked to a phenyl ring and to a five-membered ring which is connected to a phenyl ring and a toluene cycle (Fig. 1). The two five-membered rings (C1/C6–C9) and (N1/O2/C8/C10/C11) adopt envelope conformations on atom C8 as indicated by the total puckering amplitude Q2 = 0.256 (2) Å and spherical polar angle φ2 = 290.0 (4)°, and Q2 = 0.2496 (2) Å and φ2 = 320.0 (3)°. The mean plane through the indene ring (C1–C9) is nearly perpendicular to the benzene and phenyl rings (C12–C17, C19–C24 and C25–C30), making dihedral angles of 83.98 (8), 81.46 (8) and 72.31 (7)° with them. In the crystal, molecules are linked by a pair of C10—H10···O1 hydrogen bonds into an inversion dimer. The dimers are further connected by a C2—H2···N1 interaction (Fig. 2 and Table 1).

Related literature top

For general background to 1,3-dipolar cycloaddition reactions, see: Al Houari et al. (2008, 2010). For a related structure, see: Akhazzane et al. (2010).

Experimental top

In a 100 ml flask, we dissolve 2 mmoles of (2E)-2-benzylidene-3-phenyl-2,3-dihydro-1H-inden-1-one and 2.4 mmoles of p-tolyloxime in 20 ml of chloroform. The mixture is cooled to 273 K under magnetic stirring in an ice bath. Then 15 ml of bleach (NaOCl) at 291 K (Chlorometric degree) is added in small doses without exceeding 278 K. The mixture is left under magnetic stirring for 16 h at room temperature, then washed with water until the pH is neutral and dried on sodium sulfate. The solvent is evaporated with a rotating evaporator and the oily residue is dissolved in ethanol. The precipitated compound is then recrystallized in ethanol.

Refinement top

H atoms were located in a difference map and treated as riding with C—H = 0.96, 0.98 and 0.93 Å for methyl, methine and aromatic, respectively. Uiso(H) values were set at 1.2Ueq(C) for methine and aromatic, and 1.5Ueq(C) for methyl. The reflection (0 1 1) affected by the beamstop was removed during refinement.

Structure description top

In this paper we studied the stereochemistry in the reaction of p-tolylnitriloxide with (2E)-2-benzylidene-3-phenyl-2,3-dihydro-1H-inden-1-one. The X-Ray crystal study shows that the cabonyl group is in the position 5 of the isoxazoline. We also found that the phenyl group imposes an exclusive anti approach of the dipole. This stereochemistry is due to steric effects (Al Houari et al., 2008, 2010; Akhazzane et al., 2010).

The molecule of the title compound is formed by two fused five- and six-membered rings linked to a phenyl ring and to a five-membered ring which is connected to a phenyl ring and a toluene cycle (Fig. 1). The two five-membered rings (C1/C6–C9) and (N1/O2/C8/C10/C11) adopt envelope conformations on atom C8 as indicated by the total puckering amplitude Q2 = 0.256 (2) Å and spherical polar angle φ2 = 290.0 (4)°, and Q2 = 0.2496 (2) Å and φ2 = 320.0 (3)°. The mean plane through the indene ring (C1–C9) is nearly perpendicular to the benzene and phenyl rings (C12–C17, C19–C24 and C25–C30), making dihedral angles of 83.98 (8), 81.46 (8) and 72.31 (7)° with them. In the crystal, molecules are linked by a pair of C10—H10···O1 hydrogen bonds into an inversion dimer. The dimers are further connected by a C2—H2···N1 interaction (Fig. 2 and Table 1).

For general background to 1,3-dipolar cycloaddition reactions, see: Al Houari et al. (2008, 2010). For a related structure, see: Akhazzane et al. (2010).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented as small circles.
[Figure 2] Fig. 2. : Partial crystal packing for the title compound showing molecules linked by hydrogen bonds as dashed lines.
3,4'-Diphenyl-3'-p-tolyl-4'H-spiro[indan-2,5'-[1,2]oxazol]-1-one top
Crystal data top
C30H23NO2F(000) = 904
Mr = 429.49Dx = 1.239 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 9.7381 (7) ÅCell parameters from 5942 reflections
b = 20.5072 (14) Åθ = 2.4–28.7°
c = 11.8261 (8) ŵ = 0.08 mm1
β = 102.836 (2)°T = 296 K
V = 2302.7 (3) Å3Block, colourless
Z = 40.42 × 0.31 × 0.26 mm
Data collection top
Bruker X8 APEX
diffractometer
3783 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.042
Graphite monochromatorθmax = 28.7°, θmin = 2.4°
φ and ω scansh = 1213
38803 measured reflectionsk = 2727
5942 independent reflectionsl = 1515
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.049H-atom parameters constrained
wR(F2) = 0.150 w = 1/[σ2(Fo2) + (0.0706P)2 + 0.3191P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
5942 reflectionsΔρmax = 0.21 e Å3
298 parametersΔρmin = 0.21 e Å3
Crystal data top
C30H23NO2V = 2302.7 (3) Å3
Mr = 429.49Z = 4
Monoclinic, P21/nMo Kα radiation
a = 9.7381 (7) ŵ = 0.08 mm1
b = 20.5072 (14) ÅT = 296 K
c = 11.8261 (8) Å0.42 × 0.31 × 0.26 mm
β = 102.836 (2)°
Data collection top
Bruker X8 APEX
diffractometer
3783 reflections with I > 2σ(I)
38803 measured reflectionsRint = 0.042
5942 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.150H-atom parameters constrained
S = 1.03Δρmax = 0.21 e Å3
5942 reflectionsΔρmin = 0.21 e Å3
298 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.63361 (17)0.65004 (7)0.77155 (13)0.0434 (4)
C20.7018 (2)0.67536 (9)0.87761 (15)0.0615 (5)
H20.77600.70460.88280.074*
C30.6574 (3)0.65632 (12)0.97544 (16)0.0798 (6)
H30.70090.67391.04690.096*
C40.5499 (3)0.61194 (12)0.96970 (17)0.0823 (7)
H40.52260.59991.03720.099*
C50.4821 (2)0.58502 (10)0.86457 (16)0.0646 (5)
H50.41030.55460.86020.078*
C60.52553 (17)0.60528 (7)0.76583 (13)0.0451 (4)
C70.47174 (15)0.58614 (7)0.64401 (12)0.0391 (3)
C80.52976 (15)0.63745 (6)0.57117 (12)0.0363 (3)
C90.66333 (16)0.66398 (7)0.65309 (12)0.0406 (3)
H90.66900.71120.64240.049*
C100.52416 (15)0.61711 (6)0.44621 (11)0.0355 (3)
H100.53270.56960.44100.043*
C110.37483 (16)0.63844 (7)0.39210 (13)0.0397 (3)
C120.29663 (16)0.62078 (7)0.27526 (13)0.0419 (3)
C130.17247 (17)0.65406 (9)0.22408 (15)0.0541 (4)
H130.13900.68700.26490.065*
C140.1000 (2)0.63836 (10)0.11407 (16)0.0629 (5)
H140.01880.66150.08110.075*
C150.1444 (2)0.58901 (10)0.05096 (15)0.0603 (5)
C160.2661 (2)0.55529 (9)0.10290 (15)0.0598 (5)
H160.29730.52130.06290.072*
C170.34171 (18)0.57134 (8)0.21307 (14)0.0500 (4)
H170.42360.54860.24540.060*
C180.0653 (3)0.57206 (13)0.07049 (18)0.0886 (7)
H18A0.11210.53680.09980.133*
H18B0.02900.55920.06900.133*
H18C0.06270.60940.11980.133*
C190.79899 (16)0.63248 (8)0.63886 (12)0.0439 (4)
C200.81576 (18)0.56531 (9)0.64447 (14)0.0526 (4)
H200.74380.53920.65960.063*
C210.9383 (2)0.53679 (12)0.62782 (17)0.0737 (6)
H210.94760.49160.63060.088*
C221.0455 (2)0.57422 (17)0.6073 (2)0.0898 (8)
H221.12760.55470.59600.108*
C231.0322 (2)0.64040 (16)0.60343 (19)0.0884 (8)
H231.10600.66600.59020.106*
C240.9092 (2)0.66999 (11)0.61901 (16)0.0648 (5)
H240.90110.71520.61610.078*
C250.62860 (15)0.65060 (7)0.38786 (12)0.0388 (3)
C260.62869 (19)0.71794 (8)0.37655 (15)0.0535 (4)
H260.56150.74270.40200.064*
C270.7283 (2)0.74848 (9)0.32761 (17)0.0659 (5)
H270.72850.79370.32130.079*
C280.8269 (2)0.71204 (11)0.28830 (16)0.0674 (5)
H280.89380.73260.25550.081*
C290.8263 (2)0.64531 (10)0.29763 (16)0.0623 (5)
H290.89270.62070.27080.075*
C300.72750 (17)0.61456 (8)0.34679 (13)0.0470 (4)
H300.72740.56930.35230.056*
N10.32254 (14)0.67817 (6)0.45484 (11)0.0485 (3)
O10.39627 (12)0.54081 (5)0.60560 (10)0.0516 (3)
O20.42173 (12)0.68874 (5)0.56063 (9)0.0479 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0497 (9)0.0408 (8)0.0407 (8)0.0036 (7)0.0121 (7)0.0042 (6)
C20.0716 (12)0.0627 (11)0.0474 (9)0.0014 (9)0.0075 (9)0.0116 (8)
C30.1003 (18)0.0979 (16)0.0397 (9)0.0050 (14)0.0127 (10)0.0130 (9)
C40.0994 (18)0.1110 (18)0.0431 (10)0.0056 (15)0.0299 (11)0.0040 (10)
C50.0721 (13)0.0765 (12)0.0525 (10)0.0011 (10)0.0297 (9)0.0065 (9)
C60.0502 (9)0.0455 (8)0.0424 (8)0.0034 (7)0.0163 (7)0.0007 (6)
C70.0387 (8)0.0359 (7)0.0450 (8)0.0019 (6)0.0143 (6)0.0006 (6)
C80.0380 (8)0.0327 (6)0.0386 (7)0.0019 (6)0.0095 (6)0.0007 (5)
C90.0474 (9)0.0342 (7)0.0400 (7)0.0052 (6)0.0092 (6)0.0037 (6)
C100.0365 (7)0.0336 (7)0.0367 (7)0.0011 (6)0.0087 (6)0.0011 (5)
C110.0376 (8)0.0384 (7)0.0432 (8)0.0009 (6)0.0091 (6)0.0056 (6)
C120.0380 (8)0.0449 (8)0.0421 (8)0.0041 (6)0.0071 (6)0.0079 (6)
C130.0424 (9)0.0596 (10)0.0571 (10)0.0033 (8)0.0043 (8)0.0058 (8)
C140.0469 (10)0.0764 (12)0.0578 (10)0.0000 (9)0.0045 (8)0.0142 (9)
C150.0549 (11)0.0763 (12)0.0443 (9)0.0159 (9)0.0007 (8)0.0122 (8)
C160.0639 (12)0.0685 (11)0.0448 (9)0.0030 (9)0.0077 (8)0.0029 (8)
C170.0474 (9)0.0564 (9)0.0434 (8)0.0023 (7)0.0044 (7)0.0032 (7)
C180.0867 (16)0.1143 (18)0.0518 (11)0.0168 (14)0.0127 (11)0.0055 (11)
C190.0387 (8)0.0588 (9)0.0328 (7)0.0071 (7)0.0048 (6)0.0054 (6)
C200.0466 (9)0.0609 (10)0.0495 (9)0.0062 (8)0.0086 (7)0.0033 (7)
C210.0593 (13)0.0976 (15)0.0604 (12)0.0261 (12)0.0052 (10)0.0129 (10)
C220.0490 (13)0.153 (2)0.0647 (13)0.0147 (15)0.0076 (10)0.0331 (15)
C230.0452 (12)0.158 (3)0.0641 (13)0.0305 (14)0.0169 (10)0.0259 (14)
C240.0526 (11)0.0887 (13)0.0540 (10)0.0245 (10)0.0137 (8)0.0125 (9)
C250.0376 (8)0.0438 (8)0.0339 (7)0.0015 (6)0.0059 (6)0.0043 (5)
C260.0528 (10)0.0465 (9)0.0632 (10)0.0021 (8)0.0168 (8)0.0103 (7)
C270.0689 (13)0.0532 (10)0.0760 (12)0.0082 (9)0.0166 (10)0.0216 (9)
C280.0603 (12)0.0833 (14)0.0628 (11)0.0131 (10)0.0230 (9)0.0221 (10)
C290.0580 (11)0.0778 (13)0.0579 (10)0.0001 (9)0.0277 (9)0.0075 (9)
C300.0486 (9)0.0516 (9)0.0431 (8)0.0007 (7)0.0153 (7)0.0022 (6)
N10.0471 (8)0.0489 (7)0.0481 (7)0.0095 (6)0.0079 (6)0.0031 (6)
O10.0489 (7)0.0466 (6)0.0612 (7)0.0109 (5)0.0165 (5)0.0027 (5)
O20.0516 (7)0.0433 (6)0.0473 (6)0.0134 (5)0.0082 (5)0.0046 (4)
Geometric parameters (Å, º) top
C1—C21.383 (2)C15—C181.512 (3)
C1—C61.387 (2)C16—C171.386 (2)
C1—C91.519 (2)C16—H160.9300
C2—C31.379 (3)C17—H170.9300
C2—H20.9300C18—H18A0.9600
C3—C41.377 (3)C18—H18B0.9600
C3—H30.9300C18—H18C0.9600
C4—C51.386 (3)C19—C241.382 (2)
C4—H40.9300C19—C201.387 (2)
C5—C61.391 (2)C20—C211.382 (3)
C5—H50.9300C20—H200.9300
C6—C71.473 (2)C21—C221.360 (4)
C7—O11.2093 (17)C21—H210.9300
C7—C81.544 (2)C22—C231.363 (4)
C8—O21.4730 (17)C22—H220.9300
C8—C101.5248 (19)C23—C241.391 (3)
C8—C91.5384 (19)C23—H230.9300
C9—C191.513 (2)C24—H240.9300
C9—H90.9800C25—C301.385 (2)
C10—C251.515 (2)C25—C261.387 (2)
C10—C111.517 (2)C26—C271.384 (2)
C10—H100.9800C26—H260.9300
C11—N11.2813 (19)C27—C281.377 (3)
C11—C121.467 (2)C27—H270.9300
C12—C171.380 (2)C28—C291.373 (3)
C12—C131.403 (2)C28—H280.9300
C13—C141.374 (2)C29—C301.382 (2)
C13—H130.9300C29—H290.9300
C14—C151.383 (3)C30—H300.9300
C14—H140.9300N1—O21.4171 (16)
C15—C161.391 (3)
C2—C1—C6119.92 (16)C14—C15—C18121.76 (19)
C2—C1—C9127.88 (16)C16—C15—C18120.6 (2)
C6—C1—C9112.18 (12)C17—C16—C15121.30 (18)
C3—C2—C1118.52 (19)C17—C16—H16119.4
C3—C2—H2120.7C15—C16—H16119.4
C1—C2—H2120.7C12—C17—C16120.64 (16)
C4—C3—C2121.51 (19)C12—C17—H17119.7
C4—C3—H3119.2C16—C17—H17119.7
C2—C3—H3119.2C15—C18—H18A109.5
C3—C4—C5120.86 (19)C15—C18—H18B109.5
C3—C4—H4119.6H18A—C18—H18B109.5
C5—C4—H4119.6C15—C18—H18C109.5
C4—C5—C6117.4 (2)H18A—C18—H18C109.5
C4—C5—H5121.3H18B—C18—H18C109.5
C6—C5—H5121.3C24—C19—C20118.24 (17)
C1—C6—C5121.73 (16)C24—C19—C9120.75 (16)
C1—C6—C7108.98 (13)C20—C19—C9121.00 (14)
C5—C6—C7129.29 (16)C21—C20—C19120.65 (19)
O1—C7—C6128.81 (14)C21—C20—H20119.7
O1—C7—C8125.55 (13)C19—C20—H20119.7
C6—C7—C8105.63 (12)C22—C21—C20120.5 (2)
O2—C8—C10104.02 (10)C22—C21—H21119.7
O2—C8—C9106.79 (11)C20—C21—H21119.7
C10—C8—C9123.38 (12)C21—C22—C23119.8 (2)
O2—C8—C7101.00 (11)C21—C22—H22120.1
C10—C8—C7114.55 (11)C23—C22—H22120.1
C9—C8—C7104.63 (11)C22—C23—C24120.5 (2)
C19—C9—C1111.84 (12)C22—C23—H23119.7
C19—C9—C8114.58 (11)C24—C23—H23119.7
C1—C9—C8101.92 (12)C19—C24—C23120.2 (2)
C19—C9—H9109.4C19—C24—H24119.9
C1—C9—H9109.4C23—C24—H24119.9
C8—C9—H9109.4C30—C25—C26118.82 (15)
C25—C10—C11110.78 (11)C30—C25—C10120.50 (13)
C25—C10—C8115.75 (11)C26—C25—C10120.67 (14)
C11—C10—C898.88 (11)C27—C26—C25120.40 (17)
C25—C10—H10110.3C27—C26—H26119.8
C11—C10—H10110.3C25—C26—H26119.8
C8—C10—H10110.3C28—C27—C26120.10 (17)
N1—C11—C12120.82 (14)C28—C27—H27120.0
N1—C11—C10113.96 (13)C26—C27—H27120.0
C12—C11—C10125.06 (13)C29—C28—C27119.91 (17)
C17—C12—C13118.23 (15)C29—C28—H28120.0
C17—C12—C11121.54 (14)C27—C28—H28120.0
C13—C12—C11120.23 (15)C28—C29—C30120.25 (18)
C14—C13—C12120.46 (18)C28—C29—H29119.9
C14—C13—H13119.8C30—C29—H29119.9
C12—C13—H13119.8C29—C30—C25120.50 (16)
C13—C14—C15121.73 (17)C29—C30—H30119.7
C13—C14—H14119.1C25—C30—H30119.7
C15—C14—H14119.1C11—N1—O2109.14 (12)
C14—C15—C16117.61 (16)N1—O2—C8107.42 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10···O1i0.982.473.4169 (18)163
C2—H2···N1ii0.932.563.280 (2)135
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1/2, y+3/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10···O1i0.982.473.4169 (18)163
C2—H2···N1ii0.932.563.280 (2)135
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1/2, y+3/2, z+1/2.
 

Acknowledgements

The authors thank the Unit of Support for Technical and Scientific Research (UATRS, CNRST) for the X-ray measurements.

References

First citationAkhazzane, M., Zouihri, H., Daran, J.-C., Kerbal, A. & Al Houari, G. (2010). Acta Cryst. E66, o3067.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAl Houari, G., Baba, M. F., Miqueu, K., Sotiropoulos, J. M., Garrigues, B., Benhadda, T., Benlarbi, N., Safir, I. & Kerbal, A. (2008). J. Marocain Chim. Heterocycl. 7, 16–20.  CAS Google Scholar
First citationAl Houari, G., Bennani-Kella, A., Bennani, B., Daoudi, M., Benlarbi, N., El Yazidi, M., Garrigues, B. & Kerbal, A. (2010). J. Marocain Chim. Heterocycl. 9, 36–43.  CAS Google Scholar
First citationBruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds